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Abstract: The undesirable side effects of conventional chemotherapy are one of the major problems
associated with cancer treatment. Recently, with the development of novel nanomaterials, tumor-
targeted therapies have been invented in order to achieve more specific cancer treatment with reduced
unfavorable side effects of chemotherapic agents on human cells. However, the clinical application
of nanomedicines has some shortages, such as the reduced ability to cross biological barriers and
undesirable side effects in normal cells. In this order, bioinspired materials are developed to minimize
the related side effects due to their excellent biocompatibility and higher accumulation therapies. As
bioinspired and biomimetic materials are mainly composed of a nanometric functional agent and
a biologic component, they can possess both the physicochemical properties of nanomaterials and
the advantages of biologic agents, such as prolonged circulation time, enhanced biocompatibility,
immune modulation, and specific targeting for cancerous cells. Among the nanomaterials, asymmetric
nanomaterials have gained attention as they provide a larger surface area with more active functional
sites compared to symmetric nanomaterials. Additionally, the asymmetric nanomaterials are able
to function as two or more distinct components due to their asymmetric structure. The mentioned
properties result in unique physiochemical properties of asymmetric nanomaterials, which makes
them desirable materials for anti-cancer drug delivery systems or cancer bio-imaging systems. In this
review, we discuss the use of bioinspired and biomimetic materials in the treatment of cancer, with a
special focus on asymmetric nanoparticle anti-cancer agents.

Keywords: cancer; bioinspired nanomedicine; biomimetic materials; targeted drug delivery; asymmetry

1. Introduction

Cancer is a term that encompasses a variety of diseases caused by the uncontrolled
growth of malignant cells that can invade and spread to other parts of the body. The
World Health Organization estimates that there will be 13.1 million cancer-related deaths
by 2030, with more than 10 million new cases reported each year [1,2]. For both genders,
lung cancer is the most commonly diagnosed cancer and the leading cause of cancer
deaths. Breast cancer, prostate cancer, and colorectal cancer are other cancers commonly
diagnosed in women [3]. The survival rate of cancer patients has been ameliorated with
the development of an understanding of cancer physiology and its treatment modalities,
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such as chemotherapy, radiotherapy, and immunotherapy. However, due to the lack of
tumor specificity of these treatment methods, they can induce off-target side effects in
healthy tissues as well as limited efficacy due to insufficient drug concentration at the
tumor sites [4–6]. Moreover, in the case of resistance to single therapies, using combination
therapies is essential, which can increase the risk of lethal side effects. Additionally, some
cancer drugs, such as radioisotopes, toxins, nucleic acids, or hydrophobic drugs, cannot
be administered systemically. Therefore, in order to overcome the mentioned limitations,
targeted drug delivery using nanocarriers has been developed (Figure 1). Specific targeting
augments drug solubility and bioavailability, increases drugs’ stability, and improves drug
targeting and its concentration in the tumor site [7–10].
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Over the past few decades, different types of nanomaterials have been well devel-
oped for cancer therapies. The employed nanomaterials can be produced in symmetric
or asymmetric structures. The nanomaterials are commonly synthesized in symmetric
forms, such as nanospheres, nanowires, nanoflowers, or nanosheets. Additionally, after the
discovery of Janus by Gennes et al. in 1991 [12], the asymmetric structures have gradually
attracted increasing attention; thus, various asymmetric structures have been discovered in
the last two decades. Nowadays, asymmetric structures contain various shapes with differ-
ent surface properties [13–15]. Janus particles, bowl-shaped [16], snowman-shaped [17],
disk-shaped [18], and raspberry-shaped structures [19], are examples of asymmetric nano-
materials. An asymmetric particle is a particle with an asymmetric center, similar to an
asymmetric molecule. Different surface properties (e.g., charge, polarity, and chemical
functionality) and particle shapes (e.g., dumbbells, snowmen, and Janus particles) can be
responsible for the particle’s asymmetry [20]. The application of nanomaterials in cancer
therapy has various advantages due to their physicochemical properties, such as nano-
metric dimensions, large surface area-to-volume ratio, tunable surface characteristics, the
ability to encapsulate various molecules, and controlled drug release [8,21–23]. Addition-
ally, nanomedicine increases the therapeutic molecules’ stability, bioavailability, and tumor
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accumulation, resulting in a prolonged half-life in circulation compared to conventional
chemotherapic drugs [24–27]. These properties make nanomedicines an excellent choice in
tumor-targeted treatments. Despite the mentioned advantages and applications of nanoma-
terials in cancer therapy, some shortages are associated with these materials. In preclinical
studies, the application of drug-loaded nanocarriers results in high drug concentrations
in tumor sites with maximum therapeutic efficacy, while in clinical studies, the targeted
synthetic nanoparticles (NPs) cannot work due to impenetrable biological barriers [8,28].
Therefore, scientists have been developing nanomedicine mimicking biological features
with the inspiration of natural structures to overcome biological barriers. Additionally,
synthetic nanomaterials can be modified with some biomimetic features. These bioinspired
nanomedicines possess desirable properties such as excellent biocompatibility, proper
biodegradation, and the ability to deliver high drug-loading content to target cells [29–31].
Therefore, bioinspired materials are a new solution to overcome biological barriers and
the disadvantages of current drug delivery systems (DDSs). This review will discuss the
application of asymmetric nanomaterials in cancer treatment.

2. Asymmetric Nanomaterials

As mentioned before, both symmetric and asymmetric structure nanomaterials are
employed for cancer treatment. The symmetric structures (i.e., nanospheres, nanowires,
nanoflowers, nanosheets, core–shell structured composites) are now commonly used in
biomedical applications. Additionally, after the discovery of Janus by Gennes et al. in
1991 [12], the asymmetric structures have gradually attracted increasing attention; thus,
various asymmetric structures have been discovered in the last two decades. Nowadays,
asymmetric structures contain various shapes with different surface properties [13,32,33].

While the surface free energy effect limits symmetric structures, various unique ad-
vantages are related to asymmetric structures (Table 1). One of the most practical advan-
tages of asymmetric structures is that they can possess multiple functions due to their
different surface physiochemical properties or components. This results in the ability
of these nanomaterials to simultaneously contain distinct properties (e.g., hydrophilicity
and hydrophobicity), which makes the asymmetric structures ideal candidates for “nano-
intelligent systems” with desirable applications in biomedicine, electrochemistry, and
interfacial stabilizers [13,34,35]. Furthermore, another advantage of asymmetric structures
is a stronger synergistic effect. The distinct parts of asymmetric structures can perform
independently or can even cooperate, resulting in enhanced efficiency. Additionally, be-
cause of their asymmetric shape, they have a larger effective surface area with an increased
number of active sites, resulting in more preferred properties of these materials. Therefore,
asymmetric materials have been widely developed in recent years due to their desirable
properties [13]. Because of the interaction between asymmetric shapes and directional
interactions, asymmetric particles with anisotropic features can yield more complex com-
positions than symmetric particles. The device usually has a symmetric geometry, and
there is a limited amount of space available to load multiple drug types into the device.
If two drugs are loaded simultaneously into a single storage space, the release of each
drug cannot be independently controlled. In addition, the loaded multidrugs may interact
adversely with each other, especially if the drugs have different chemical properties (e.g.,
hydrophilicity and hydrophobicity, acidity and basicity, etc.). Therefore, the development of
multicompartment carriers with independent storage sites to accommodate multiple drugs
is urgently needed. Dual surface structures of an asymmetric nanostructure are anisotropic
in composition, shape, and surface chemistry, which makes them ideal for binding dual
guests to different domains of asymmetric particles. In addition, the functionally different
surfaces of asymmetric particles can also be used for selective conjugation with specific
triggers, allowing the release of the double guests to be individually controlled [36–38].
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Table 1. The comparison of advantages and disadvantages between symmetric and asymmetric
nanostructures.

Symmetric Structures Asymmetric Structures

Lower effective surface area Multiple functions
Fewer active sites More active sites
Single function Larger effective surface area
Free energy effect limits symmetric structures Stronger synergistic effect

Distinct properties
Lower free energy
More complex assemblies
Increased number of unsaturated coordination centers
More mechanic resistance
Permeability

2.1. Janus Nanoparticles

Janus was the first asymmetric particle introduced by Pierre-Gilles Gennes in 1991
as a particle with two sides with opposite polarity [12]. With the development of nan-
otechnology, Janus nanoparticles (JNPs) are fabricated as NPs with two or more sides
that have distinct chemical or physical properties. Generally, JNPs are divided into three
groups due to their composition. JNPs can be organic (e.g., polymeric), inorganic (e.g., gold,
silver, silica), or organic–inorganic [39–43]. Bowl-shaped [16], snowman-shaped [17], disk-
shaped [18], raspberry-shaped [19], hamburger, spherical, bonsai-like, octopus, core-sell,
and irregular structures [44] are the various shapes of JNPs (Figure 2).
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Janus nanoparticles have attracted attention in cancer treatment due to their hetero-
geneous structure, as they can participate in two distinct functions. JNPs can corporate
various materials in order to achieve specific properties. As an example, with the in-
corporation of JNPs with imaging materials such as MnO2, Fe3O4, gold and silver NPs,
fluorescent dyes, or quantum dots, various imaging modalities are designed for tumor
cell screening [45,46]. Several interesting properties can be obtained in nanoparticles with
asymmetric heterostructural compounds at the micro/nanoscale that are not possible in
homogeneous or symmetric nanostructures. For example, the Fe3O4-Au JNPs exhibited
magnetic properties on one side, while the Au NPs showed localized surface plasmon
resonance on the other side. The Janus structure allowed Fe3O4 to be combined with Au,
resulting in a different surface polarity or internal chemistry than the corresponding single
components [47–49].

Moreover, incorporating JNPs with therapeutic agents can be employed as nanocar-
riers in various therapeutic modalities for cancer treatment, such as chemotherapy, pho-
totherapy, radiotherapy, and gene therapy. In the drug delivery field, JNPs can be loaded
with various distinct drugs with an independent release of multiple drugs [50], as well
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as acting as nanomotors for active drug delivery or physical tumor destruction [51–53].
Therefore, the Janus nanoparticles have gained attention as the new nanoparticles in the
cancer diagnosis and treatment era (Table 2).

2.1.1. Polymeric Janus Nanoparticles

In recent years, polymeric JNPs have been introduced as a drug delivery agent in
cancer treatment. Janus dendrimers and spherical polymeric nanoparticles are the most
common JNPs in drug delivery systems (DDS). Dendrimers are known as branched macro-
molecules with a core that is surrounded by repetitive branching units, known as “Den-
dron”. Janus dendrimers are a group of favorable drug carriers due to their properties,
such as hydrophilicity, drug encapsulation ability, and the ability to conjugate with drugs
with their abundant functional groups [54–56]. Dendrimers are categorized as asymmetric
nanomaterials as they can have two or more distinct dendrons; thus, unlike symmetrical
NPs, they can have more than one functional ability. As an example, Acton et al. fabricated
polyethylene glycol (PEG)-based Janus dendrimers which can be loaded with two distinct
hydrophobic and hydrophilic drugs. Additionally, the mentioned dendrimers are able to
release the drugs at different speeds due to the different linkages between the dendrons
and the drugs (Figure 3) [57–59].
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The polymeric Janus materials are also applicable in cancer treatment. As the studies
showed with the elimination of drug carriers in blood circulation by macrophages and
neutrophils, polymeric Janus particles were introduced to overcome this problem. For
instance, Sanchez et al. designed two-sided structures of polyethylene glycol (PEG) chains
and Janus particles coupled with IgG, which reduced interference between the distinct
functions of the two sides of JNPs by a spatial decoupling design of NPs, while the
PEGs decrease the effect of macrophage evasion. Additionally, the mentioned study
demonstrated that articles coated with only half PEG could escape from the immune
system more effectively than particles coated with full PEG [60–62]. According to Xie and
colleagues, biocompatible polymeric Janus nanoparticles composed of the FDA-approved
polymer poly-(lactate-co-glycolic acid) (PLGA) can be prepared in one step using a fluidic
nanoprecipitation system (FNPS). It was the first report of polymeric Janus nanoparticles
capable of carrying a hydrophobic drug (paclitaxel) and a hydrophilic drug (doxorubicin
hydrochloride) in a single particle [63,64].
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2.1.2. Inorganic Janus Nanoparticles

Inorganic materials such as gold, silver, silica, MnO2, or Fe3O4 can be utilized in the
fabrications of Janus nanoparticles for cancer diagnosis and treatment (Figure 4) due to
their physiochemical properties such as magnetism, surface plasmonic resonance (SPR),
photo-thermal conversion ability, and easy functionalization [65]. Therefore, the inorganic-
based JNPs are mainly employed as cancer imaging agents in magnetic resonance imaging
(MRI), magnetic particle imaging, computerized tomography (CT) scans, photoacoustic
imaging processing (PAI), surface-enhanced Raman scattering (SERS), etc. [66]. In a study,
Reguera et al. fabricated a star-shaped JNP that forms the initial Fe3O4–Au dumbbell
JNPs. The fabricated nanostar can be utilized in MRI, CT, SERS, or PAI cancer imaging
systems [67–70].

In addition to imaging systems, inorganic JNPs are employed in various cancer treat-
ment modalities. In a study, the surface of silica-based JNPs was functionalized with
alkyne-tagged anti-CD28 and biotinylated anti-CD3 antibodies, fabricating bifunctional
Janus nanoparticles. As a result, the fabricated JNPs can be utilized as T-cell stimulation
NPs in immunotherapies against tumors, containing both anti-CD3 and anti-CD28 stimula-
tory ligands in two distinct sides of JNPs [71]. In another study, gold-mesoporous silica
JNPs were designed and then modified with folic acid; thus, the fabricated JNPs can be
employed as drug nanocarriers. In the mentioned study, the gold-mesoporous silica JNPs
were loaded with doxorubicin (DOX) (an anti-cancer chemotherapy drug), which can be
released from the mesoporous agents in a pH-sensitive manner, targeting and entering
hepatocellular carcinoma tumor cells. In addition to chemotherapy, the gold-mesoporous
silica JNPs can act both as radiotherapy and CT-scan agents due to the physicochemical
properties of inorganic gold and silica molecules, as mentioned before [72,73].
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Despite the challenges facing molecular organic-inorganic hybrid mesoporous organosil-
ica nanoparticles (MONs), the precise control of morphology, nanostructure, composition,
and particle size remains a challenge. It has been shown that hollow MOS nanoparticles
(HMONs) with uniform spherical morphology can be prepared using a hard template.
An efficient growth strategy governed by bridged organic groups was proposed for the
facile synthesis of highly dispersed and uniform MONs with different Janus morphologies,
nanostructures, organic-inorganic hybrid compositions, and particle sizes. As long as the
bridged organic groups and the concentration of bis-silylated organosilica precursors are
varied, the properties of MONs can be easily controlled. In addition to their excellent
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performances as stimuli-responsive drug carriers, adsorbents for bilirubin removal, and
contrast agents for ultrasound imaging, Janus MONs have hollow structures [1,75].

2.1.3. Polymeric-Inorganic Janus Nanoparticles

In addition to polymeric and inorganic JNPs, a new category of Janus nanoparticles
was also designed by combining these two mentioned JNPs, named polymeric–inorganic
Janus nanoparticles. These JNPs are widely employed for biomedical applications, in-
cluding cancer diagnosis and treatment. In a study, a polystyrene/Fe3O4@SiO2 Janus
nanocomposite was designed by Wang et al. for administering targeted drug delivery. The
mentioned JNP was further loaded with folic acid on the polystyrene side and doxorubicin
on the silica side [76–78]. Additionally, with the application of Fe3O4 nanoparticles, and
due to their unique properties, simultaneous targeting, drug delivery, and imaging can
be performed. In another study, gold-mesoporous silica Janus nanoparticles were em-
ployed in a bio-imaging system (Figure 5). In these multifunctional JNPs, the nanoparticles
were designed to target hepatocellular Carcinoma due to the folic acid molecules in their
structure. In other words, the folic acid modification of these JNPs enables them to act as
targeted computed tomography (CT) and imaging agents for diagnosing hepatocellular
Carcinoma [72,79].
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Table 2. The examples of employed JNPs in the studies related to cancer diagnosis and treatments.

Type Composition JNPs Morphology Application Reference

Organic Four PEG-based dendrons Dendrimers Chemotherapy [57]
PLGA nanoparticles-DOX-PTX Sphere Chemotherapy [63]

Inorganic Silica-antibodies Sphere Immunotherapy [71]
Fe3O4-Au Octahedron-sphere/Star CT, MRI, Chemotherapy, PIA, SERS [67,74]
Au-silica Sphere PIA [80]
FA-Au-mesoporous silica-DOX Spindle CT, Chemotherapy, Radiotherapy [72]
GNRs@mSiO2–DOX Lollipop Chemotherapy [81]
FA-Au/Fe3O4@C Dumbbell MRI, CT, Chemotherapy [82]
DOX-CMR-MS/Au-6MP Dumbbell Chemotherapy, SERS [83]
Fe3O4-MSNs-P@GCV@pTK Rod MRI, Magnetic hyperthermia, Gene therapy [84]
Fe3O4-SiO2 Bullet Magnet field-enhanced chemotherapy [85]
Ag-MSN-DOX Bullet Chemotherapy [86]

polymeric-inorganic Fe3O4-PS16-PAA10 Sphere Chemotherapy [87]
FA-Polystyrene/Fe3O4@SiO2-DOX Sphere Chemotherapy [87]
Au-polydivinylbenzene-curcumin Sphere Chemotherapy [88]
FA-Au-PAA/mCaP Dumbbell CT, Chemotherapy [89]

2.2. Asymmetric Mesoporous Materials

Mesoporous materials are materials with 2–50 nm diameter pores, which have been
widely developed over the past decades [80,90,91]. The first mesoporous materials were
bulk, but with their increased application in various fields, nano-sized mesoporous materi-
als were fabricated, known as mesoporous nanoparticles [92–94]. Nowadays, mesoporous
NPs are widely employed in various domains, including biomedicine and drug delivery,
due to their large surface area, high pore volume, and tunable pore size, with various
structures and components. The mesoporous NPs are fabricated in unique symmetric and
asymmetric architectures, as shown in Figure 6.
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Despite the symmetric NPs, asymmetric mesoporous NPs are designed for multiple-
component drug-loading systems or ligand attachment due to having more than one
distinct structure. Moreover, each mesoporous component can contain different pore sizes,
particle sizes, electric charges, hydrophilicity, etc.; therefore, each component is able to
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interact independently with the surrounding environment. This characteristic makes the
asymmetric mesoporous nanoparticles a favorable material for biomedical applications
and drug delivery systems. In a study, Li et al. fabricated multifunctional asymmet-
ric UCNP@SiO2@mSiO2&PMO (UCNP = upconversion nanoparticle, PMO = periodic
mesoporous organosilica) nanoparticles. These NPs contain a hydrophilic side (mSiO2)
and a hydrophobic side (PMO); therefore, the NPs can be loaded with hydrophilic dox-
orubicin drugs on the mSiO2 side, and with the hydrophobic paclitaxel molecules on
the PMO side. These two drugs can be released independently due to heat production
with NIR light [36]. Mesoporous silica nanoparticles with anisotropic geometry and dual
compartments are highly desirable for loading and unloading dual drugs in segregated
storage environments. An anisotropic epitaxial growth strategy has successfully devel-
oped an asymmetric lollipop-shaped mesoporous silica nanoparticle Fe3O4@SiO2&EPMO
(EPMO = ethane-bridged periodic mesoporous organosilica). An asymmetric nanoparticle
exhibits a uniform lollipop shape with a 200 nm diameter spherical core of iron3O4@SiO2
and a 90 nm-long EPMO nanorod with a specific surface area of 650.3 square meters
g-1. According to in vitro studies, the asymmetric nanoparticles possess a unique dual
independent (hydrophilic/hydrophobic) space design with high loading capacity and
are significantly more effective than pure drugs at killing cancer cells. In addition, the
dual drug-loaded nanoparticles (curcumin plus gentamicin sulfate) exhibited excellent
antibacterial and anticancer properties [96–98].

The asymmetric nanoparticles of mesoporous silica have a head-to-tail structure and
are potent immunoadjuvants capable of delivering peptide antigens to mice and eliciting
greater antibody immune responses than their symmetric counterparts. According to
Abbaraju et al., asymmetric mesoporous silica nanoparticles with a head-to-tail morphology
(HTMSN) were more effective than symmetric mesoporous silica nanoparticles (MSN) when
using a peptide antigen as an adjuvant. Recently, it has been reported that HTMSNs have
been synthesized and have the potential to be used as an adjuvant in vitro. To demonstrate
the efficacy of HTMSNs as vaccine adjuvants, researchers used J8 (molecular weight 3283) as
a model antigen that can be efficiently loaded in both MSNs and HTMSNs. The J8 peptide,
developed from the bacterial surface M protein, generates antibody-specific immunity
and protection against Streptococcus pyrogenes (SP), an infection known for its numerous
clinical manifestations, including toxic shock syndrome, rheumatic fever, and rheumatic
heart disease (RHD). In studies using MSN and HTMSN as both the adjuvant and carrier,
HTMSN showed enhanced uptake into antigen-presenting cells (APCs) and the increased
activation of costimulatory molecules (e.g., CD40, CD86) on the surface of matured APCs
compared with MSN. Another study in mice found that HTMSN loaded with J8 elicited a
stronger response to J8-specific antibodies than MSN [99,100]. In another study, asymmetric
single-hole mesoporous silica nanocages were designed. These nanoparticles are hollow
spheres of 100–240 nm diameter, with mesoporous shells on the surface area. These NPs
can be loaded with drugs of various sizes, due to their central hollow area (∼25 nm) and the
mesopores in silica molecules with 2–10 nm diameter. In this study, the mesoporous silica
NPs were loaded with both bovine serum albumin and doxorubicin, with two different
particle sizes. These molecules can also be released separately, controlled by heat and NIR
light [101–103].

3. Core–Shell Nanoparticles

Core–shell nanoparticles are a type of asymmetric nanoparticles with distinct compo-
nents in an inner core and outer shell, which makes this nanoparticle able to attach to both
nanometric and micrometric scales. More importantly, their particular structure results in a
controlled releasing action while protecting the drug molecules. Due to their application
and purpose, core–shell NPs can be fabricated in different core shapes, shell structures
and thicknesses, and surface properties. The mentioned characteristics can determine the
loading capacities and releasing kinetics of drugs. The core–shell NPs usually vary between
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10–200 nm, as the smaller particles will be inactivated by immune cells, and the larger ones
will be recognized as foreign body particles, causing inflammation [104,105].

Various core–shell nanoparticles have been employed successfully as anti-cancer drug
delivery agents. In the studies, magnetic NPs, gold NPs, Fe3O4, and other conducting
NPs are mainly used as core materials. As an example, Ayyanaar et al. employed Fe3O4
nanoparticles as the core material, coated in poly(lactic-co-glycolic acid) (PLGA) meso-
porous molecules, fabricating PLGA-Fe3O4 nanoparticles. These nanoparticles were loaded
with curcumin which is an anti-cancer agent [106].

4. The Applications of Asymmetric Nanomaterials in Cancer Treatment

As mentioned, asymmetric structures are employed for various applications due
to their desirable properties, such as a more significant surface area, increased active
sites, and tunable structures and compositions. Among the nanomaterials, carbon-based
and silica-based asymmetric nanomaterials have been widely developed recently due to
their advantages, such as favorable biocompatibility, facile application, and structural
adjustability [29,107]. Additionally, asymmetric nanomaterials have been designed for
biomedical applications because of their ability to integrate different functional components,
structures, and even properties. In this regard, this section will thoroughly discuss the
application of asymmetric nanomaterials in cancer treatment.

4.1. Drug Delivery

Enhancing drug delivery systems (DDS) is one of the significant applications of asym-
metric nanomaterials in cancer treatment. The tumor-targeted drug delivery of anti-cancer
drugs has been developed in past decades to achieve a controlled drug-releasing system to
increase the treatment efficacy and decrease the off-target effects. Nanomaterials are consid-
ered favorable drug carriers in cancer therapy. In addition, asymmetric nanomaterials are
more efficient as their distinct components can function separately. For example, Shao et al.
designed a bullet-like nanoparticle (NP) with a head of Fe3O4 and a body of mesoporous
silica [85,108]. In this nanoparticle, the magnetic Fe3O4 enables an increased drug concen-
tration and enhanced cellular uptake using magnetic field-guided tumor accumulation.
Additionally, the mesoporous silica enables the enhanced loading of the drugs. Moreover,
the mentioned NP can be loaded with various molecules. The Janus Fe3O4–mesoporous
silica NP can be loaded with photosensitizers for combination therapies, while Fe3O4 is
used for inducing magnetic hyperthermia combined with the photodynamic therapy of
tumor cells to prevent metastasis [109]. In addition, the metallic part can be replaced by
gold or silver NPs for reaching synergistic photo-thermal/chemotherapy applications due
to the photo-thermal properties of noble NPs [110–112]. In another study, octopus-type gold
nanostar-mesoporous silica asymmetric NPs were utilized. The silica segments of these
NPs were conjugated with lactobionic acid (LA). This conjugation induces a higher drug
capacity of the NPs, with affected drug release properties by pH and near-infrared (NIR),
resulting in actively targeted chemo-photothermal therapy [113]. Moreover, asymmetric
NPs are advantageous in cargo delivery. The conventional NPs do not have enough drug-
loading capacity for large biomolecules like nucleic acids and proteins, while asymmetric
NPs have higher cargo-loading efficiency. In a study, Qiao et al. designed bowl-shaped
silica NPs with high loading capacity for plasmid DNA, applicable for DNA delivery
systems [114,115].

In order to reach efficient drug delivery, the cellular uptake of these nanocarriers is
also important. A suggested solution for increasing cellular uptake is using a rough surface
head component. In the study by Li et al., they developed asymmetric nanotruck NPs with
rough silica and a periodic mesoporous organosilica (PMO) rod, resulting in the enhanced
intracellular uptake of the nanotruck compared to smooth-surfaced PMO [90]. Additionally,
the upconverting nanoparticles (UCNPs) can be encapsulated with a rough silica head for a
dual application of bio-imaging and NIR-triggered drug delivery [13]. This specific design
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suggests the potential of achieving various distinct applications for a single nanoparticle
by developing new structural properties in asymmetric NPs.

In addition, the unique properties of the asymmetric NPs make it possible to tailor
them for a particular application like dual drug delivery. As an example, a dual-component
asymmetric NP was developed by Zhao et al., using mesoporous silica and PMO for
dual-drug delivery. Since mesoporous silica is hydrophilic and PMO is a hydrophobic
component, this NP can be loaded with two hydrophilic and hydrophobic drugs without
interfering [36,116]. Additionally, the outer surface of the asymmetric NPs can be modified
with different functional groups. López et al. designed asymmetric Janus mesoporous
silica particles with two different targeted ligands. One is a folic acid molecule for binding
to the folate receptors of the cell membrane, and the other is triphenylphosphine for bind-
ing to the mitochondria membrane. This unique design results in a higher nanoparticle
concentration inside the tumor cells due to folic acid ligands with the guided transporta-
tion of nanocarriers near the mitochondria with triphenylphosphine function [117]. This
asymmetric designing strategy facilitates the targeted delivery of NPs from cell to organelle
compared to conventional symmetric NPs. (Figure 7).
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The asymmetric nanoparticles also apply in active drug delivery systems using
nanomotors. The asymmetric structures with tunable properties enable the nanomotors
to move in complex biological conditions to achieve efficient drug delivery. The studies
suggest that the asymmetric silica-based motors can significantly penetrate cell membranes
or tumor cells due to the autonomous motion of these nanomotors [119–123].

4.2. Tumor Imaging Systems

After the production of cancer cells in the human body, they can replicate rapidly,
resulting in tumor formation. Additionally, these cancerous cells can transfer through the
circulation system and metastasis in various organs. Therefore, developing tumor screening
systems for the early detection of tumoral cells is essential. With the development of nano-
materials’ applications in biomedicine, they are widely employed for tumor detection by
various screening modalities such as biosensors, multifunctional CT scans, or MRI systems.
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Like other nanometric materials, asymmetric nanoparticles are also employed for
tumor detection. Gold-integrated asymmetric NPs have great potential for application in
radiosensitization and the computerized tomography (CT) imaging of tumors [72,124]. In a
study, Wang et al. designed a carbon-based snowman-shaped asymmetric nanostructure
with gold and Fe3O4, resulting in simultaneous CT/magnetic resonance imaging (MRI) and
chemo-photothermal synergistic therapy in a single asymmetric nanostructure [82,125].

Detecting cancer biomarkers with biosensors is another method of tumor detection.
Nanomaterials are commonly used in the structure of biosensors. As nanomaterials have
high electrical conductivity, high affinity to biomolecules, and high surface area-to-weight
ratios, they are known as desirable candidates in biosensor fabrication. The application of
nanomaterials can optimize the signal transduction of biosensors due to the enhancement
of sensitivity [126,127]. Therefore, it has resulted in the better selectivity of biomolecules,
signal/noise ratio, and signal per effect due to multiple receptors, as well as decreasing
the size of the electrochemical biosensors [128–131]. Designing the ideal electrode with
high selectivity and sensitivity is a significant limitation of the biosensors, which conju-
gating NPs resolve to the biomarkers [132]. Additionally, choosing the proper functional
group is essential for an ideal biosensor design. As mentioned, asymmetric NPs can bind
with various molecules or modify with distinct functional groups due to their unique
physical properties. Therefore, asymmetric nanomaterials can be utilized in the designing
and production of cancer biosensors in order to achieve enhanced detection selectivity
and specificity.

5. Bioinspired and Biomimetic Nanomaterials in Cancer Therapy

Despite the advantages of the nanoparticles in the targeted drug delivery systems, they
contain low drug delivery efficacy due to improper biocompatibility and low permeability
in biological barriers; thus, bioinspired and biomimetic nanomaterials are developed
in recent years to overcome these shortages, resulting in higher bioavailability and an
enhanced therapeutic effect. In this section, one of the most common bio-inspired materials
in cancer therapy will be discussed. Among the vitamins, Vitamin B12 (VB12) is an ideal
material for NP production. VB12 has receptor-mediated endocytosis in the human body
and forms a complex with the intrinsic stomach matrix. For instance, Chalasani et al.
designed a study in which the drug availability of covalent conjugation of VB12 to insulin-
loaded dextran was compared with pure NPs. The results of this study indicated the higher
pharmacological availability of VB12-conjugated drugs [133,134].

Vitamin B9, also known as folic acid (FA), is another vitamin with a significant affinity
for folate receptors, resulting in an increased cellular uptake of tumor cells. In a study, a
polystyrene/Fe3O4@SiO2 Janus nanocomposite was designed by Wang et al. for admin-
istering targeted drug delivery. The JNP was loaded with folic acid on the polystyrene
and doxorubicin on the silica side [76,135]. In another study, gold-mesoporous silica Janus
nanoparticles were employed in a bio-imaging system. In these multifunctional JNPs,
the nanoparticles were designed to target hepatocellular carcinoma due to the folic acid
molecules in their structure. In other words, the folic acid modification of these JNPs makes
it possible to act as targeted computed tomography (CT) and imaging agents for diagnosing
hepatocellular carcinoma [72]. In another study, López et al. designed asymmetric Janus
mesoporous silica particles with two targeted ligands. One is a folic acid molecule for
binding to folate receptors of the cell membrane, and the other is triphenylphosphine
for binding to the mitochondria membrane. The folic acid ligands facilitate the guided
transportation of nanocarriers near the mitochondria, a higher nanoparticle concentration
inside the tumor cells [117,136]. This asymmetric designing strategy facilitates the targeted
delivery of NPs from cell to organelle compared to conventional symmetric NPs.

Furthermore, in a study by Yang et al., the asymmetric folic acid-coated chitosan
NPs were employed as polymeric NPs in the oral cancer imaging system. The fabricated
NPs have an excellent capacity for drug loading and an enhanced drug release in cellular
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lysosomes. In the NP structures, the folic acid ligands facilitate the endocytosis of NPs by
attaching to folate receptors on the oral cancer cells [137,138].

6. Future Perspective

In this review, various bioinspired nanomaterials for cancer treatments were discussed.
Despite the various experimental studies performed on these nanomaterials, only a few
clinical studies were performed; therefore, further clinical investigations are needed in
order to confirm the advantages and efficacy of these materials in the clinic. Furthermore,
these materials mostly have complicated structures with time-consuming and costly pro-
duction, inhibiting their commercialized production. Additionally, in clinical treatment,
high drug concentration in target cells and efficient drug release are needed; therefore,
combination therapies must be introduced to increase the affectivity of DDS. For example,
ultrasound-guided drug delivery can be a promising method for combined targeted drug
delivery, with the utilization of the thermal and mechanical effects of the ultrasound on the
employed nanomaterials.

As discussed in this article, asymmetric nanomaterials are widely used in cancer
treatment; however, they are just in the primary stages of development and still need to
overcome their shortages. First, there is a need to explore an efficient system for fabricating
these asymmetric materials on industrial scales. Additionally, some of the asymmetric nano-
materials are currently fabricated in simple asymmetric structures, such as bowl-shaped
structures; thus, it is critical to develop methods for the facile and efficient production of
these materials in more complex structures and functions. Similar to bioinspired materials,
producing asymmetric NPs is also very expensive. Therefore, it is essential to develop
efficient and cost-effective methods for fabricating these asymmetric nanomaterials on
industrial scales in order to use them in cancer treatments.

7. Conclusions

One of the major problems of conventional cancer therapies is their off-target effects
on healthy tissues. Recently, with the development of novel nanomaterials, tumor-targeted
therapies have been invented in order to achieve more specific cancer treatment with
reduced unfavorable side effects of chemotherapic agents on human cells. In this review,
we tend to discuss the application of nanomaterials in cancer treatment, emphasizing
asymmetric nanomaterials due to their advantages in drug delivery systems, as they can
possess multiple functions due to their different surface physiochemical properties or
different components. However, the clinical application of nanomedicines has various
disadvantages, such as the reduced ability to cross biological barriers and undesirable off-
target effects. In this order, the bioinspired materials are developed to minimize the related
side effects due to their excellent biocompatibility and higher accumulation therapies.
Therefore, this article discussed the asymmetric bioinspired and biomimetic nanomaterials
in cancer treatments.
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Abbreviations

5 FU: 5 fluorouracil; BC: Bacterial Cellulose; BPPE: black pomegranate peel extract; CCMNPs:
chitosan-coated magnetic nanoparticles; CD: Cyclodextrins; CDDP: cis diamminedichloroplatinum;
CNPs: covalent channel-type nanoparticles; CT; computerized tomography; DDSs: drug delivery sys-
tems; DOX: doxorubicin; EGFR: growth factor receptor; FA: folic acid; FGB: Folic acid-gold-bilirubin;
JNPs: Janus nanoparticles; LA: lactobionic acid; M-γ-CD: mannose-modified γ-cyclodextrin; MRI:
magnetic resonance imaging; MNPs: Magnetic nanoparticles; NIR: near-infrared; NPs: nanoparticles;
OSCC: oral squamous cell carcinoma; PAI: photoacoustic imaging processing; PCL: polycaprolactone;
PEG: polyethylene glycol; PEI: polyethyleneimine; PGA: poly (glycolic acid); PLA: poly (lactic acid);
PLGA: poly (lactic-co-glycolic acid); PMO: periodic mesoporous organosilica; SERS: surface-enhanced
Raman scattering; SPR: surface plasmonic resonance; RES: reticuloendothelial system; RG: Rego-
rafenib ROS: reactive oxygen species; TiO2: titanium dioxide; UCNPs: upconverting nanoparticles;
VB12: Vitamin B12; VLPs: Virus-Like Particles.
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