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Abstract: The arsenic (As) pollution of water has been eliminated via intensive scientific efforts,
with the purpose of giving safe drinking water to millions of people across the world. In this
study, the adsorption of As(V) from a synthetic aqueous solution was verified using a Bentonite-
Anthracite@Zetag (BT-An@Zetag) composite. The SEM, FT-IR, XRD, DSC, TGA, and SBET techniques
were used to characterize the (BT-An@Zetag) composite. The adsorption of As(V) was explored using
batch adsorption under varied operating scenarios. Five kinetic modelswere used to investigate
kinetic data, whereas three isotherms had been used to fit empirical equilibrium data. According to
the findings, the adsorption mechanism of As(V) was best described by the Freundlich isotherm with
a maximum monolayer coverage of 38.6 mg/g showing pseudo-second-order mode. The estimated
enthalpy (H◦) indicates that the adsorption process is both chemical and endothermic.The calculated
free energy (G◦) indicates that the reaction is nonspontaneous. After four sequential adsorption
cycles, the produced BT-An@Zetag composite demonstrated good reusability and a greater adsorption
affinity for As(V) ions. Overall, the BT-An@Zetag composite is suited for removing arsenic from
wastewater using adsorption as a cost-effective and efficient technique.

Keywords: bentonite; anthracite; zetag; As(V); composites; arsenic; water treatment; water pollutant

1. Introduction

As a result of anthropogenic activities and natural processes, arsenic (As) has been
discharged into surface water and groundwater, causing severe health concerns to humans
and other living organisms. In many parts of the world, arsenic exposure has been associ-
ated with significant health risks such as kidney, bladder, lung, and skin cancers, as well as
other skin diseases [1]. Toxic arsenic is consumed by 35–50 × 106 people in Bangladesh
and West Bengal, more than ten million in Vietnam, and more than twenty million in
China, according to current estimates [2,3]. Arsenic is often included in insecticides, glass,
desiccants, alloys, pigments, electronic components, and pharmaceuticals, as well as wood
preservatives in recent years, all contributing to arsenic poisoning [4,5]. Arsenic is mostly
abundant in the aquatic environment as arsenate and arsenite species, with arsenate (As(V))
being the most prevalent in oxidizing conditions [6]. The presence of As(V) in natural water
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is a consequence of the leaching of arsenic-rich rocks and sediments [7,8]. Because arsenic
is a known carcinogen as well as a toxic element, its presence in drinking water, even at
trace levels, causes a health risk. The permitted limit of arsenic in potable water, according
to the World Health Organization (WHO) and the United States Environmental Protection
Agency, is 10 µg/L [9–11].

Several studies were made to effectively remove arsenic from water, e.g., by activated
biochar [12,13], natural iron-enriched samples [14], activated red mud [15], and rare-earth
based materials [16]. The adsorption method is the most promising method due to its easy
handling, sludge-free operation, and efficient use in various systems [11]. Activated alumina
is an effective adsorbent used for arsenic removal from polluted water [17–20]. Because of
the following advantages, adsorption has gotten a lot of attention in comparison to other con-
ventional procedures such as coagulation/precipitation, oxidation, ion exchange, filtration,
membrane/reverse osmosis, and biological treatment. Generally, (i) it does not require a large
volume or additional chemicals, (ii) it is easier to set up as a POE/POU (point of entry/point
of use) arsenic resorption system [21], and (iii) it produces no hazardous byproducts [22,23]
and is potentially more cost effective [14,24]. Many researchers used volarized anthracite in
wastewater treatment [25].Anthracite impregnated with carbon nanotube (MW/CNT) [26].
For example, acrylonitrile derivatives [27], poly (Styrene-co-Acrylonitrile) copolymer [28],
activated silica [29], composite of olive seed residue, anthracite, chitosan [25], inorganic
coagulant of aluminum and iron impregnated with activated silica [30,31], and PFTE deriva-
tives [32]. Other scientists conducted arsenic removal via different materialssuch as Sulphide
Precipitation [33],Iron-Coated Cork Granulates [34,35], Iron-Coated Seaweeds [36], and
Porous HematiteIron-Based Adsorbent [37,38].

The steps implemented in this study include: (1) the impregnation of bentonite with an-
thracite using Zetag binder, (2) the characterization of the obtained composite BT-An@Zetag,
and (3) assessing the influence of experimental factors (pH, sorbent doze, As equilibrium
concentration, mixing speed, and time) on the sorption of As(V) on BT-An@Zetag in a batch
system (4) fitting the experimental results to the different kinetic and isotherm models to
better understand the adsorption mechanism of As(V) [39–41]. Thus, the aim of this paper
is to synthesize, for the first time, a novel BT-An@Zetag composite for As(V) removal from
the aqueous solution and evaluate its adsorption behavior based on the isotherm, kinetics,
and thermodynamics’ characteristics.

2. Results and Discussions
2.1. The BT-An@Zetag Composite Characterization
2.1.1. XRD Analysis of the BT-An@Zetag Composite

The BT-An@Zetag composite X–ray data showed crystalline nature at 22◦ and 25◦

(Figure 1A). Furthermore, the SiO2 reflection was represented by the sharp diffraction
peaks at 26◦ [42,43]. The crystalline structure of BT-An@Zetag composite was reflected by
strong peaks at 24◦, 29◦, 42◦and 45◦. The crystalline polymorphs of silica cristobalite and
tridymite, which were detected at 20.94, 36.64, 50.17, 60.11, 68.23, and 77.31◦, correspond
with the SiO2 peaks of native BT and BT-An@Zetag composite [44,45]. A strong peak at
26.5◦ and a weak peak at 43.9◦ suggested the existence of an amorphous graphite structure
in the BT and BT-An@Zetag composites, and is attributed to the random lattice structure of
anthracite layers [45].
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radation and dehydration, as well as de-polymerization of the Zetag chain [46,47]. Con-
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disorder as well as cavities in aromatic rings [51]. The disorder in the BT-An@Zetag com-
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the XRD results for the BT-An@Zetag composite [54,55]. 

Figure 1. (A) XRD pattern, (B) TGA, (C) DSC, and (D) Raman spectra of the BT-An@Zetag composite.

2.1.2. Thermogravimetric Analysis/Differential Scanning Calorimetry Analysis (TGA)

The TGA analysis of the BT-An@Zetag composite was shown in Figure 1B. The degra-
dation of the BT-An@Zetag composite is multi-staged, with no stable intermediate product.
The release of volatile gases such as water vapor, SO2, CO, CO2, and Zetag could account
for weight losses of 1.5 and 3% at 50 and 300 ◦C, respectively. The TGA curve of the
BT-An@Zetag composite shows three primary decomposition steps: the first is due to
the loss of volatile gases or adsorbed water from Zetag, while the second is due to Zetag
degradation and dehydration, as well as de-polymerization of the Zetag chain [46,47].
Conversely, in the DSC thermograms of the BT-An@Zetag composite, the volatile gases
were lost at around 50–150 ◦C, according to the graph, and the BT-An@Zetag composite
attained a steady state after this temperature (Figure 1C). Due to their high content, volatile
elements, notably volatile gases, were lost around 50 and 150 ◦C in the BT-An@Zetag
composite. Furthermore, the shape of the thermograms denotes an endothermic reaction.

2.1.3. Raman Spectroscopy

Figure 1D shows the Raman spectrum of the BT-An@Zetag composite. The two
conspicuous peaks G and D were attributed to the spectrum of (An), with the G band having
a larger amplitude at 1585 cm−1, indicating the emergence of the graphite structure [48–50].
The addition of anthracite and Zetag may be responsible for the increased intensity of the
BT-An@Zetag composite. This stage corresponds to C=C stretching in the aromatic ring’s
hexagonal sheet. The Raman disorder shift is assigned to the Raman scattering mode’s dual
resonance at 1250–1450 cm−1, while the Dband represents a lattice structure disorder as
well as cavities in aromatic rings [51]. The disorder in the BT-An@Zetag composite graphite
layer can be detected, which is in exact agreement with another recently published graphite
material investigation [52,53]. These comments go hand in hand with the XRD results for
the BT-An@Zetag composite [54,55].
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2.1.4. Surface Morphology and Elemental Analysis

The elemental analysis was performed with a SEM-EDX micrograph in BT-An@Zetag,
as shown in Figure 2a,b, respectively. Surface morphology was used to identify the in-
homogeneous topography of minerals confined in a carbon matrix. The presence of C,
O, Na, Mg, Al, Si, Ca, and Fe (C: 25.15, O: 54.47, Na: 0.74, Mg: 0.48, Al: 4.57, Si: 11.39,
Ca: 0.75, S: 0.44, and Fe: 1.64%) for BT-An@Zetag was observed. Figure 2a,b shows the
BT-An@Zetag SEM diagrams incorporating (BT-An) into the Zetag polymer; On the other
hand, Figure 2a,b shows the production of the BT-An@Zetag composite with bright and
opaque characteristics. SiO2 and Al2O3 were found as big particles with a diameter of
10 µm in BT-An@Zetag composites. The inclusion of anthracite and Zetag resulted in an
increase in oxygen content and a decrease in carbon content in the BT-An@Zetag composite
as a result of the binding with anthracite and Zetag. The increase in BT-An@Zetag com-
posite holes leads to an increase in surface area (103.5 m2/g) after mixing with anthracite
and Zetag at temperatures of 70 and 90 ◦C during the manufacturing and treatment of
BT-An@Zetag composites. Volatile gases such as H2, CO, and CO2 evaporate at these
temperatures, creating these gaps [42].
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Figure 2. Scanning electron microscopy with the energy-dispersive X-ray spectroscopy (SEM-EDX)
analysis of the BT-An@Zetag composite (a–d).

2.1.5. N2-Adsorption Analysis

Figure 3a,b shows N2 adsorption/desorption isotherms produced at 77 K and BJH
pore size distributions of BT-An@Zetag composite. The adsorption–desorption isotherms
of Type I curves according to the IUPAC classification are shown in the BT-An@Zetag
composite based on BET analysis, which is indicative of the presence of a narrow mesopore
micro-porosity structure and a wider structure of micropores. The BT-An@Zetag composite
surface area grew dramatically from 10.937 m2/g to 81.935 m2/g, implying a high micropore
concentration in the composite BT-An@Zetag [56], with micropores gradually increasing
from 0.00028 to 0.0151 (cm3/g). Following that, low-density volatile gases evacuated during
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the preparation and curing of the BT-An@Zetag composite, implying a tidy formation and
resulting in a smaller hole between the layers. As a result of the pore curing, the specific
surface area (SSA) and very microporous structure of the composite BT-An@Zetag will be
dramatically developed, as well as the SSA. In addition, Figure 3b shows the BJH-measured
pore size distributions of the BT-An@Zetag composite. The composite BT-An@Zetag has a
tiny hole diameter distribution of 1.5–5 nm, with big pores ranging from 5 nm to over 50 nm.
The results showed that curing created more pores; mesoporous materials may prevail in
porous structures, therefore, curing resulted in an increase in the composite BT-An@Zetag’s
total surface area, which is qualitatively compatible with the change in the surface area of
the BET. The results demonstrate that due to a high temperature and increased degree of
carbonization, the degree of the microcrystalline BT structure shifts greatly and enhance
the degree of graphitization, potentially resulting in an excellent sorptive material [57]. The
average pore size, total pore volume, and surface area obtained from the BT-An@Zetag
composite are 13.87, 0.0333 cm3/g, and 81.935 m2/g, respectively, (Table 1).
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Figure 3. (a) N2adsorption/desorption isotherms curves of the BT-An@Zetag composite obtained
from the nitrogen gas, and (b) the BJH pore size distribution of the BT-An@Zetag composite.

Table 1. Textural parameters of the BT-An@Zetag composite.

Composite SBET (m2/g) Total Pore Volume (Vt) (cm3/g) Mean Pore Width (nm)

BT-An@Zetag 81.935 0.0333 13.87

2.2. Controls on As(V) Adsorption
2.2.1. Effect of pH

In general, the solution pH represents an important parameter influencing heavy
metal adsorption because it affects the adsorbent’s surface charge as well as the prevailing
species of the metal ions. The effect of altering the solution pH (3–9) on the adsorption of
As(V) ions using BT and the BT-An@Zetag composite is shown in Figure 4A. At a pH of 3,
As(V) had the highest adsorption capability onto BT (12.25 mg/g) and the BT-An@Zetag
composite (27.8 mg/g). It is worth mentioning that under identical working conditions,
As(V) had a higher adsorption capacity on the BT-An@Zetag composite than BT. However,
increasing the pH from 4 to 7 reduced the adsorption capacity to 19 mg/g due to the partial
deprotonation of the BT-An@Zetag composite’s functional groups, followed by a decrease
in the interaction between the adsorbent’s oxygen/amine containing-functional groups
and As(V). Furthermore, elevating the pH of the solution from 8 to 10 resulted in the
competition for active sites on the adsorbent surface between functional groups (i.e., OH−)
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and AsO4
−3 anions (the only stable oxidative form at this pH). H2AsO4

−4 and HAsO4
−4

compounds are native in all arsenate complexes [58].
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Figure 4. (A) The effect of solution pH on As(V) adsorption by BT-An@Zetag composites (Concen-
tration: 50 mg/L, adsorbent weight: 20 mg, contact time: 120 min, and agitation speed: 200 rpm at
25 ◦C), and effect of (B) adsorbent doze, (C) agitation speed, and (D) initial concentration on As(V)
adsorption by the BT-An@Zetag composite.

Depending on the nature of the charge, these species will attract or repel on the
adsorbent surface. The H2AsO4

−4 and HAsO4
−4 species adhere to the positive surface of

the BT-An@Zetag composite, leading the negative charge on the adsorbent to grow while
the positive charge diminished. For the similarity of charges, the surface of BT-An@Zetag
should change to negative and repel the H2AsO4

−4 and HAsO4
−4 species, leading to a

decrease in As(V) adsorption. Other researchers [59,60] noticed the same tendency in
the influence of pH on arsenic eradication. At pH levels up to 7, the As(V) removal by
the BT-An@Zetag composite was maintained at a high adsorption capacity. A chemical
interaction, in addition to electrostatic contact, is a fair assumption.

2.2.2. Effect of Adsorbent Dose

Figure 4B depicts the effect of BT-An@Zetag dosage on As(V) adsorption. Because
there were more adsorptive sites for the ions to adsorb as the adsorbent dose increased
from 5 to 55 mg, the amount of As(III) and As(V) adsorbed by BT-An@Zetag was still
over 13 mg/g at 10 µg/L and over 40 mg/g at 50 µg/L [60]. However, increasing the
BT-An@Zetag masses up to 55 mg had no impact on the As(V) adsorption efficiency (98.7%)
due to the equilibrium between the adsorbate and the adsorbent under specific operating
conditions, as well as the solid-concentrationeffect [61]. When the dose of BT-An@Zetag
was increased from 5 to 55 mg, the arsenic ion adsorption capacity increased dramatically
from 4.696 to 22.425 mg/g. The increase of the adsorbent mass to roughly 22 mg relatively
maintains the adsorption capacity (23.49 mg/g). On the other hand, once the BT-An@Zetag
dose is increased from 5 to 55 mg, the adsorption capacity decreases to 22.425 mg/g.

2.2.3. The Agitation Speed Effect

The effect of increasing the speed of agitation (50–250 rpm) on the As(V) adsorption
behavior in a 25 mL arsenic solution at PH = 3 and 25 ◦C is shown in Figure 4C. With an
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increase in agitation speed, the adsorption capacity and adsorption efficiency of arsenate
ions rise from 4.44 to 27.91 mg/g and from 7.1 to 44.66 percent, respectively, as a result of
an enhanced solute molecule dispersion and an increased exposed adsorbent surface area
to the arsenate ions. When the speed is 250 rpm, however, the adsorption performance
approaches constant values. As a result, the plateau refers to the removal of all accessible
As(V) from the solution.

2.2.4. The Initial Concentration Effects

In Figure 4D, the adsorption capacity and removal efficacy were plotted against the
initial As(V) concentration. The adsorption performance improved, and it achieved its
highest value (32.08 mg/g) with removal percentages of 42.8%when the As(V) concentration
increased. These findings could be explained by the availability of more energetic spots at
lower As(V) ion/adsorbent ratios, as well as the huge ratio of the adsorbent’s accessible
surface area to the number of As(V) ions moles. The active sites, on the other hand,
were rapidly occupiedby increasing the metal ion/adsorbent ratio, thus, decreasing the
adsorption efficiency as the adsorption began at lower energy sites. The As(V) removal
percentage diminishes from 42.8 to 25.3 percent as the initial As(V) concentration rises from
5 to 60 mg/L.

2.2.5. Contact Time Effect

Figure 5a shows the adsorption as a function of residence time (5–150 min) at a
metal ion concentration of 25 mg/L, BT-An@Zetag dosage of 20 mg, and a pH of 3. The
sorptive capacity and the percentage of arsenic adsorption obviously improved as the
contact time was increased from 5 to 150 min, with the maximum adsorption capacity
reaching 26.361 mg/g. The composition of the sorbent and the available surface sites
had a significant impact on the time it took to reach equilibrium (which was120 min for
BT-An@Zetag). Firstly, there may be more vacant active sites available for adsorption,
however, as adsorption time passed [62], the repulsive forces between adsorbate molecules
and the solid phase increased, making residual free surface sites difficult to occupy and the
adsorption affinity decrease. The equilibrium times for 11.175 mg/L and 44.703 mg/L are
0.5 and 3 h, respectively.
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2.3. Kinetics and Mechanism of the Adsorption Process

The estimated parameters of the preliminary kinetic models are summarized in Table 2.
In comparison to the pseudo-second-order model, the qcal value produced from the pseudo-
second-order model (Figure 5b) was close to the value of qexp (Figure 5a). Thus, the pseudo-
second-order model best fits the kinetic sorption mode, highlighting that the adsorption
of As(V) onto the BT-An@Zetag composite is advantageous. Furthermore, it is assumed
that the rate of metal ion uptake is dependent on the number of active sites on the sorbent
surface. The rapid adsorption rate (h) reveals that a significant number of arsenic ions
accessed the sorbent surface in a short amount of time.

Table 2. Kinetic model adsorption variables for the adsorption of As(V) on the BT-An@Zetag composite.

Kinetic Model Parameter Value

Pseudo-first-order

qe,cal(mg/g) 38.65

qe,exp (mg/g) 26.2

K1 (min−1) 0.026

R2 0.925

Pseudo-second-order

qe,cal(mg/g) 38.65

qe,exp (mg/g) 41.66

R2 0.940

Elovich model

α (mg/g min) 0.135

β (mg/g) 34.293

R2 0.907

The Elovich model was used to assess the likelihood that different forces are relevantto the
adsorption of As(V) from the system [39]. In this model, the greater constant value is related
to the extension of surface coverage, indicating that the BT-An@Zetag adsorbent has a larger
surface area (Table 2). The lower value of the constant, which is related to the chemisorption
rate, suggests that more than one mechanism was involved in the uptake of arsenate.

The intraparticle diffusion was employed to investigate the adsorption process of
As(V). The many stages of the intraparticle-diffusion model for As adsorption are clearly
depicted in Figure 6a. Additionally, the adsorption achievement was not constant over the
entire time range, indicating that the adsorption process is governed by several phenomena.
The multilinear plot did not pass through the origin, implying that As(V) adsorption’s
process is complex, with both intra-particle diffusion (i.e., boundary-layer diffusion) and
surface adsorption contributing to the rate limiting step.
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The minor value of Kp1 (the slope of the first steeper stage) than the anticipated
value of Kp2 (the slope of the second linear section) supports this finding, as do other
authors [25]. Additionally, as demonstrated in Table 2 and Figure 6a, the intercept values
are proportional to the depth of the border layer.

Additionally, the distinction between film and particle diffusion mechanisms is clearly
shown by Boyd linear plot (Figure 6b). If the straight line passes through the origin, the
adsorption rate is determined by particle diffusion; if not, it is regulated by film diffusion.
Film diffusion is clearly revealed in the Boyd plots as the regulating mechanism. Other
researchers [29] have observed similar investigations.

2.4. Thermodynamic Study

The mechanism of As(V) adsorption onto the constructed BT-An@Zetag composite
was studied at temperatures ranging from 288 to 318 K, as illustrated in Figure 6b. The
adsorption capacity decreased from 28.315 to 18.875 mg/g, suggesting that more energy
was necessary to defeat the activation-barrier between the solid/liquid interfaces and allow
more AsO4

−1 ions to penetrate the BT-An@Zetag adsorbent. The decrease in adsorption
ability could be attributed to a decrease in the potential of attraction between the adsorbate
and the adsorbent, reflecting an endothermic mechanism. For the spontaneity of the adsorp-
tion phase, the thermodynamic parameters studied from the slope and intercept of the plot
of lnKD vs. 1/T shown in Figure 7b can be evaluated; Table 3. The positive enthalpy value
(36.864 kJ/mol) revealed that chemisorption is As(V) adsorption, which is endothermic and
advantageous at low temperatures. This result confirmed that the fundamental response
between As(V) and BT-An@Zetag composites is complex and dominated by electrostatic
interactions [25,39], (i.e., concurrent physical and chemical reactions). Furthermore, the
negative entropy value (−107.53 J/mol K) during the adsorption of As(V) ions onto the
BT-An@Zetag composite in an aqueous solution shows unpredictability at the liquid/solid
mediator [41]. The positive value of G ranging from 67.934 to 71.058 kJ/mol) at the tem-
perature range studied, on the other hand, confirms the likelihood of a non-spontaneous
adsorption response.
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Table 3. Thermodynamic parameters of the adsorption process based on the Van’t Hoff plot.

Parameter ∆H (KJ/mole) ∆S (J/mol K) ∆G (KJ/mole)

36.864 −107.53 67.934 to 71.058

2.5. Isotherm’s Modeling

Table 4 lists the isotherm parameters that have derived from visualizing the three
isotherm models shown in Figure 7a–c. The Langmuir isotherm is shown in Figure 7a.
The Freundlich isotherm (Figure 7b) best described the absorption of As(V) onto BT-
An@Zetag surface (R2 = 0.997), implying a monolayer adsorption with heterogeneous
adsorption energy. Furthermore, the low value of KL and high value of qmax (38.65 mg/g)
indicate that the fabricated BT-An@Zetag composite has a considerable sensitivity for As(V).
Additionally, the computed RL value was less than 1, whereas the 1/n value calculated
from the slope of the Freundlich model (Figure 7b) was greater than 1, indicating that
As(V) adsorption was advantageous. Furthermore, the larger positive value of BT obtained
from the Temkin plot indicated a greater sorbent/sorbate interaction (Figure 7c). In this
investigation, the maximum monolayer uptake capacity of As(V) was compared to that of
other adsorbents in the literature, with the findings reported in Table 5.

Table 4. Isotherms’ model parameters for the As(V) adsorption on BT-An@Zetag composite.

Langmuir Freundlich Temkin

qmax
(mg/g) KL (L/mg) R2 RL kf (mg/g) 1/n R2 BT (J/mol) KT (L/mg) R2

38.65 0.606 0.978 0.367 2.535 0.7502 0.997 12.96 0.093 0.839

Table 5. Comparison of the maximum adsorption capacity of As(V) for adsorbents from selected
studies with the BT-An@Zetag composite.

Adsorbent qmax (mg/g) Reference

Mesoporous alumina 36.6 [24]

NdFeO3 126.58 [59]

Granular activated alumina 15.9 [18]

Porous hematite 5.67 [36]

Iron-Based Adsorbent 7.0 [37]

Modified biochar 56.06 [60]

Magnesium ferrites 45.52 [61]

Fe–Mn modifed biochar 8.25 [62]

BT-An@Zetag 38.65 This study

2.6. Evaluation of Adsorbent Reusability

The ability of sorbent materials to be rejuvenated and reprocessed multiple times is a
critical economic aspect because it determines the cost of production. The immediate attrac-
tion between the metal ions and the adsorbent surface was recovered by regenerating the
arsenic-adsorbed composite in this study. After four consecutive cycles, the BT-An@Zetag
composite adsorbent retained a high uptake affinity, as shown in Figure 8, with As(V)
removal (percent) still above 70 percent. The results show that the synthesized composite
is a good As(V) adsorbent that is also recyclable.
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2.7. Adsorption Mechanism

The adsorption mechanism of As(V) on the BT-An@Zetag composite was shown in
Figure 9. The electrostatic forces between the negatively charged As(V) species and the
multi-functional groups of the composite, and the surface complexation with carboxyl and
hydroxyl groups were discovered, and thus, the uptake mechanism of As(V) was reduced
by the adjacent electron donor groups. During the adsorption process, the As(V) was
converted to less harmful As (III) ions by the interaction between the negatively charged
carboxyl groups of the BT-An@Zetag and the arsenic ions. Furthermore, by an ion exchange
mechanism, the As(V) metal ions can be adsorbed by the Si-O group [63].
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Electrostatic attraction was observed between positively charged adsorbent surfaces
and negatively charged arsenate species, indicating that electrostatic forces may have
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played a role in the adsorption process. Metal ions and surface groups interact to absorb
BT-An@Zetag particles and metal ions, according to the theory of surface chemistry.

Due to the exterior surface of the BT-high An@Zetag’s protonation at (pH 2.0–4.0),
there are many attraction forces between (arsenate) species and functionalized groups of
the material. One such force is electrostatic attraction, where the arsenate species and the
protonated Si-OH+ of the BT-An@Zetag adsorbent showed the highest uptake percentages.

3. Materials and Methods
3.1. Materials

Natural Bentonite (BT) from the Egyptian bentonite clay quarries at the Egyptian
Western Desert is used. Anthracite was supplied by Egypt’s Matrouh Water and Wastewater
Company (An), which was characterized by El-Aassar et al. [25]. Polyelectrolyte Zetag
used in this study is the commercial name and was obtained from dental waste, while
sodium arsenate (Na3AsO3.7H2O) was obtained from Sigma-Aldrich, USA, at a purity
of 99.5 percent. The stock solution (1000 mg/L) of As(V) was prepared by dissolving a
specified weight of Na3AsO3.7H2O in deionized water. Sodium hydroxide (NaOH), and
Hydrochloric acid (HCl) (37%) of analytical grade were obtained from El-Nasr Company,
Egypt. All compounds used in this investigation were used exactly as they were supplied.

3.2. Preparation of Bentonite/Anthracite/Zetag (BT-An@Zetag) Composite

After just being dried at 90 ◦C for 48 h, 5 g of bentonite (BT) and 1 g of anthracite were
carefully crushed and sieved below 100 microns. The obtained composite material was
then softly crushed and sieved below 63 microns and classed as BT-An composite after
being mixed with 0.5 g of Zetag, which was dissolved in 5 mL of distilled water and dried
at 90 ◦C for 48 h.

3.3. Adsorbent Characterization

BT-An@Zetag composite samples were analyzed using an X-ray diffractometer (Shi-
madzu XRD-7000, Tokyo, Japan with an X-ray wavelength Cu detector). Scanning electron
microscopy was used to analyze the morphological topographies of BT-An@Zetag compos-
ites (SEM, JEOL JSM-6610 LV, Tokyo, Japan). Thermal gravimetric analysis (TGA-51 Shi-
madzu, Tokyo, Japan) and DSC were used to assess thermal changes across a temperature
range of 25–600 ◦C (Shimadzu DSC-60 Plus, Tokyo, Japan). Raman spectrometer (Shimadzu
IR–Tracer 100 Fourier Transform Infrared Spectrophotometer, Tokyo, Japan) was used to
determine the Raman spectra of the BT-An@Zetag composite (HOUND UNCHAINED
LABS spectrometer, Berlin, Germany). A NOVA 4200e was used to evaluate the nitrogen
adsorption–desorption isotherms at 77 K (Quantachrome Instruments, Boynton Beach, FL,
USA). The Brunauer–Emmett–Teller (BET) equation and the specific surface area were used
to further investigate surface area and pore size.Also, Pore size distributions were also cal-
culated using the Barrett–Joyner–Halenda (BJH) methods. Initial and final concentrations
of arsenate were analyzed using Triple Quadrupole Inductively Coupled Plasma Mass
Spectrometry (TQ-ICP-MS), Thermo Fishers scientific (Waltham, MA, USA).

3.4. Batch Experiments

The batch system was used to optimize the adsorption process of As(V) onto BT-
An@Zetag composite surfaces to determine the best adsorption conditions. The effects of
adsorbent dose (5–55 mg/L), solution pH (2–9) adjusted with HCl and NaOH, agitation rate
(50–250 rpm), and temperature (25–45 ◦C) at different residence times were investigated
using different initial As concentrations (5–60) mg/L prepared by diluting a stock solution
of As(V) of 1000 mg/L (5–150 min). A digital shaker (ELMI/Europe—Model: DOS-20L)
was used to agitate similar weights of the composite (20 mg) with 50 mL of As(V) solution
for 120 min at constant temperature (25 ◦C) in a typical equilibrium experiment. The adsor-
bate/adsorbent mixture was separated for 30 min at 10,000 rpm using a centrifuge (Hettich,
EBA 200 S, Hettich, Germany). The residual As(V) content was measured using an ICP
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(Model DR6000, HACH/Germany). Triplicate experiments were used to determine the re-
moval efficiency (R%) and adsorption capacity (qe, mg/g) following Equations (1) and (2),
respectively [25,28]:

R% =
C0 − Ce

C0
× 100 (1)

qe =
(C0 − Ce)V

W
(2)

where C0 and Ce are the As(V) initial and equilibrium concentrations (mg/L), respectively.
R is the removal percentage, qe is the adsorption capacity, V is the As(V) volume (L), and
W is the adsorbent weight (g).

3.5. Kinetics, Isotherms, and Thermodynamics

To study the adsorption paths, mechanisms, and rates, four kinetic models were used
for experimental data fitting (e.g., pseudo-first-order, pseudo-second-order, Elovich, and
intraparticle-diffusion, Equations (3)–(6), respectively) [25,39]:

ln
(
qe − qt

)
= ln qe − k1t (3)

t
qt

=
1

k2q2
e
+

t
qe

(4)

qt = β ln(αβ) + β ln t (5)

qt = Kpt0.5 + C (6)

where qe and qt (g/g) are the equilibrium and time adsorption capacities, respectively. The
constant rate parameters are represented by k1 (min−1) and k2 (g/gmin) and are related
to the pseudo-first-order and pseudo-second-order models, respectively. The number of
possible active sites (g/g) is equal to the adsorption extent (g/g min). The rate constant
(g/g min) and intercept are Kp (g/g min) and C, respectively. The adsorbed solute fraction
of time t is F = qt/qe.

Isothermal models were used to examine the adsorption isotherm to demonstrate the
interaction between As(V) and the fabricated BT-An@Zetag composite [40]. To illustrate
the adsorption equilibrium data, the Langmuir, Freundlich, and Temkin isotherm models,
Equations (7)–(9), were fitted and studied.

Ce

qe
=

1
qmaxKL

+
Ce

qmax
(7)

ln qe = ln KF +
1
n

ln Ce (8)

qe = BT ln KT + BTlnCe (9)

The qmax (g/g) and KL (L/g) represent the saturated adsorption capacity and the
Langmuir isotherm constant, respectively. The adsorption capacity is represented by KF,
while the adsorption intensity is represented by 1/n. The heat of adsorption (J/mol) is
represented by B, while the maximum binding energy (L/g) is represented by KT. The
adsorption favorability could be described using the dimensionless separation factor (RL,
see Equation (10) [28,41]:

RL =
1

1 + KLC0
(10)

The interior energy change that transpires in the adsorption of As(V) ion using the
fabricated adsorbent, as well as spontaneity, and reaction paths were investigated using
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the thermodynamic parameters (e.g., Gibbs free energy (G), entropy (S), and enthalpy (H),
expressed by Equations (11) and (12) [38].

ln KD = −∆H
RT

+
∆S
R

(11)

∆G = ∆H − T∆S (12)

3.6. Reusability Test

The manufactured BT-An@Zetag composite was tested for reusability by soaking it in 1 M
HNO3 for 6 h where the number of cycles in the adsorption–desorption process wascounted.

4. Conclusions

The propertyof the manufactured BT-An@Zetag composite for the adsorption of As(V)
from the aqueous solution was demonstrated in this investigation. Various characterization
technologies were used to thoroughly characterize the produced adsorbent. Solution
pH, contact time, adsorbent dosage, agitation rate, initial metal ion concentration, and
temperature were all evaluated and optimized as factors impacting As(V) absorption. The
isotherm results revealed that As(V) is adsorbed on BT-An@Zetag as a monolayer where the
maximum capacity of adsorption is38.8 mg/g at pH 3. The kinetics results also showed that
the pseudo-second-order model adequately described the adsorption process. More than
one mechanism was implicated in the adsorption of arsenic onto BT-An@Zetag, according
to the Bedsides, Elovich, and intraparticle diffusion. The thermodynamic parameters such
as ∆H and ∆G indicate that chemical, endothermic, and entry-driven adsorption is the
most likely mechanism. Furthermore, the regeneration and reusability studies revealed that
even after four cycles, the BT-An@Zetag adsorbent maintained good adsorption behavior.
As a result, the BT-An@Zetag composite might be employed for the effective removal of
As(V) from wastewater as well as being reusable.
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