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Abstract: Dandelion, in China, has a long history as a medicinal and edible plant, and possesses high
nutritional and medical value. The present study aimed to isolate a new polysaccharide (DLP-3)
from dandelion leaves and to evaluate its antioxidant, antibacterial, and anticancer activities. The
structure of DLP-3 was analyzed using HPLC, FT-IR, SEM, GC-MS, and NMR spectroscopy. DLP-3
mainly consisted of Man, Rha, GlcA, Glc, Gal, and Ara with molar ratios of 2.32, 0.87, 1.21, 3.84, 1.00,
and 1.05, respectively, with a molecular weight of 43.2 kDa. The main linkages of DLP-3 contained
(1→4)-α-D-Glc, (1→4,6)-α-D-Glc, (1→6)-α-D-Gal, (1→2)-α-D-Man, (1→4)-α-D-Man, β-L-Ara-(1→,
and α-L-Rha-(1→. DLP-3 exhibited a smooth surface, purely flake-like structure, and a triple helix
conformation. Moreover, DLP-3 presented obvious antioxidant and antibacterial activities in a
concentration-dependent manner. DLP-3 showed significant anticancer activities by inhibiting tumor
cell proliferation. These findings provide a theoretical basis for the application of DLP-3 as a natural
functional active substance in functional foods.

Keywords: dandelion leaves; polysaccharides; structural characterization; biological properties;
anticancer activity

1. Introduction

Dandelion (Taraxacum officinale Weber ex F.H. Wigg.) is widely distributed throughout
the Northern Hemisphere [1,2]. In China, dandelion has been one of the most widely used
traditional chinese medicines (TCMs) for thousands of years and often found in the Chinese
diet as a wild vegetable, and is a type of medicine and food homologous plant. Dandelion
contains a variety of functional components, including polysaccharides, tocopherols, ri-
boflavin, and peptides [3–7], and possesses a variety of bioactivities, including antidiabetic,
antibacterial, and immunoregulatory activities [8–12].

Polysaccharide is a type of macromolecular compound that widely exists in plants,
animals, and microorganisms [13,14]. In recent years, natural plant polysaccharides have
attracted extensive attention due to their important biological activities, such as promoting
the proliferation of probiotics, as well as antitumor, antiviral, bacteriostatic, and immune
regulation [15–19]. The bioactivities of polysaccharides are related to their monosaccharide
composition, glycosidic bond types, and conformations [20–22]. Therefore, studies on the
structure–bioactivity relationships of polysaccharides have been very important for its
development and application.
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Dandelion polysaccharide (DP) is the main active substance in dandelion. Many
studies have confirmed that DP has a variety of biological activities, such as antioxida-
tion, antibacterial, anti-inflammatory, and anticancer activities [23]. DPs extracted from
different parts of dandelion have different pharmacological effects. However, most studies
have mainly focused on the extraction method, structure, and function of dandelion root
polysaccharide [2,24]. To the best of our knowledge, the structure and biological activities
(such as antioxidation, antibacterial, and anticancer activities) of purified polysaccharides
from dandelion leaves (DLP) have not yet been fully studied, and there are few reports
on the structure–bioactivity relationships of DLP [1,6]. Therefore, in this study, dandelion
leaves were used as the main raw material, an active polysaccharide (DLP-3) was obtained
from dandelion leaves, and its structure properties were characterized by HPLC, FT-IR,
SEM, GC-MS, and NMR analyses. Moreover, its antioxidant, antibacterial, and anticancer
activities were evaluated. In addition, the structure–bioactivity relationships of DLP-3 were
further analyzed. It is expected to provide a reference for the development and application
of DLP.

2. Results and Discussion
2.1. Characterization of DLP-3
2.1.1. Physicochemical Properties and Monosaccharide Composition of DLP-3

DLP-3 was isolated via DEAE-52 and Sephadex G-100 and the elution profiles are
shown in Figure 1B,C. The yield of DLP-3 was 4.10 ± 0.29% and the total carbohydrate, pro-
tein, and uronic acid contents of DLP-3 were 86.22± 4.73%, 2.46± 0.88%, and 4.79 ± 0.02%,
respectively. The Mw of DLP-3 was evaluated using HPGPC (Figure 2A). Based on the
calibration curve (y = −0.2959x + 10.722, R2 = 0.9926), the Mw of DLP-3 was determined to
be 43.2 kDa. Guo et al. reported a water-soluble polysaccharide PD1-1 from dandelion with
a small Mw of 2.6 kDa [25]. Cai et al. reported two polysaccharides (DRP-2b and DRP-3a)
from dandelion with Mws of 31.8 kDa and 6.72 kDa, respectively [2]. This result indicated
that the Mw of DLP-3 differed from currently reported polysaccharides from dandelion,
which might endow DLP-3 some biological activities.
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Figure 1. (A) Flow chart of extraction and purification of DLP-3; (B) chromatography of DLP-3 using 
a DEAE-52 cellulose column; (C) Sephadex G-100 chromatography. 

 

 
Figure 2. (A) HPGPC chromatograms of DLP-3; (B) monosaccharide composition of DLP-3. 

Figure 1. (A) Flow chart of extraction and purification of DLP-3; (B) chromatography of DLP-3 using
a DEAE-52 cellulose column; (C) Sephadex G-100 chromatography.
Figure 1. (A) Flow chart of extraction and purification of DLP-3; (B) chromatography of DLP-3 using
a DEAE-52 cellulose column; (C) Sephadex G-100 chromatography.

Molecules 2022, 27, 0 4 of 17

Molecules 2022, 27, x FOR PEER REVIEW 4 of 16 
 

 

 
Figure 1. (A) Flow chart of extraction and purification of DLP-3; (B) chromatography of DLP-3 using 
a DEAE-52 cellulose column; (C) Sephadex G-100 chromatography. 

 

 
Figure 2. (A) HPGPC chromatograms of DLP-3; (B) monosaccharide composition of DLP-3. Figure 2. (A) HPGPC chromatograms of DLP-3; (B) monosaccharide composition of DLP-3.

The monosaccharide composition analysis of DLP-3 was evaluated using HPLC. As
shown in Figure 2B, DLP-3 consisted of Man, Rha, GlcA, Glc, Gal, and Ara, with molar
ratios of 2.32, 0.87, 1.21, 3.84, 1.00, and 1.05, respectively. In addition, the data indicated
that DLP-3 contained a large proportion of Man and Glc.

2.1.2. SEM Analysis of DLP-3

The microstructure of DLP-3 was determined using SEM at magnifications of 5000×
and 10,000×, which are shown in Figure 3A,B. DLP-3 exhibited a smooth surface and a
purely flake-like structure. The apparent structure of polysaccharides can determine their
physical and chemical properties [26]. The smooth flake-like structure of DLP-3 may be
related to its antioxidant, antibacterial, and anticancer activities.
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The monosaccharide composition analysis of DLP-3 was evaluated using HPLC. As
shown in Figure 2B, DLP-3 consisted of Man, Rha, GlcA, Glc, Gal, and Ara, with molar
ratios of 2.32, 0.87, 1.21, 3.84, 1.00, and 1.05, respectively. In addition, the data indicated
that DLP-3 contained a large proportion of Man and Glc.

2.1.2. SEM Analysis of DLP-3

The microstructure of DLP-3 was determined using SEM at magnifications of 5000×
and 10,000×, which are shown in Figure 3A,B. DLP-3 exhibited a smooth surface and a
purely flake-like structure. The apparent structure of polysaccharides can determine their
physical and chemical properties [26]. The smooth flake-like structure of DLP-3 may be
related to its antioxidant, antibacterial, and anticancer activities.
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Figure 3. (A,B) SEM (5000× and 10,000×) of DLP-3; (C) FT-IR spectra of DLP-3 in the range of
4000–400 cm−1; (D) changes in absorption wavelength maximum of a mixture of Congo red and
DLP-3 at various concentrations of NaOH.

2.1.3. FT-IR Analysis

The FT-IR spectra of DLP-3 are shown in Figure 3C. The characteristic absorption peaks
of DLP-3 can be observed at 3408.75 cm−1 and 2928.27 cm−1, which are attributed to O-H
and C-H groups [27]. The absorption bands of DLP-3 at 1623.49 cm−1 and 1410.85 cm−1

indicate that there may be -COO- stretching vibration [28]. The absorption peak observed
at 1144.26 cm−1 may be due to C-O stretching, indicating that a pyran ring structure may
exist in DLP-3 [29]. The characteristic absorption at 878.07 cm−1 indicates that the main
glycosyl unit of DLP-3 is in the β configuration [30]. The absorption peak at 784.57 cm−1

indicates that DLP-3 contains mannose.

2.1.4. Methylation Analysis

The linkage patterns of DLP-3 were analyzed using GC–MS. As shown in Table 1, seven
components were detected in DLP-3, namely 2,3,6-Me3-Glcp, 2,3-Me2-Glcp, 2,3,4-Me3-Galp,
3,4,6-Me3-Manp, 2,3,6-Me3-Manp, 2,3,5-Me3-Araf, and 2.3.4-Me3- Rhap. These compounds
are in molar ratios (%) of 22.29, 14.74, 12.55, 20.19, 11.27, 15.84, and 3.12. By comparing with
the mass spectrum patterns from the literature, it is speculated that the linkages of Glc, Gal,
Man, Ara, and Rha can be deduced to be (1→4), (1→4,6), (1→6), (1→2), (1→4), and (1→).

Table 1. Glycosyl linkage analysis of DLP-3.

Numbers Characteristic Fragments (m/z) Methylated Sugar Molar Ratio (%) Linkage Type

1 43, 45, 57, 85, 87, 99, 101, 113, 117, 161, 173, 233 2,3,6-Me3-Glcp 22.29 →4)-Glcp-(1→
2 43, 85, 102, 118, 127, 162, 201, 261 2,3-Me2-Glcp 14.74 →4,6)-Glcp-(1→
3 43, 45, 71, 87, 99, 101, 117, 129, 161, 189, 233 2,3,4-Me3-Galp 12.55 →6)-Galp-(1→
4 43, 45, 71, 87, 99, 101, 113, 129, 161, 173, 205 3,4,6-Me3-Manp 20.19 →2)-Manp-(1→
5 43, 45,59, 71, 87, 102, 113, 118, 129, 162, 173, 233 2,3,6-Me3-Manp 11.27 →4)-Manp-(1→
6 59, 71, 87, 102, 118, 129, 145, 161 2,3,5-Me3-Araf 15.84 Araf -(1→
7 57,72,89,102,113,118,162 2,3,4-Me3-Rhap 3.12 Rhap-(1→

2.1.5. NMR Analysis of DLP-3

The structural features of DLP-3 were further identified using an NMR spectral analy-
sis and the entire assignment shifts of the 1H and 13C for DLP-3 were identified with refer-
ence to the previous literature and are illustrated in Figures S1 and S2 and Table 2 [19,31–36].
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The anomeric proton signals (5.40, 4.89, 5.10, 5.13, 5,39, 5.20, and 5.39 ppm) and the
anomeric carbon signals (98.74, 99.25, 97.67, 100.27, 99.78, 92.22, and 109.26 ppm) corre-
spond to H-1 and C-1 of (1→4)-α-D-Glc, (1→4,6)-α-D-Glc, (1→6)-α-D-Gal, (1→2)-α-D-Man,
(1→4)-α-D- Man, β-L-Ara-(1→, and α-L-Rha-(1→. The NMR results are consistent with
the results of methylation. In addition, the signal at δ 179.14 ppm should be assigned to the
carboxylic group of uronic acids [19].

Table 2. 13C and 1 H NMR chemical shifts (ppm, δ) for DLP-3.

Sugar Residue C1/H1 C2/H2 C3/H3 C4/H4 C5/H5 C6/H6

→4)-α-D-Glcp-
(1→

5.40 3.60 3.72 3.60 3.72 4.01
98.74 67.59 71.16 72.78 69.27 67.59

→4,6)-α-D-Glcp-
(1→

4.89 3.54 3.88 3.54 4.01 3.80
99.25 69.27 73.46 74.38 70.88 64.10

→6)-α-D-Galp-
(1→

5.10 3.66 4.03 3.83 4.28 4.03
97.67 72.78 76.48 70.48 76.48 68.58

→2)-α-D-Manp-
(1→

5.13 4.28 - - - 3.74
100.27 74.02 - - - 61.28

→4)-α-D-Manp-
(1→

5.39 3.88 3.43 3.72 3.52 3.72
99.78 63.24 75.20 80.71 74.38 69.85

β-L-Araf-(1→ 5.20 4.01 4.12 3.80 3.70 -
92.22 81.37 76.48 77.96 63.24 -

α-L-Rhap-(1→ 5.39 3.83 3.66 3.45 4.01 1.27
109.26 76.48 67.59 71.69 69.27 15.41

2.1.6. Congo Red Test

As shown in Figure 3D, the λmax of DLP-3 increases first, then decreases with an in-
creasing concentration of NaOH, which indicates that DLP-3 has a triple helix conformation.
Polysaccharides with triple helix conformation have shown higher biological activity than
those without this conformation [37,38]. In this study, the triple helix structure of DLP-3
may be related to its strong biological activities.

2.2. In Vitro Antioxidant Activities of DLP-3
2.2.1. Superoxide Radical Scavenging Activity

As shown in Figure 4A, the superoxide radical scavenging activity of DLP-3 increased
in a DLP-3 concentration-dependent manner, but was slightly less than Vc. The superoxide
radical scavenging effect of DLP-3 was 56.49% at 1.0 mg/mL.
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2.2.2. ABTS Radical Scavenging Activity

As shown in Figure 4B, DLP-3 exhibited strong ABTS radical scavenging activity in a
concentration-dependent manner (0.2–1 mg/mL). The scavenging activity of DLP-3 was
99.12%, which was close to Vc (99.46%) at 1.0 mg/mL.

2.2.3. Hydroxyl Radical Scavenging Assay

As shown in Figure 4C, DLP-3 exhibited strong scavenging activity that increased
with an increase in concentration. The scavenging activity of DLP-3 was as high as 88.35%
at 1.0 mg/mL.

The antioxidant activity of polysaccharide was speculated to be related to its large
amount of hydroxyl groups, which could donate electrons to reduce the radical to a more
stable form, or react with the free radicals to terminate the radical chain reaction and inhibit
the generation of free radicals by reducing metal ions [34]. The antioxidant activities of
DLP-3 were determined by the scavenging activity of the superoxide radicals, ABTS radi-
cals, and hydroxyl radicals. The content of uronic acid, glycosidic linkages, microstructure,
monosaccharide composition, and Mw of polysaccharides determine their antioxidant
activity [39,40]. Acidic polysaccharides with high uronic acid content have shown stronger
free radical scavenging effect and higher antioxidant activity than neutral polysaccharides
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without uronic acid [41]. Many researchers have reported that low Mw polysaccharides
showed stronger antioxidant activities than those with high Mw [31,42]. In addition, a
triple helix stereo-configuration and a high level of Glc and Gal have exhibited strong
antioxidant activities [43,44]. Moreover, the polysaccharides with a backbone composed of
→4)-α-D-Manp-(1→ and→2)-α-D-Manp-(1→might show good antioxidant activity [44].
Here, the low Mw; the triple helix stereo-configuration; the glycosidic bonds; and the high
uronic acid, Glc, and Gal contents of DLP-3 might be the main reasons for antioxidant
activities of DLP-3.

2.3. Antibacterial Activity of DLP-3

The antibacterial activity of DLP-3 was evaluated against two Gram-negative and two
Gram-positive bacteria. As shown in Figure 5, DLP-3 showed a certain inhibitory effect
on all strains, and the antibacterial activity increased with an increase in concentration
(0.4–2.0 mg/mL). At the DLP-3 concentration of 2.0 mg/mL, the inhibitory diameters
against E. coli, Salmonella, S. aureus, and L.monocytogenes were 9.4 ± 0.2 mm, 11.6 ± 0.6 mm,
11.8 ± 0.7 mm, and 15.4 ± 0.5 mm, respectively. As compared with previous reports, the
antibacterial activity of LDP-3 against S. aureus was significantly stronger than that of the
polysaccharides extracted from olive leaves (OLP) [45] and the inhibitory activity of LDP-3
against S. aureus and L.monocytogenes was stronger than that of the polysaccharides isolated
from Periploca laevigata root Barks (PLP1) [46]. However, DLP-3 showed lower inhibitory
activity against E. coli than polysaccharides from spent mushroom substrates (PL2) [47] and
PLP1 [46]. The data showed that S.aureus and L. monocytogenes, two Gram-postive bacteria,
were the most sensitive to DLP-3. The results of this study are consistent with those of
Hashemifesharaki et al. (2020) [48] who reported that marshmallow root polysaccharide
showed stronger inhibitory effect on Gram-positive bacteria. Polysaccharides may destroy
the inner membrane of cells, increase the permeability of cell membrane, and release
electrolytes, resulting in bacterial cell death [48,49]. The inhibitory effects of DLP-3 on
Gram-positive bacteria (S.aureus and L.monocytogenes) were significantly stronger than
those on Gram-negative bacteria (E. coli and salmonella). This result may be due to the
presence of lipopolysaccharide in the cell membrane structure of Gram-negative bacteria,
which is more complete than Gram-positive bacteria [50].
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At the same time, the MIC of DLP-3 against E. coli, salmonella, S. aureus, and L.monocytogenes
was also investigated to evaluate the antibacterial activity of DLP-3. The results presented
that the MICs of DLP-3 against E. coli, salmonella, S. aureus, and L.monocytogenes were 1.6, 1.0,
0.2, and 0.6 mg/mL, respectively. All of these suggest that DLP-3 could be considered to be a
potential alternative antibacterial agent to currently used antibiotics. Hajji et al. (2018) [51]
reported that the MICs of polysaccharides isolated from Periploca laevigata root barks
(PLP1) against E. coli, S. aureus, and L. monocytogenes were 0.5 mg/mL, 0.3 mg/mL, and
0.8 mg/mL, respectively. Kungel et al. (2018) [46] reported that the MICs of polysaccharides
isolated from yerba mate (Ilex paraguariensis) (YM polysaccharide) against E. coli and
S. aureus were 1.6 mg/mL and 0.6 mg/mL, respectively. In this study, DLP-3 showed
lower MICs against S. aureus and L. monocytogenes than PLP1 and lower MICs against
E. coli and S. aureus than YM. Polysaccharides may become a barrier to inhibit the growth
of bacterial cells by preventing the intake of nutrients [52]. In addition, high concentrations
of polysaccharides can also increase cell permeability and structural damage by destroying
the inner membrane, releasing electrolytes and other cellular components, and leading to
bacterial cell death [48].

2.4. Anticancer Activity of DLP-3

The anticancer effect of DLP-3 against the HepG2 is illustrated in Figure 6. DLP-3
could inhibit the proliferation of HepG2 in a concentration-dependent manner. The results
of the MTT assay indicated that the proliferation of HepG2 cells treated with DLP-3 was
significantly inhibited (Figure 6A). The MTT results indicated that HepG2 cells were more
susceptible to DLP-3 at 72 h.
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on cell proliferation was evaluated using an MTT assay; (B,C) the clonogenicity of the indicated
cells were detected after treatment with different concentrations of DLP-3. Data are presented as the
mean ± SD, n = 3. Different letters above the bars indicate significant difference.
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In the colony formation assay, HepG2 cells treated with DLP-3 (0.2, 0.4, and 0.8 mg/mL)
formed fewer colonies than the untreated control group, a phenomenon that was concen-
tration dependent (Figure 6B,C). The results indicated DLP-3 could effectively slow down
the clonogenic of HepG2.

The physicochemical properties, structural configuration, and microstructure of polysac-
charides determine their anticancer activity [53,54]. The polysaccharide with lower Mw and
triple helical chains exhibited stronger binding to receptors on the surface of immune cells
due to the occurrence of cross-link receptors, finally leading to higher anticancer activ-
ity [55,56]. In addition, the polysaccharide with→4)-α-D-Glcp-(1→ structure has high lev-
els of anticancer and immunoregulatory activities [34]. DLP-3 had high anticancer activity,
which might be due to its low molecular weight, triple helix configuration, and glycosidic
bonds. Previous studies have shown that polysaccharides can inhibit the proliferation and
induce apoptosis of HCC cells by downregulating the activity of the PI3K/Akt/mTOR
pathway and upregulating the ratio of Bax/Bcl-2 and activating caspase-3 [3,57].

3. Materials and Methods
3.1. Materials

The fresh dandelion (variety: Taraxacum antungense Kitag.) leaves were purchased
from a local market (Shenyang, Liaoning, China) and authenticated by Professor Lin
Shi (Shenyang Agricultural University). DEAE-52 cellulose and Sephadex G-100 were
obtained from Solarbio Co., Ltd. (Beijing, China). 1-Phenyl-3-methyl-5-pyrazolonde (PMP)
and 2,2’-azino-bis-(3-ethylbenzthiazoline-6- sulphonic acid) (ABTS) were purchased from
Sigma-Aldrich Chemical Co. (St. Louis, MO, USA). Trypsin EDTA and streptomycin were
purchased from Gibco (Grand Island, NY, USA). All other chemicals were of reagent grade.

3.2. Extraction and Purification of DLP

The fresh dandelion leaves were washed and dried at 50 ◦C for 48 h. Then, the dried
dandelion leaves were crushed into powders and selected with a 100-mesh sieve. The
powders were treated with petroleum to remove fat and extracted with 85% ethanol for
24 h to remove pigments and small organic compounds. After suction filtration, the filter
residue was dried and extracted with distilled water (1:20, g/mL) at 80 ◦C for 2 h. After
centrifuging (4000 rpm, 15 min) the extraction solution, the supernatant was concentrated
to a proper volume by decompression at 70 ◦C in a rotary evaporator, and then precipitated
with ethanol (1:4, v/v) for 12 h, and centrifuged again (4000 rpm, 10 min). Then, the resulting
supernatant was deproteinized with the Sevag reagent and precipitated again with ethanol,
collected by centrifugation (4000 rpm, 10 min). The precipitates were dialyzed against
water for 48 h and lyophilized as crude DLPs.

The crude DLPs were dissolved and added to a DEAE-52 cellulose column (2.6 cm× 40 cm),
and eluted stepwise with NaCl solutions (0–0.5 M). The sugar elute was collected with
tubes (5 min/tube) and the absorbance was measured by monitor through the phenol
sulfuric acid method. The absorption peak curve was drawn, and then the major frac-
tions were concentrated, dialyzed (cut-off Mw 8000–14,000 Da), and lyophilized. The
dried polysaccharides were dissolved and purified with a Sephadex G-100 gel filtration
column (1.6 × 30 cm). The top fractions of elution peak (5 min/tube) were collected and
lyophilized to obtain the purified DLP. The overall procedure used herein to purify the
DLP is schematically illustrated in Figure 1A. The extraction yield of DLP was calculated
by Formula (1):

Extraction yield (%) = (w 1/w0)× 100% (1)

where w1 is the weight of DLP and w0 is the weight of dry dandelion leaf powder.
DLP-3 with high antioxidant and antibacterial activities was obtained by comparing

the antioxidant and antibacterial activities of purified single component polysaccharides
(data not provided). Here, we focus on the research of DLP-3.
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3.3. Characterization of DLP-3

The contents of total carbohydrate, uronic acid, and protein in DLP-3 were measured
by using a phenol-sulphuric acid assay [58], m-hydroxydiphenyl assay [59], and coomassie
brilliant blue assay [60], respectively. The Mw and microstructure of DLP-3 was analyzed
using HPGPC and SEM. The monosaccharide composition and the methylation analysis
of DLP-3 were analyzed using HPLC as reported in previous studies [14,20]. The specific
experimental methods were presented in S1 and S2. The infrared spectrum and the 1H
NMR spectra and 13C NMR spectra of DLP-3 were determined using FT-IR (4000–400 cm−1)
and a Bruker AV-400 NMR spectrometer. The CR test of DLP-3 was performed using the
method of Nie et al. (2018) [61]. The DLP-3 solution (2.0 mL, 2.5 mg/mL) and CR solution
(2.0 mL, 80 µmol/L) were mixed and NaOH solution (1 mol/L) was added to obtain the
concentration of NaOH within 0–0.5 M. Then, the λmax was recorded by UV-Vis spectra.

3.4. Antioxidant Activity
3.4.1. Superoxide Radical Scavenging Assay

The superoxide radical scavenging assay was determined using the method of Chen et al.
(2019) [31] with a minor modification. The specific experimental methods are presented in
Supplementary Material, Method S3.

3.4.2. ABTS Radical Scavenging Assay

The ABTS radical scavenging assay was determined using the method of He et al.
(2018) [62]. The details are provided in Supplementary Material, Method S4.

3.4.3. Hydroxyl Radical Scavenging Assay

The hydroxyl radical scavenging assay was measured using the method of Chen and
Huang (2019) [63], with a minor modification. The details are provided in Supplementary
Material, Method S5.

3.5. Antibacterial Activity of DLP-3
3.5.1. Agar Diffusion Assay

Inhibitory zones of DLP-3 against Escherichia coli (E. coli, CVCC1491), Staphylococcus
aureus (S. aureus, CVCC1884), Listeria monocytogenes (L. monocytogenes, CVCC1597), and
Salmonella (CVCC2139) were evaluated by the method of Wang et al. (2018) [64]. Briefly,
the test organism suspensions (100 µL,106 CFU/mL) were inoculated on the surface of
solid medium. The filter paper disks (diameter of 6 mm and thickness of 1 mm) containing
DLP-3 (0.4–2.0 mg/mL, 30 µL) were placed in the plates and incubated at 37 ◦C for 24 h.
Sterile water was used as a blank control. The inhibitory zones (diameter expressed in
millimeters) of DLP-3 were measured using a vernier caliper.

3.5.2. Minimum Inhibitory Concentration (MIC) Determination

The MIC of DLP-3 was evaluated using the method of Liu et al. (2018) [65]. Briefly,
the DLP-3 samples (100 µL) with different concentrations (0.1, 0.2, 0.4, 0.6, 0.8, 1.0, 1.2, 1.4,
1.6, 1.8, and 2.0 mg/mL) and the bacterial suspensions (100 µL, 106 CFU/mL) were added
into a 96-well microplate. The absorbance value of the culture medium was measured after
incubated at 37 ◦C for 24 h. The MIC of DLP-3 was determined.

3.6. Anticancer Properties
3.6.1. Cell Lines and Cell Culture

The HepG2 cells were obtained from the Stem Cell Bank, Chinese Academy of Sciences
and cultured in Dulbecco’s modified Eagle medium (DMEM) with 10% fetal bovine serum
(FBS) and 1% penicillin in a incubator at 37 ◦C with 5% CO2.
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3.6.2. Cell Proliferation Assay and Colony Formation Assay

The MTT cell proliferation assay and the colony formation assay were evaluated
following a previously reported method [48,66]. The specific experimental methods are
presented in Supplementary Material, Method S6.

3.7. Statistical Analysis

All experiments were conducted three times. The data were analyzed using the SPSS
19.0 statistical software. The results are reported as means ± SD. The difference was
p < 0.05.

4. Conclusions

In the present study, we demonstrated a novel polysaccharide (DLP-3) that possessed
good biological activity which was successfully isolated from dandelion leaves. DLP-3
had an average MW of 43.2 kDa and was composed of Man, Rha, GlcA, Glc, Gal, and Ara.
DLP-3 with a triple helix structure exhibited high antioxidant, antibacterial, and anticancer
activities in vitro. These results indicate that the biological activity of DLP-3 is greatly
determined by its monosaccharide composition, MW, and triple helix conformation. In
conclusion, DLP-3 can be used as an active substance in the development of functional
food and pharmaceutical products. However, the molecular mechanisms of antioxidant,
antibacterial, and anticancer effects of DLP-3 should be investigated further.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/molecules27217641/s1, Supplementary method S1: Monosaccharide
composition analysis; Supplementary method S2: Methylation analysis; Supplementary method S3: Su-
peroxide radical scavenging assay; Supplementary method S4: ABTS radical scavenging assay;
Supplementary method S5: Hydroxyl radical scavenging assay; Supplementary method S6: Cell pro-
liferation assay and colony formation assay; Figure S1. 1H NMR spectrum of DLP-3. Figure S2. 13C
NMR spectrum of DLP-3.
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