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Decomposition in non-isothermal conditions

Differential scanning calorimetry (DSC) and thermogravimetric analysis (TGA) were
performed with a DSC 822e Mettler Toledo in the temperature range of 25-300 °C at
different heating rates. The samples of 1-2 mg were analyzed in closed aluminum pans with
pierced lids under dynamic nitrogen atmosphere. Kinetic data of the thermal decomposition

were calculated using the Kissinger’s equation [1], assuming the first order of decomposition

reaction:
In f —nAR__E In ¢Ea —lhA- e
Tmax Ea RTmax , TmaxR RTmax (1)

where o is heating rate, Ea is activation energy, A is preexponential factor, Tmax IS temperature
of exotherm maximum.

Examples of the obtained DSC and TGA curves are shown in Figure S1-S3. The
results of the calculation by the Kissinger’s method are shown in the Table S1.
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Figure S1. TGA and DSC curves of compound 10a at a heating rate 10 < min ™.
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Figure S2. TGA and DSC curves of compound 10g at a heating rate 10 < min ™.
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Figure S3. TGA and DSC curves of compound 10f at a heating rate 10 <T min 2.



Table S1. Results of DSC study for compounds of this study.

Heating Exotherm temperature (°C) and rate constant
rate, (sY) for different compounds
o HR i
C min 10a 109 10f
Tmax k102 Tmax k102 Tmax klOZ
2 201 | 0.27 | 140 | 0.34 | 142 | 0.24
4 218 | 0.51 | 148 | 0.65 | 152 | 0.45
8 218 | 1.02 | 153 | 1.27 | 162 | 0.86
10 220 1.26 151 1.61 159 1.10
16 224 2.0 161 | 2.45 | 171 | 1.66

Decomposition in isothermal conditions

The experiments on the decomposition of perchlorate salts under isothermal
conditions were carried out in thin-walled glass manometers of the compensation type (the
Bourdon glass gauge). Samples of about 10 mg weight were loaded into a glass manometer
with a volume of 10-12 cm?®. The ampules were vacuumed to 0.1 Torr, sealed, and put in a
thermostat with the Wood’s alloy. Pressure of gases evolved in the decomposition
experiments (the accuracy of pressure measurements was +1 mm Hg) was converted to the
gas volume (V) at normal conditions. The description of the experimental dependence of gas

release on time V(t) by a suitable model allows one to obtain the rate constants.

For compound 10a, the decomposition under isothermal conditions (Figure S4) was
carried out in Bourdon gauges at the load density (ratio of sample mass to gauge volume,
m/V) ~ 1 mgcem™2 in the temperature interval of 160-180°C. The decomposition of 10a
produces 60-95 cm® gt or 0.7-1.1 moles of gases per one mole of the initial substance before

the process stops.

The decomposition of compound 10g under isothermal conditions (Figure S5) was
carried out in glass Bourdon gauges (m/V ~ 1 mgcm?) in the temperature interval of 80-
110°C. The decomposition reaction of compound 10g also proceeds with acceleration in time
and produces about 120 cm®g* or 1.58 mol/mol before the process stops.

The decomposition of compound 10f under isothermal conditions (Figure S5) was
carried out in glass Bourdon gauges (m/V ~ 1 mg cm™) in the temperature interval of 110—
130°C before melting. The decomposition reaction of compound 10f proceeds with

acceleration in time and produces about 120 cm®g* or 1.66 mol/mol before the process stops.
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Figure S4. Gas release curves of compound
10a at different temperatures. Points are

experiment, lines are fittings
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Figure S5. Gas release curves of compound

10f at different temperatures. Points are

experiment, lines are fittings
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Figure S6. Gas release curves of compou
experiment, lines are fittings

In the view of the complex nature of

nd 10fat different temperatures. Points are

the decomposition process, the rate constants

were calculated using the model of first-order reaction with self-acceleration

V = Vaoka(exp((kit+ke) 9)-1)/(kz +ki exp((ki+kz) 1)) @)

where V. is maximum volume of gas evolved per gram of compound, ki is rate constant of

non-catalytic stage, ko is pseudo first-order rate constant of catalytic stage, and t is time. The

results obtained are shown in Figure S7.



Comparison of the decomposition rates for compounds of this study depending on the
Hammett constants characterizing the inductive effect of substituents at the 1,2,5-oxadiazole

ring is shown in Figure S8.
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Figure S7. Comparison of decomposition Figure S8. Effect of Hammett constants of
kinetic data for compounds 10a, 10f, 10g and substituent constants at the 1,2,5-oxadiazole
tetrazene obtained in non isothermal (DSC, ring on the decomposition rate in liquid and
triangles) and isothermal (Manometry, solid state. Temperature is 150°C
points) conditions.

Combustion Study

Burning rates (rp) of perchlorate salts were measured in a window constant-pressure
bomb of 1.5-liter volume in the pressure range of 0.1-10 MPa. The bomb was pressurized
with nitrogen gas. Samples to test were prepared as pressed cylinders of pure substances of 4—
5 mm height confined in transparent acrylic tubes of 4 mm i.d. and 6 mm o.d. Prior to
pressing, the material was carefully milled in order to produce samples with a minimum
possible pore size, thus minimizing the possibility of flame propagation between particles.
The combustion process was recorded with a high-speed video camera. The burning rate was
determined by measuring the position of the flame front over the time.

Since the combustion of perchlorates of this study in tubes switched to the convective
regime at high pressures, compound 10f was studied in charges in the form of thin (~1 mm
thick) plates pressed to a high density. The use of such charges makes it possible to avoid the
penetration of hot gases into pores and to prevent the transition of layer-by-layer combustion

to convective.



Enthalpies of formation

The Born-Haber (BH) thermodynamic cycle (Figure. S9) along with the volume-based
thermodynamics (VBT) and quantum chemical calculations were employed to estimate the

standard (solid-state) enthalpies of formation ﬂfH" of the energetic salts studied. More

solid

specifically, in the framework of the BH cycle, the enthalpies of formation in the crystalline

state read as:

ArHSyiq = —AHige + (ApHEos (An) + AHZ (Cat)), 3)
where (&ngas (An) + angas(Cat)) is a sum of the gas phase enthalpies of formation of the

ions comprising the salts 10a, 10f, and 10g and AH,,, is a lattice enthalpy. The latter value

was estimated using the VBT approach via the empirical formula proposed by Jenkins et al.

[2,3]:
M = 2(%/3 5+ B). @

where V is the molecular volume of the lattice, which is equal to the sum of the volumes of
the perchlorate anion and heterocyclic cations calculated at the B3LYP-D3BJ/def2-TZVPP

level, and a and P are empirical parameters.

0 .
AH gas (Cat)(gas) * (An)*(gas)

AHlat

\
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Figure S9. The Born-Haber thermodynamic cycle employed for the estimation of the
formation enthalpy of the crystalline salts 10a, 10f, and 10g.

The breakdown of the enthalpy components is given in Table S2.



Table S2. The Thermochemical Properties of compounds 10a, 10f, and 10g.

V(an)+V(cat),? | AH{(gas), AHpa,° AH %lig,,°

Compound mL mol kJ mol ™ kJ mol* kJ mol*
10a 174.2 610.0 462.9 147.1
10f 203.0 998.1 445.3 552.8
10g 170.1 1023.0 465.8 557.2

8 The individual ion volumes were taken as those inside the 0.001 a.u. contour of the
B3LYP-D3BJ/def2-TZVPP electron density. A Gaussian 09 keyword “volume=tight” (i.e.,
100 points per cubic Bohr) was used in the Monte Carlo integration to obtain the desired level
of accuracy, a reproducible calculated volume to better than 1%. ® The sum of the gas phase
enthalpies of formation of the ions comprising the salts 10a, 10f, and 10g calculated at the
W1-F12 level of theory using the atomization energy approach [4]. ¢ Calculated using volume-
based thermodynamics [2], Eq. (4). ¢ Calculated in accordance with Eq (3).

Electronic structure calculations were performed using the Gaussian 09 [5], and
Molpro 2010 [6]. The gas phase enthalpies of formation of the ions comprising the salts 10a,
10f, and 10g at p° = 1 bar and T = 298.15 K (AsH%as) were calculated using the explicitly
correlated W1-F12 multi-level procedure [7] and the atomization energy approach described
in detail elsewhere [5]. Note that the W1-F12 procedure employed in the present work had
been slightly modified in comparison with the originally proposed technique: namely, the
B3LYP-D3BJ/def2-TZVPP optimized geometries (the ZPE correction factor of 0.99) were
used [8-9] and the diagonal Born-Oppenheimer corrections were omitted. The W1-F12
procedure employed in the present work was benchmarked on a series of energetic high-
nitrogen heterocycles and polynitro compounds and exhibited a decent performance close to
the average “thermochemical” accuracy (~4 kJ mol™) [10-13]. The multireference character of
the wave functions of the species considered in the present work was estimated using the T1
diagnostic for the CCSD calculation [14]. The modest T1 values obtained in all cases
(<0.020) justify the reliability of single reference-based electron correlation procedure
employed in the present study. The heats of formation at 0 K for the elements in the gas phase
AH s (C) = 169.98 kcal mol ™, AfHgss (H) = 51.63 kcal mol™, AfHgas (N) = 112.53 kcal
mol?, and AfH%gas (O) = 58.99 kcal mol™ were taken from the NIST-JANAF tables [15].
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