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Abstract: In this study, the synthesis of a layered double hydroxide (LDH) composite with graphene
quantum dots (GQDs) and its utilization for the development of a dispersive solid-phase extraction
procedure are described. To this end, a carbonate-free Mg-Al LDH was synthesized. The development
of the composite material made feasible the use of GQDs in a sample preparation procedure, while
the incorporation of the GQDs in the LDH structure resulted in an 80% increase in extraction
efficiency, compared to the bare LDH. As a proof of concept, the composite material was used for the
development of an analytical method for the extraction, and preconcentration, of benzophenones,
phenols, and parabens in lake water using high-performance liquid chromatography, coupled to a
diode array detector. The analytical method exhibits low limits of quantification (0.10–1.33 µg L−1),
good recoveries (92–100%), and satisfactory enrichment factors (169–186). Due to the abovementioned
merits, the easy synthesis and simple extraction, the developed method can be used for the routine
analysis of the target compounds.

Keywords: layered double hydroxides; graphene quantum dots; sample preparation; benzophenones;
phenols; parabens; HPLC

1. Introduction

The use of nanomaterials, nowadays, in many different applications is increasing
exponentially. Many of them are employed in sample preparation procedures in an effort
to develop analytical methods with enhanced characteristics. For instance, carbon nan-
otubes have widely been used for the sorption of a wide variety of analytes, including
pesticides, antibiotics, polycyclic aromatic hydrocarbons, estrogens, etc. [1,2] for sample
preparation procedures.

Since their discovery in 2004 by Xu et al., graphene quantum dots (GQDs) have drawn
a lot of attention due to their multiple applications [3]. These are widely spread through
many fields, including biomedicine and optoelectronics, drug delivery, fluorescence imag-
ing, nano-sensors, etc. [4,5]. This type of nanomaterial mounts multiple benefits, such as a
small particle size and large surface area, inexpensive synthetic procedures, an environ-
mentally friendly nature, a chemical stability, limited toxicity, high water dispersibility,
and plenty of oxygen-containing functional groups (-OH, -C=O, and -COOH) on their sur-
face [6–8]. These oxygen-containing groups enhance the sorption properties of the GQDs for
organic pollutants, which can further be enhanced through surface functionalization [9,10].
Despite this property, GQDs have only recently started to be used as sorbent materials in
sample preparation procedures [11,12]. Almost exclusively, they have been used in analyti-
cal chemistry to develop photoluminescent-based sensors. However, the use of GQDs as
sorbents is highly promising and sets a new trend in analytical chemistry [13–15]. Despite
their multiple advantages, their high water dispersibility makes it almost impractical to
be used as sorbents in aqueous solutions. To overcome this hindrance, GQDs should be
immobilized into a micro-carrier.
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Layered double hydroxides (LDH) are brucite-like layered materials with a general
formula of [M2+

1−xM3+
x (OH)2]x+[An−]x/n·mH2O [16], and they can be suitable supporting

materials for the utilization of carbon dots. The trivalent- and the divalent-layer cations
of the formula are represented as M3+ and M2+, respectively, and the interlayered charge-
balancing anion as An−. Common metal cations used for the LDH synthesis are the
divalent Ni2+, Co2+, Mg2+, Mn2+, Cu2+, and Ca2+ and the trivalent Ga3+, Fe3+, Al3+,, and
Cr3+. Common interlayered anions are NO3

−, CO3
2−, or SO4

2−, which are accompanied
by water molecules in the interlayer section [17,18]. The structure of an LDH consists of
layers formed by the combination of trivalent and divalent cations in octahedral symmetry.
Every metal cation is surrounded by several hydroxide anions and is connected to each
other to create an extensive two-dimensional layer, which has a positive charge [18]. In the
interlayer section, the anions stabilize the positive charges, and the water molecules create
hydrogen bonds between the metal hydroxide layers. As a result, a structurally stable
multilayered material is constructed [16–18].

Considering the distinctive nature of LDHs, their use has expanded to several fields,
including photochemistry [19], drug delivery and health-related applications [20–22], catal-
ysis [23], and as a sorbent material [24–27]. Although the sorption properties of LDHs
enable their use in analytical chemistry, the limited number of free hydroxyl groups of the
metal hydroxide layer significantly lower their sorption performance [28,29]. To overcome
this limitation, many studies take advantage of these binding sites and the inherent positive
charged environment of LDHs to fabricate complex three-dimensional nanocomposites
with increased sorption abilities. Thus, LDHs have been modified with magnetic nanoparti-
cles [30], graphene [31], and anionic surfactants [32], demonstrating increased extraction or
removal capacities compared to plain LDH. Functionalizing an LDH with GQDs is a novel
combination with many desirable properties. The GQDs have been used in combination
with ZnAl LDH and MgAl LDH for the removal of cadmium [33] and organic dyes [29],
respectively. The GQDs-LDH are rising nanocomposite materials with characteristics that
can be used for new analytical applications. The lack of literature about the utilization of
such materials on emerging and established pollutants calls for further research.

In this study, GQDs from citric acid were synthesized and incorporated into a MgAl
LDH (Mg6Al2(OH)16·4H2O, [34]). The synthesis of the LDH was optimized and modified
so as to eliminate the presence of carbonate ions during the synthesis in an effort to increase
the loading with GQDs. The composite material was used in a dispersive solid-phase
extraction procedure for the extraction of representative compounds from three classes
of compounds, i.e., benzophenones, phenols, and parabens. Phenols are known for their
toxic effects on organisms and their persistence in the environment [35]. Benzophenones
are commonly employed in many cosmetic products, and as such, they can easily be
transferred to the aquatic environment, causing many adverse health effects [36]. Likewise,
parabens extensively occur in daily use products, and due to their toxicity, they pose a
threat. Due to the adverse effects of the above compounds, their detection is necessary
and a long-lasting requirement for analytical methods should be fulfilled [37]. Based on
the sample preparation procedure developed herein, an analytical method was proposed
for the determination of six representative compounds in water samples. The compounds
examined herein are among the most commonly used from each selected class [38,39].

2. Results and Discussion
2.1. Synthesis Optimization

Experiments were carried out in order to optimize the synthesis of the composite nano-
material. The main criterion used was the total extraction efficiency (%) for the sum of the ex-
amined compounds. The quantification for each analyte was carried out at the wavelength
where the UV absorbance was maximum, according to Table S1 of Supplementary Material.
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2.1.1. Carbonate-Containing and Carbonate-Free Mg-Al LDH

Most LDHs are produced following coprecipitation methods, under alkaline condi-
tions. A potential drawback of this method is that the produced LDH contains carbonate
ions in the interlayer space due to the dissolution of CO2 from air into the solution. The
content of the LDH in carbonate ions makes it more difficult to incorporate other ions or
molecules in the interlayer space because LDH and carbonate ions have an exceptionally
high affinity [40]. To examine whether the presence of carbonate ions would make the
functionalization of the LDH with CNDs more difficult, resulting in a less efficient material,
the synthesis of the composite material was carried out in the presence and absence of
carbon dioxide (under a continuous nitrogen flow). The two synthesized composites were
used for the extraction of the tested compounds. The results were conclusive that the
composite material containing carbonate ions achieved a 44% lower extraction efficiency
compared to the carbonate-free analogue (results not shown).

2.1.2. Different Types of GQDs

According to a previous study, the carbonization degree of citric acid results in the
production of different products [41]. We examined whether using the produced GQDs after
30 min or after 120 min of heating citric acid is more appropriate to produce a composite
material with a better extraction performance. In this context, citric acid was heated
for 30 and 120 min, and the products were used for the synthesis of the carbonate-free
LDH/GQDs. According to the results, the use of the GQDs heated for 30 min resulted
in a composite with a better performance (~20%) compared to those heated for 120 min.
According to Dong et al., GQDs after 30 min of carbonization have a typical size of 15 nm,
while after 120 min the size is increased [41]. Therefore, our results can be attributed to
the smaller size of the 30 min GQDs compared to the 120 min GQDs, resulting in a higher
surface area, as well as the better intercalation in the interlayer space of the LDH [41].
Therefore, QGDs after 30 min of carbonization were used for further experiments.

2.1.3. Amount of GQDs

To maximize the extraction efficiency, the loading of the LDH with GQDs was exam-
ined (using 0.5, 1.0, 1.5, and 2.0 mL of a GQDs solution of 20% w/v). According to the
results, the use of 1.0 mL of the GQDs solution improved the extraction efficiency of the
composite by 18%, compared with the composite containing the 0.5 mL GQDs solution.
Further improvement was not achieved using higher volumes of the GQDs solution. There-
fore, the use of 1.0 mL of the GQDs solution was deemed necessary to incorporate the
maximum amount of GQDs into the LDH and to achieve an optimum performance.

To explore the role of every single component of the material, the extraction of the
target compounds was carried out using plain LDH. It was revealed that the plain LDH
exhibited almost 80% lower extraction efficiency for benzophenones and almost 70% lower
for phenols and parabens. Then, we examined the repeatability and inter-day repeatability:
five batches of the material were synthesized on the same day and on five consecutive days.
The synthesized materials were tested for their extraction efficiencies. The results were
expressed as the relative standard deviation (RSD) of the different batches. The repeatability
of the synthesis was between 2.1 and 3.2%, and the inter-day repeatability was between 2.6
and 4.1%, for all target compounds.

2.2. Material Characterization

Figure 1 depicts the FTIR spectrum of the bare LDH, the CQDs, and the composite
material. A broad absorption band appears at 3385 cm−1 which can be attributed to the
stretching vibrations of the -OH groups [42]. The peak centered at 1353 cm−1 is due to the
asymmetric stretching vibrations of the intercalated NO3

−, the peak at 1640 cm−1 is due to
the flexural oscillation peaks of the interlayer water molecules, and the peak at 1067 cm−1

is due to the Al-OH stretching [43]. The FTIR spectrum of the GQDs shows a peak at
1560 cm−1, which is due to the asymmetric stretching of the -COO− group. Two small
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shoulders at around 1400 and 1650 cm−1 can be attributed to the symmetric stretching of
the -COO− group and the vibrations of the -C=O groups, respectively [41]. Finally, the
spectrum of the GQDs-LDH composite material exhibits a broad peak at around 3353 cm−1,
due to the stretching of the -OH groups. Moreover, a peak at 1548 cm−1 can be seen,
which is due to the asymmetric stretching of the -COO− groups of the GQDs. The peak
at 1358 cm−1 is shorter compared to the FTIR spectrum of the bare LDH, hinting toward
the displacement of the intercalated NO3

− by the GQDs. Finally, the peaks at 1277 and
752 cm−1 are due to the Al-OH stretching vibrations [43].
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Figure 1. FTIR spectra of bare LDH (red spectrum), GQDs (blue spectrum), and LDH/GQDs
composite (green spectrum).

In Figure 2, the XRD spectra of the bare LDH and the composite material can be seen.
Diffraction peaks at 11◦, 22◦, and 35◦ can be seen, which correspond to the (003), (006),
and (009) planes of the Mg-Al LDH, suggesting a crystallized hydrotalcite structure [44,45].
In the XRD spectrum of the composite material, a broader peak at around 20o can be
seen, suggesting the addition of the GQDs in the structure of the LDH [46]. In order to
further validate the addition of the GQDs in the LDH structure, during the synthesis of
the composite material, the surface areas of the bare LDH and the composite material
were measured. The surface of the bare LDH was calculated as 126.1 m2 g−1, and that of
the composite material was 114.7 m2 g−1. The difference in the surface area is due to the
addition of the GQDs in the structure of the LDH (Figure 3).

2.3. Optimization of the Extraction Procedure

In order to maximize the extraction efficiency of the proposed method, experiments
were carried out to optimize the parameters of the extraction (i.e., the sample pH, ionic
strength, temperature, stirring time and stirring rate, sample volume, and the amount of
sorbent) by using 10 mL double-distilled water (DDW) spiked with 200 µg L−1 of each
analyte, and 10 mg of the sorbent was added. A one-step-at-a-time approach was employed,
resulting in a stepwise increase in the total extraction efficiency (%) with each optimized
parameter, resulting in a 100% extraction efficiency.
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2.3.1. pH and Mechanism of Interaction

As can be seen in Figure 4, the maximum total extraction efficiency was achieved
when the pH was adjusted to 6.0. The lower extraction efficiencies achieved in more
alkaline solutions were mainly due to the parabens (the extraction efficiency at pH 10
was ~5%). This can be justified by the hydrolysis of parabens that takes place in acidic
or alkaline conditions [47]. In more acidic conditions, the reduction in the extraction
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efficiency was more pronounced compared to the alkaline conditions, implying that this
efficiency was not attributed solely to the hydrolysis of the parabens. According to a
previous study, the dissolution of the MgAl LDH material takes place at an acidic ambiance
(pH < 4) [48]. To further test whether this is the case, a suspension of the composite
material in the DDW (pH 4.0) was prepared, and after stirring for 1 h, the fluorescence of
the solution was recorded (if the dissolution of Al3+ and Mg2+ takes place, then fluorescent
GQDs are released into the solution). The results showed that the solution exhibited a
weak fluorescence. The same experiment was repeated using a solution at pH = 6.0. The
emitted fluorescence was 80% lower than that at pH 4.0. When 30 min of stirring was
employed instead of 1 h, no fluorescence emission was recorded. Hence, no dissolution
of the composite material was recorded at pH 6, after 30 min. As a result, the pH 6.0
was selected as the optimum condition for the extraction of the compounds. Based on
the sorption profile of the tested compounds at various pH, it can be inferred that the
compounds are extracted, mainly, via hydrophobic interactions (as can be seen in Table S1,
all the compounds have logKow values in the range of 3.0–4.3).
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2.3.2. Ionic Strength

We tested the extraction efficiency of the synthesized composite material using a
solution containing sodium chloride or sodium sulfate (5–30% w/v). The results are
depicted in Figure 5. Generally, the addition of salt is beneficial for the extraction of the
compounds. This can be attributed to the salting-out effect, which lowers the solubility of
organic compounds in aqueous solutions and favors their extraction [49]. When sodium
chloride was used, the optimum performance was achieved when 25% w/v of the salt
was used. A higher percentage increases the viscosity of the solution, thus lowering the
diffusion rate [49]. When sodium sulfate was used, the total extraction yield was also
increased, albeit to a lower degree compared to the sodium chloride. This can be justified
by the low colloidal stability of MgAl LDH in the presence of different ions [50]. According
to a previous report, the colloidal stability of the LDH is affected by the presence of ions
with different valences. Between chloride and sulfate ions, the latter renders the LDH more
unstable and thus aggregates are formed more readily [50]. This can significantly decrease
the performance of the sorbent material. Therefore, the use of 25% w/v sodium chloride
was selected for further experiments.
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2.3.3. Temperature of Extraction

The extraction experiments were carried out at three temperatures, i.e., 25, 35, and
45 ◦C, using the optimum parameters, as established before (no pH adjustment and ad-
dition of 25% w/v NaCl), and the results are given in Figure 6. As can be seen, as the
temperature increases, the total extraction efficiency increases too. An increase in the
temperature by 20 ◦C causes about a 20% increase in the extraction efficiency. This can be
justified by two main reasons: First, the mechanism of interaction between the sorbent and
the examined compounds was probably due to hydrophobic interactions, as mentioned
in Section 2.3.1. It is known that as the temperature increases, hydrophobic interactions
are favored [51]. Secondly, the high viscosity due to the high salt content is lowered as the
temperature increases and this counterbalances the negative impact of the high viscosity of
the solution on the extraction performance. Therefore, further experiments were carried
out by heating the solution at 45 ◦C before and during the extraction step.
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2.3.4. Other Extraction Parameters

Other parameters that affect the extraction performance of the material are the stirring
time and stirring rate, sample volume, and the amount of sorbent. However, these parame-
ters are interrelated, and certain combinations of their values may be critical. Preliminary
experiments were carried out regarding the stirring rate during the extraction, examining
rates of 500, 700, and 900 rpm. The results were conclusive that a high stirring rate favored
the extraction process. This was anticipated because the ionic strength of the solution was
high and could lower the mass transfer during the extraction process. Therefore, for further
experiments, a high stirring rate (900 rpm) was used. To assess the rest of the parameters,
the experiments were carried out using 10, 20, and 30 mg of sorbent, three sample volumes
(10, 25, and 50 mL, containing the same concentration of analytes) at three time intervals (10,
20, and 30 min), resulting in a total of 27 experiments. The results can be seen in Figure 7.
The optimum performance can be achieved for various combinations of the three examined
parameters. For the method development, we selected the use of 10 mg of sorbent material
(for a reduced consumption and thus, lower cost of analysis) for 25 mL of sample (for
increased enrichment values) and a stirring time of 30 min.
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Under optimum conditions, the total extraction efficiency of the GQDs-LDH composite
was examined and compared to that of the bare LDH. From the results, it was apparent
that the bare LDH could achieve ~20% extraction of the examined compounds, while the
composite material could extract 100% of the compounds. Therefore, it can be inferred that
the LDH serves a dual role in the composite material: Firstly, it can assist in the overall
extraction process, albeit to a low extent, and secondly, it serves as a good supporting
material for the GQDs, making it feasible for them to be used in a sample preparation
procedure because they cannot be used bare.

2.4. Optimization of Elution Conditions and Reuse of the Material

To desorb the analytes from the sorbent material, acetonitrile and methanol were
tested. When 1 mL of each solvent was used (1 mL solvent was added to the material and
the mixture was placed in an ultrasonic bath for 30 s), both solvents could desorb nearly
70% of all the analytes, while a second elution step desorbed the remaining 30% of the
analytes. For further experiments, methanol was selected. Next, we examined whether the
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addition of 2 mL of solvent in a single step could achieve the same results as the addition
of 2 × 1 mL of the solvent. It was proven that the addition of 2 mL of solvent in a single
step was adequate to fully desorb the analytes.

Next, we evaluated whether the material could be reused after the elution step. Fol-
lowing a second extraction and elution step, the recoveries of the analytes were almost
the same as the first-time extraction (<3% decrease in the total extraction efficiency). After
a third extraction step, the recoveries of the analytes slightly decreased compared to the
first-time extraction (~7% decrease in the total extraction efficiency). Therefore, the material
can be reused for more than one extraction–elution cycle, resulting in a method with a
lower cost.

2.5. Analytical Figures of Merit

Under the optimum conditions, an analytical method was developed for the simulta-
neous determination of the three classes of compounds. The compounds are representative
of each class and the method can be used for other compounds of the same class, as well.
The limit of quantification (LOQ) for each compound was determined after analyzing
extracted samples containing the compounds, at a signal-to-noise ratio of 10. The LOQs
were found to be between 0.10 and 0.17 µg L−1 for the benzophenones and parabens, while
for the phenols, they were 1.28 and 1.33 µg L−1, respectively. Calibration curves were
prepared, with the lowest concentration of each compound being the LOQ and the highest
the 200 µg L−1. The linear equations, as well as the rest of the analytical figures of merit
of the developed procedure, are given in Table 1. The coefficients of determination were
between 0.9980 and 0.9987, suggesting a good linearity in the examined range. Next, the
enrichment factors were calculated according to our previous reports [52,53]. They were
found to be between 170 and 186 for all the target analytes. Next, we evaluated the precision
of the method. The repeatability was studied by analyzing five samples within the same
day, and the inter-day repeatability was assessed by analyzing three samples each day for
three consecutive days. The results, expressed as RSD, are given in Table 2. As can be seen,
the repeatability of the method was between 5.0 and 6.9% and the inter-day repeatability
was between 6.7 and 8.2%. Finally, the relative recoveries of the method were calculated
by analyzing water from the lake Pamvotis (Ioannina, Greece) spiked with concentrations
corresponding to 2 times and 10 times of LOQ, for each compound. A representative
chromatogram is given in Figure 8. The recoveries were found in the range of 92–99% for
the lowest tested concentration and 94–100% for the highest tested concentrations. Overall,
all the above figures of merit suggest that the developed method is suitable for the reliable
analysis of the examined compounds.

Table 1. Analytical figures of merit of the developed analytical method.

Compound Linear Equation Coefficient of Determination, R2 LOQ (µg L−1) Enrichment Factor

4OH-BP Y = 20,986 + 18,745 0.9987 0.13 178
PPB Y = 28,206x + 31,685 0.9986 0.10 175
BPB Y = 22,380x + 15,503 0.9980 0.12 186
TCP Y = 2582.3x + 1150.9 0.9983 1.33 169
BP-3 Y = 16,578x + 15,009 0.9984 0.17 179
OCP Y = 1696.6x + 1509.9 0.9985 1.28 170



Molecules 2022, 27, 8388 11 of 15

Table 2. Relative standard deviations and relative recoveries of the examined analytes from
lake water.

Analyte
RSD (%) Relative Recovery (%)

Repeatability (n = 5) Inter-Day Repeatability (n = 3 × 3) 2 × LOQ 10 × LOQ

4OH-BP 5.0 6.7 93 94
PPB 5.5 7.9 99 100
BPB 5.9 8.0 92 93
TCP 5.6 7.8 92 96
BP-3 6.4 7.3 94 95
OCP 6.9 8.2 94 98
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Figure 8. Chromatogram of the extract obtained from a spiked lake water sample (10 µg L−1) with
diode array detector (254 nm) using the proposed procedure; 1: 4OH-BP; 2: PPB; 3: BPB; 4: TCP;
5: BP-3; 6: OCP. The discrepancies of peak heights are attributed to the different molecular absorption
maxima of analytes. Inset: the chromatogram at 286 nm.

3. Materials and Methods
3.1. Chemicals and Reagents

4-Hydroxybenzophenone (4OH-BP) (>98%), 2-hydroxy-4-methoxybenzophenone (BP-3)
(98%), 2,3,5-trichlorophenol (TCP), 4-octylphenol (OCP) (99%), propyl para-hydroxybenzoate
(PPB), butyl 4-hydroxybenzoate (BPB), sodium chloride, sodium sulfate, hydrochloric acid
(37% w/w), ammonium hydroxide (28% w/w), citric acid (≥99.5%), sodium hydroxide
(≥97%, pellets), magnesium nitrate hexahydrate (Mg(NO3)2·6H2O, 99%), aluminum nitrate
nonahydrate (Al(NO3)3·9H2O, ≥98%), formic acid (96%), and all solvents (HPLC-grade)
were purchased from Sigma-Aldrich (Hellas, Greece). Stock standard solutions of each
analyte (2000 mg·L−1) were prepared in acetonitrile. Double-distilled water was used
throughout the experiments

3.2. Instrumentation

The FTIR spectra of the materials were recorded on a Spectrum Two FTIR using
an attenuated total reflectance accessory (PerkinElmer, MA, USA). A Shimadzu (Kyoto,
Japan) HPLC system, consisting of a DGU-20A3R online degassing unit, two LC20AD
pumps, a SIL-20AC HT autosampler, a CTO 20AC column oven, and an SPD-M20A Diode
Array Detector, was used for separation and analysis of the samples. A Hypersil Gold
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(250 mm × 4.6 mm, 5 µm particle size) column from Thermo Fisher Scientific (San Jose,
CA, USA) was used for the separation. The column was placed in an oven at 30 ◦C. The
mobile phase consisted of water (A) and acetonitrile (B), both containing 0.1% (v/v) formic
acid. For the separation of the analytes, the following gradient program was employed:
the concentration of B was increased from 5 to 95% in 40 min. The flow rate of the mobile
phase was 1.0 mL/min. Flow rate and temperature were selected so as to avoid increased
system temperatures. The detector was set at a wavelength range of 200–360 nm. Peak
identification was achieved by comparing the retention times and UV spectra of peaks in
samples with those of pure compounds. The specific surface areas were calculated based
on nitrogen adsorption-desorption porosimetry according to the BET method.

3.3. Graphene Quantum Dots (GQDs) Synthesis

The synthesis of GQDs was carried out according to a previous report [41,54]. In brief,
0.3 g of citric acid was added to a test tube and heated at 200 ◦C for 30 min in an oil bath.
After cooling to room temperature, 5 mL of water was added and the mixture was vortexed
until the viscous orange-yellow liquid was dissolved. The GQD solutions were stored at
4 ◦C.

3.4. Synthesis of Carbonate-Free Mg-Al LDH and Mg-Al LDH-Incorporating GQDs

The synthesis of the LDH/GQD composite, that is, free from carbonates as inter-
layer anions, was based on a previously reported method [34]. Two aqueous solutions
were prepared: one containing 0.80 mol·L−1 of Mg(NO3)2·6H2O and 0.40 mol·L−1 of
Al(NO3)3·9H2O and another one with 1.67 mol L−1 of NaOH. In a glass beaker, 1 mL of
GQDs solution (20% w/v) was added, and degassing was carried out using a constant
nitrogen flow. Then, 2 mL of each of the abovementioned solutions were added dropwise,
simultaneously, under vigorous stirring and nitrogen flow. Then, the solution was stirred
at 65 ◦C for 4 h under nitrogen flow, and the mixture was centrifuged at 3000 rpm for 5 min.
The precipitate was rinsed several times with water and ethanol and placed in an oven at
60 ◦C overnight. The bare LDH material was prepared by using 1 mL of water in the first
step of the synthesis, instead of GQDs solution.

3.5. Optimized Extraction Procedure

In a glass beaker, 25 mL of sample (whose pH was adjusted to 6.0) and NaCl (25% w/v)
were added. After dissolving the salt with stirring, the solution was heated at 45 ◦C. Next,
10 mg of the sorbent was added, and the mixture was stirred for an additional 30 min
at 900 rpm. The sorbent was isolated by centrifugation at 3500 rpm, for 5 min. The
supernatant was decanted, and the sorbent was washed with DDW. After decanting the
water, 2 mL of acetonitrile was added, and the mixture was sonicated for 30 s. The solvent
was collected and evaporated to dryness under a gentle nitrogen stream. Finally, the residue
was reconstituted in 100 µL of the mobile phase and injected into an HPLC system. For
the analysis of lake water, the sample was filtrated through a Whatman filter to remove
particulate matter, and then the pH was adjusted to 6.0 with hydrochloric acid.

4. Conclusions

In this study, the use of an LDH-GQDs composite material as a sorbent is described
for the first time, for the extraction of three classes of compounds. The LDH serves as a
solid support material for the GQDs and contributes to the overall extraction procedure.
In this way, the GQDs can be used in a sample preparation procedure. The developed
composite material was utilized in a dispersive solid-phase extraction procedure and the
method exhibits good analytical figures of merit. Overall, the described procedure can be
used as an alternative to or a substitute for the existing methods for the determination of
the target compounds, and it paves the way for the development of more advanced sorbent
materials that utilize GQDs for sample preparation.
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