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Abstract: Highly regiospecific, copper-salt-free and neat conditions have been demonstrated for
the 1,3-dipolar azide-alkyne cycloaddition (AAC) reactions under mechanochemical conditions. A
group of structurally challenging alkynes and heterocyclic derivatives was efficiently implemented
to achieve highly functionalized 1,4-disubstituted-1,2,3-triazoles in good to excellent yield by using
the Cu beads without generation of unwanted byproducts. Furthermore, the high-speed ball milling
(HSBM) strategy has also been extended to the synthesis of the commercially available pharmaceutical
agent, Rufinamide, an antiepileptic drug (AED) and its analogues. The same strategy was also applied
for the synthesis of the Cl-derivative of Rufinamide. Analysis of the single crystal XRD data of the
triazole was also performed for the final structural confirmation. The Cu beads are easily recoverable
from the reaction mixture and used for the further reactions without any special treatment.

Keywords: click chemistry; mechanochemical synthesis; 1,2,3-triazole; cycloaddition reaction;
Rufinamide synthesis; solvent-free

1. Introduction

The 1,2,3-triazole moiety represents one of the versatile classes of heterocycles because
of their widespread applications as pharmaceutical agents, agrochemicals, biochemicals
and polymers [1–14]. The seminal work on “click chemistry” by Huisgen, followed by the
further independent development by Meldal et al. and Sharpless-Fokin has encouraged ex-
tensive research on the 1,2,3-triazole molecule [15–17]. Over the last two decades, a plethora
of reports have been documented for the 1,3-dipolar azide-alkyne cycloaddition (AAC)
reaction and mostly involves Cu catalysis [18–27]. The assessment transition metal catalysis
for the synthesis of heterocycles is common practice in modern research. Hence, several
other transition metals, such as Pd, Ru, Zn, Ag, Ni, Au, etc., have also been efficiently
manifested for the AAC reaction [28–43]. Among the 12 principles of green chemistry, the
use of non-toxic and/or volatile organic solvents, minimal generation of organic wastes,
atom economic synthesis and the use of environmentally benign chemicals have intro-
duced an upsurging interest in contemporary organic synthesis. This field is also emerging
with the use of various nonconventional energy sources, such as microwave, ultrasound,
mechanical mixing, electrochemical methods and visible-light-driven organic transforma-
tions [44]. Complementing solution-based synthesis, the mechanochemical operations
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provide an environmentally benign alternative to negate the demand for bulk organic
solvents, thereby finding an application in a plethora of organic transformations [45–51]. In
a broader sense, the application of mechanical energies such as compression, shearing or
friction under solvent-free conditions have been promising techniques for the utilization
of mechanoresponsive materials to access active pharmaceutical ingredients (API) and
thereby making a strong impact for pharmaceutical industries [52]. This technique also
provides a cleaner source of energy for organic transformations. In 2011, the planetary ball
mill was used by Schubert et al. for a solvent-free AAC reaction using catalytic amounts of
Cu(OAc)2 and sodium ascorbate [53]. Later on, several reports for the solvent-free synthesis
of 1,2,3-triazoles were completed in which a homogeneous Cu catalyst or stoichiometric
amount of Cu powder were used [54–56]. To enhance the catalyst regeneration in these
reactions, the immobilization of copper on the heterogenous matrix has been employed.
In 2013, Ranu et al. efficiently demonstrated Cu/Al2O3 as catalyst for the AAC reaction
under ball milling without using any solvent and additive [57] (Scheme 1a). Recently,
Amini et al. showed the catalytic activity of immobilised Cu NPs on WO3 surface for the
AAC reaction under solvent-free conditions [58]. For the first time, the Mack laboratory
introduced the use of Cu-vial and 3/16” Cu ball in an efficient AAC reaction under 16 h
milling in solvent-free conditions [59] (Scheme 1b).
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Scheme 1. Mechanochemical strategies of CuAAC reaction. (a) Previous approach of AAC reaction
using Cu/Al2O3 as catalyst under ball milling; (b) Previous approach using Cu-vial and 3/16” Cu
ball under ball milling; (c) The present approach under ball milling conditions.

In their strategy, three component reactions such as phenylacetylene, benzyl bromide
and sodium azide, on grinding for 16h, afforded the desired 1-benzyl-4-phenyltriazole in
quantitative yield under the one-step, one-vial multicomponent CuAAC reaction.

Epilepsy is a chronic neurological disorder in the brain that affects people of all ages
worldwide. Rufinamide (brand name Banzel [60] or Inovelon [61], developed by Novartis
and manufactured by Eisai) has been already reported as a sodium channel blocker and
an antiepileptic drug (AED) with a broad spectrum of efficacy. It is an FDA-approved
orphan drug used for the adjunctive treatment of seizures associated with Lennox–Gastaut
syndrome (LGS). The common strategies for the synthesis of Rufinamide involve 1,3-dipolar
cycloaddition reaction using 2-chloroacrylonitrile, propiolic acid and esters or (E)-methyl 3-
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methoxyacrylate [62–67]. Recent synthetic developments involve flow microreactor systems
via multistep synthesis in a compartmentalized continuous flow integrated with in-line
separation techniques [68–71]. We envisioned that mechanochemical conditions could be
useful for the synthesis of Rufinamide and its analogs via [2+3] CuAAC reaction and, to
the best of our knowledge, this approach is still uncommon in the literature. Herein we
wish to report a mechanochemical strategy of 1,3-dipolar Huisgen cycloaddition of various
azides, generated in situ, with a dipolarophile (alkyne) to construct structurally important
1,2,3-triazoles as well as Rufinamide and its analogs by using Cu beads (Scheme 1c).

2. Results and Discussion

At the commencement of our investigation, we chose 4-ethylnyl toluene (1a) and
2-bromo-1-(m-tolyl)ethan-1-one (2a) as bench stable substrates to react in the presence of
inorganic azide. Different mechanochemical parameters of the reaction such as time, rpm
limit, equivalency, and number of copper balls were optimized in order to obtain the desired
1,2,3-triazoles in the highest yield. The results of the optimization of the mechanochemical
reaction conditions are reported below (Table 1). Thus, we have observed that 1a (50 mg,
0.431 mmol), 2a (183.6 mg, 0.862 mmol) and NaN3 (56 mg, 0.862 mmol) satisfactorily
afforded 3a in 86% of yield under neat reaction conditions for 3h of mechanochemical
grinding with 5-Cu beads at 500 rpm (Table 1, Entry 4). Intriguingly, the overall yield of the
triazoles also depends on the number of Cu beads in the reaction (Figure 1).

Table 1. Mechanochemical optimization of reaction parameters 1.
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Entry Equiv. of Azide RPM Time (h) Conversion (%) Selectivity (%) Yields (%) 2

1 1.2 300 1 68 35 24
2 1.2 400 2 80 70 56
3 1.2 500 3 88 89 79
4 2.0 500 3 98 88 86
5 2.0 500 4 98 88 86
6 2.0 400 3 82 78 64
7 2.4 500 3 98 88 86

1 Reaction conditions: 1a (0.431 mmol), 2a (0.862 mmol), sodium azide (0.862 mmol), 5-Cu beads, 500 rpm; 2 yields
refer after chromatographic purification.
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These conditions were useful for the further assessment of the various alkynes and ben-
zoylmethyl bromides. We did not observe much electronic control of different alkynes as
well as benzoylmethyl bromides over the reaction yield for the three component reactions,
and products 3b–d were obtained in 63–73% yield. In all the cases we isolated unreacted
starting alkynes in small quantities. In the case of biphenyl acetylene, the observed yield of
the product 3e was 42% and the conversion of the starting material was poor. The poor
yield may be attributed to the three-component reaction in the presence of unactivated
copper beads, as well as the low reactivity of sterically and electronically unfavorable
alkyne species. Changing the equivalency or the grinding time did not improve the yield
of the desired product significantly. To our delight, an excellent yield of 3e was found by
changing the reaction technique. The same reaction was carried out in a stepwise fashion,
in which the benzoylmethyl bromide derivatives were first converted into corresponding
azido derivatives (see Supplementary Materials) and then employed under optimized
mechanochemical conditions. Then, we introduced structurally interesting and highly
sterically hindered alkynes for the anticipated CuAAC reaction. Under the conditions
of three-component coupling, we again encountered low-to-moderate yield for the com-
pounds 3f–k (Figure 2). However, the stepwise fashion of the mechanochemical reaction
gave excellent yield of the products 3f–k (Figure 2). In all these reactions, benzoylmethyl
bromide derivatives had no marked effect on the yield of the final 1,2,3-triazole derivatives
(Figure 2). It is noteworthy that the mechanochemical synthesis of 1,2,3-triazole lead to
the formation of only 1,4- regioisomers and formation of 1,2-isomers were not observed.
Owing to the inherent biological activity of the sulphonamides, we have targeted tria-
zole based sulphonamides molecules under mechanochemical conditions (Figure 3). We
encountered the low yield of products in the case of three-component mechanochemical
coupling of alkynes, sodium azides and tosylchlorides. Therefore, the tosylazides (4a) were
prepared using the reported conditions (see Supplementary Materials) and then employed
in the 1,3-dipolar cycloaddition. In all cases, good-to-excellent yield of the triazole-based
sulphonamides 5a–e were observed. Interestingly, only the formation of 1,4-regioisomer
was observed to have excellent selectivity.

Finally, to confirm the structure of the obtained products, single-crystal XRD exper-
iments were carried out for the 1,2,3-triazole 3b, and the obtained single-crystal XRD
structure is presented below (Figure 4).

To demonstrate the synthetic utility of the present reaction, we successfully prepared
Rufinamide (compound 7f), a commercially available antiepileptic drug (AED) and its
Cl-analogue (compound 6f) in good overall yields (Scheme 2). The Cl-analogue of Rufi-
namide was prepared by starting from easily available 2,6-dichloro benzaldehyde precursor
followed by the synthesis of 2,6-dichlorobenzyl azides (see Supplementary Materials). With-
out any tedious purification of these organic azides, we treated with propiolic esters under
optimised mechanochemical grinding using copper beads. The ethyl ester of the propiolic
acid under our optimised mechanochemical conditions gave the formation of the desired
1,4-isomer only compared to the methyl ester derivative of propiolic acid derivatives. To
our delight, we observed the formation of yellow crude after the reaction which contained
only 1,4-regioisomer (6e) as a major product and gave 67% yield after purification. We
have also observed that the mechanochemical conditions gave better results in the case
of two-component reactions, i.e., alkyne and organic azide, rather than three. The triazlic
esters (6e) can be easily converted into the amide derivatives using treatment with ammonia
water in methanol. A similar experimental procedure was followed for the synthesis of the
commercially available drug Rufinamide 7f in 79% of overall yield with greater selectivity
(Scheme 2).
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Scheme 2. Total synthesis of anti-seizure drug Rufinamide and analogues.

Plausible Catalytic Pathway

From the previous discussions, we have observed the in situ generation of stable and
isolable organic azides (IIA) as the key intermediate, followed by 1,2,3-triazole formation.
In some cases, we also performed reactions between the alkynes and organic azides to
enhance the overall yield. Based on the previous literature reports [72–76] and the above
experimental findings, a plausible reaction mechanism is suggested as shown in Figure 5.
The proposed catalytic cycle for the CuAAC of alkynes with the azides consists of an initial
copper acetylide formation to afford intermediate I. We surmised that, in the catalytic cycle,
NaN3 can change the valence state of Cu during the reaction and that this might be respon-
sible for the observed activity [77,78]. The Cu(I) species reacts with an alkyne to create a
copper acetylide. On the other hand, benzoylmethyl bromides react with sodium azides to
form benzoylmethyl azides, IIA, which are one of the key intermediates in the catalytic
cycle. The 1,3-dipolar cyclization of the resulting dinuclear copper intermediate (III and IV)
and benzoylmethyl azides IIA, followed by protonation, provided the formation of target
1,2,3-triazole VI and the regeneration of the Cu catalyst. The generation of intermediate III
and IV is supported by reference [73]. It worth mentioning that Cu-beads are recyclable,
and after sonication with acetone the Cu-beads can be returned to the reaction without
losing both the grinding performance and the catalytic activity.
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3. Conclusions

In summary, we have developed a regiospecific, environmentally benign mechanochem-
ical grinding for a 1,3-dipolar Huisgen cycloaddition reaction between terminal alkynes
and azides using Cu-beads. Highly functionalized 1,2,3-triazoles were prepared selec-
tively in good-to-excellent yield using an easy workup technique and without generation
of unwanted waste. This energy- and cost-effective process has also been extended for
the synthesis of Rufinamide, a commercially available antiepileptic drug (AED) and its
Cl-analog. The crystallographic data of the triazole molecule also established structural
confirmation. Furthermore, the in silico studies of the prepared molecules are still under
investigation and the results will be published in due course. Finally, this research may
encourage the synthetic community to develop active pharmaceutical ingredients using
greener energy sources and impact the pharmaceutical industries.

4. Experimental Section

General experimental procedure for the mechanochemical cycloaddition reaction:
PM100 stainless steel grinding bowl with an internal volume of 25 mL, containing 0.27/0.27-
inch cylindrical copper beads (5 beads) was charged with alkynes (1 equivalent), equimolar
quantities of benzoylmethylbromide (2 equiv. unless otherwise mentioned) and sodium
azide (2 equiv. otherwise mentioned). The grinding bowl was then equipped with a
stainless steel bowl cap and placed in the mechanical ball milling instrument. The reaction
mixture within the grinding bowl was allowed to rotate for 3 h (unless otherwise mentioned)
at the speed of 500 rpm. The progress of the reaction was monitored by the TLC and
the reaction mixture was extracted with dichloromethane. The crude was concentrated
under reduced pressure and the product was isolated using silica gel (230–400) column
chromatography under hexane/ethylacetate gradient.
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Supplementary Materials: The following are available online at https://www.mdpi.com/article/10
.3390/molecules27227784/s1, Figure S1: GC-MS of azidation of tosylchloride, Figure S2: Synthesis of
2,6-dichlorobenzyl azide from its aldehyde precursor, Figure S3: Reduction of 2,6-difluorobenzoyl
chloride to 2,6-difluorobenzyl azide, Figure S4: Spectral data (1H, 13C, GC-MS) for synthesized
compounds, Figure S5: ORTEP diagram of compound 3b [79].
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