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Abstract: High mobility group box 1 (HMGB1) is a nuclear protein that can interact with a receptor
for advanced glycation end-products (RAGE; a multi-ligand immunoglobulin receptor) and mediates
the inflammatory pathways that lead to various pathological conditions, such as cancer, diabetes,
neurodegenerative disorders, and cardiovascular diseases. Blocking the HMGB1/RAGE axis could be
an effective therapeutic approach to treat these inflammatory conditions, which has been successfully
employed by various research groups recently. In this article, we critically review the structural
insights and functional mechanism of HMGB1 and RAGE to mediate inflammatory processes. More
importantly, current perspectives of recent therapeutic approaches utilized to inhibit the commu-
nication between HMGB1 and RAGE using small molecules are also summarized along with their
clinical progression to treat various inflammatory disorders. Encouraging results are reported by
investigators focusing on HMGB1/RAGE signaling leading to the identification of compounds that
could be useful in further clinical studies. We highlight the current gaps in our knowledge and future
directions for the therapeutic potential of targeting key molecules in HMGB1/RAGE signaling in the
pathophysiology of inflammatory diseases.
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1. Introduction

High mobility group box 1 (HMGB1) is a chromatin-binding nuclear protein that
binds to DNA and regulates various transcription factors such as NF-κB and glucocorticoid
receptors [1,2]. Its excessive amount in extracellular space can cause cellular or tissue
injury and organ dysfunction leading to various pathological conditions [3–7]. HMGB1
is a family of three nuclear proteins in mammals consisting of HMGB1, HMGB2, and
HMGB3 [7,8]. HMGB1 was first discovered 45 years ago as a non-histone chromatin-
based protein having electrophoretic mobility [9]. HMGB1 is expressed in almost all
eukaryotic cells and is involved in the maintenance and regulation of cellular structure,
gene transcription, and transcriptional factors [10,11]. Its conserved form has several
biological functions inside as well as outside of the cell. Intracellularly, when translocated
to the cytoplasm, it can intervene in autophagy. Similarly, inside the nucleus, it can strongly
interact with histone and DNA to regulate the process of transcription by determining
the chromatin structure [4]. Outside the cell, HMGB1 serves as an alarmin molecule, also
known as damage-associated molecular pattern (DAMP) [2]. Extracellularly, it has the
ability to interact with several molecules such as pathogen-associated molecular patterns
(PAMPs), cytokines, and chemokines [2].

Structurally, HMGB1 is a protein of 29 kDa consisting of 215 amino acids having two
N-terminal DNA binding domains, viz., HMG box-A and HMG box-B, having 9–79 and
89–163 amino acids sequences, respectively (Figure 1). The third domain is a C-terminal
acidic tail that consists of a 186–215 amino acid sequence (Figure 1). The amino acids
of N- and C-terminal regions are basic and acidic in nature, respectively, and can exert
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their diverse functions upon binding with various factors [12]. The basic amino acids
containing boxes have the ability to bind with DNA and help in bending and distortion
of the double helix [13], while the acidic region (C-terminus) helps to regulate the DNA-
binding specificity of HMGB1 [14]. HMGB1 also has the ability to bind with distorted forms
of DNA, such as UV- and cisplatin-damaged DNA and cruciform DNA [15]. Therefore,
this protein was identified as a key participating factor in the nuclear events of DNA
recombination, replication, remodeling, and repair [16,17].
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Figure 1. (left) Structure of HMGB1 and various ligand binding domains (PDB: 1HME); (right) Structure
of full-length RAGE and various ligands that can bind to their respective binding domains (PDBs:
4LP5, 6VXG).

Extracellular HMGB1 can bind with the receptor for advanced glycation end products
(RAGE), toll-like receptors (TLRs), and thus, can mediate inflammation [18,19]. RAGE
is a 45–50 kDa multi-ligand transmembrane receptor consisting of three extracellular
immunoglobulin-like domains: First, the extracellular domain with 23–342 amino acid
residues; second is hydrophobic transmembrane domain with 343–363 amino acid residues;
and third, is an intracellular cytoplasmic domain with 404–464 residues (Figure 1) [20].
The extracellular region is further subdivided into three immunoglobulin-like domains:
Variable domain (V-domain) having 23–116 amino acid residues which is connected to two
constant domains C1 (residues 124–221) and C2 (residues 227–317) (Figure 1) [21]. Its VC1
domain provides the major contribution towards the interaction with the vast number of
ligands that can stimulate various pathological inflammatory pathways (Figures 1 and 2).
The overall mechanisms of the HMGB1 ligand binding with RAGE to overexpress the
inflammatory cytokines such as tumor necrosis factor (TNF-α) and interleukins (IL-6 and
IL-1β) are depicted in Figure 2. The detailed functional description of individual domains
of RAGE was recently described in our publication [22].

Besides the RAGE, HMGB1 also have the ability to interact with toll-like receptors
(TLR2/TLR4). There are many properties that have been found to regulate TLR signaling.
Numerous evidence support the direct crosstalk between RAGE ligands and TLRs. The
binding ability of HMGB1 is controlled by its various states [23]. Specifically, its redox
state with two cysteine residues (Cys23 and Cys45) is mainly responsible for showing the
interaction with TLR4 [23]. Mutations on these two specific amino acid residues lowers
the affinity of HMGB1 towards TLR4 as well as its complex with myeloid differentiation
factor-2 (MD2) [23]. It has been confirmed with surface plasmon resonance (SPR) that
its reduced form binds to the TLR4/MD2 complex with approximately 10-fold lower
affinity and can bind to MD2 individually with 100-fold lower affinity than its oxidized
form [24]. This crosstalk was also confirmed through ex vivo experiments. The exposure
of isolated mouse spleen cells to HMGB1 enhances cytokine excretion and was found
to be initiated through TLR2 or TLR4 compared to the cells not previously treated with
HMGB1 [25]. Similarly, HMGB1 was found in bone crush mixture and the exposure of
macrophages to this mixture resulted in the upregulation of caveolin-1 expression in a
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RAGE-dependent fashion, which, in turn, induced caveolae-mediated TLR4 internalization
and desensitization of macrophages [25]. Bone-marrow derived macrophages (BMDM)
produced very low levels of cytokines (TNF-α, IL-1β, and IL-6) in RAGE-deficient mice
compared to the wild-type BMDM following HMGB1 treatment [26]. This suggests that
RAGE is physically interacting with the TLRs to elicit various inflammatory functions.

2. Expression of HMGB1/RAGE and Their Biological Functions

In 1999, Wang et al. [27] reported that HMGB1 is an important extracellular mediator
for inflammatory processes. This protein is released in active and passive states from
the dendritic macrophagic cells and from necrotic cells, respectively, and is associated
with various pathological conditions (Figure 2) [27]. Post translational modifications
such as acetylation, methylation, phosphorylation, and oxidation generally induce the
active secretion of HMGB1, which is mediated through lysosomes [28], although, the exact
mechanism of its active secretion is still unclear; however, it is revealed that upon infection,
C5a engages with its receptor C5aR2 in macrophages that upregulates the expression of
HMGB1 and is secreted through intracellular signaling [29].

The expression of RAGE is constitutively high in lungs and skin cells throughout
life. However, its expression in vascular smooth muscle cells, endothelial cells, monocytes
and macrophages, neutrophils, and neurons is very low under physiological conditions.
Accumulation of AGEs or response to the inflammatory mediators increases RAGE expres-
sion [30–36]. Similarly, HMGB1 binding to RAGE stimulates distinct signaling molecules
such as NF-κB, p38, kinases such as ERK1/2 IRAK, cdc42, etc. [37] (Figure 2). Hori et al.
first reported that the amino acids of box-A (23–50), amino acids of box-B, and acidic
tail (150–183) of HMGB1 are primarily responsible for its binding with RAGE (Figure 1)
and thus activate these inflammatory signaling pathways and mediate several disease
conditions [38,39].
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Considering the role of HMGB1 and RAGE in various pathological conditions, it has
been demonstrated that blocking their mutual interactions represents a promising strategy
to regulate the inflammation associated with various disease conditions. In this article we
reviewed several recent approaches reported in the literature to inhibit HMGB1 based on
blocking the HMGB1/RAGE axis.

3. Molecules Targeting HMGB1/RAGE Axis in Various Inflammatory Diseases
3.1. Crocin

It is known that glucagon-like peptide-1 (GLP-1) has the ability to attenuate the
expression of HMGB1. In this instance, Tabaa et al. [40] checked the potential of GLP-
1 stimulator, i.e., crocin (a carotenoid chemical structure; Figure 3) against HMGB1 in
the treatment of cigarette smoking-induced cognitive impairments [40]. A rat model
was used for the evaluation of crocin, and expression of GLP-1, HMGB1, and other pro-
inflammatory markers in the hippocampus were determined by using ELISA, Western
blotting, and immunohistochemistry. Initially, cognitive functions were tested using a
Morris water maze (MWM), elevated plus maze (EPM), and passive avoidance methods.
The cognitive impairment was induced by using cigarette smoke exposure and treatment
with GLP-1 stimulator considerably decreased HMGB1 in cigarette smoke exposed rats.
With three weeks of treatment with 30 mg/kg of crocin, GLP-1 level was upregulated
in the rat hippocampus. The significant decrease in the level of HMGB1 and RAGE
was observed in crocin-treated rat hippocampus compared to control rats. Downstream
pro-inflammatory markers were further tested using immunohistochemistry and West-
ern blotting which were also significantly attenuated in crocin-treated rat hippocampal
tissues. These findings suggest the neuroprotective effect of crocin via suppressing the
HMGB1/RAGE axis [40].
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3.2. Berberine

For the treatment of sepsis-associated encephalopathy (SAE), Shi et al. [41] used
berberine (Figure 3) and claimed that this treatment can considerably ameliorate the
memory impairment in sepsis mice. The berberine treatment of mice significantly re-
duced the level of pro-inflammatory cytokines (TNF-α, IL-1α) in the hippocampus and
also showed neuroprotective effect. To evaluate the molecular mechanism, the bind-
ing of berberine with HMGB1 was analyzed using molecular docking studies, which
revealed that the berberine can strongly bind to HMGB1 with the dock score of −7.69.
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The upregulated HMGB1-induced TNF-α was also attenuated with the berberine treat-
ment, which was examined by employing in vitro method using microglia and astrocytes.
Further, to confirm that the berberine attenuates the downstream signaling through the
HMGB1/RAGE axis, a RAGE−/− knock out mice model was used to examine the effect
of berberine and it was found that berberine did not improve the cognitive impairment
in the RAGE−/− mice, suggesting the inhibitory effect of berberine specifically via the
HMGB1/RAGE axis [41].

3.3. FPS-ZM1 and Adriamycin

Lai et al. [42] reported that the interaction of HMGB1 with RAGE upregulates au-
tophagy in the treatment of acute leukemia and develops resistance against its treatment.
To abort these interactions, they used Adriamycin, also known as doxorubicin, (to in-
hibit HMGB1) and FPS-ZM1 (to inhibit RAGE) (Figure 3) in leukemia cells and checked
the expression of HMGB1 and RAGE using Western blotting. Adriamycin upregulated
the apoptosis of leukemic cells in a dose-dependent manner and at higher concentra-
tion (0.4 µM) the level of HMGB1 significantly decreased. RAGE expression was also
significantly decreased with the treatment with FPS-ZM1 [42].

3.4. Curcumin

Similarly, Han et al. [43] also reported the potential of curcumin (Figure 3) to treat
the cognitive impairment in a transgenic mice model claiming the possibility of inhibit-
ing the HMGB1/RAGE inflammatory pathway [43]. For the evaluation of curcumin,
they used APP/PS1 transgenic mice for the diseased group, and wild type (WT) mice as
the control. The curcumin diet of 100 mg/kg/d was provided to the mice in the treat-
ment group for five months and was started at the age of four months and memory
function was determined using a Morris water maze (MWM) test and Y-maze model.
Curcumin-treated groups of mice exhibited improvement in their learning and memory
performance, which was based on the decreased escape latency time. After evaluating
memory functions, the brains of these mice were isolated to investigate the inflammatory
signaling pathway to understand the mechanism of action of curcumin. The protein ex-
pression of HMGB1, RAGE, TLR4, and NF-κB was examined by Western blotting. The
expression of all these proteins was significantly increased in the hippocampus of the
diseased mice (APP/PS1 mice) compared to WT. It is noteworthy that curcumin did not
affect the plaque load in the hippocampus of the transgenic mice suggesting the possible
mechanism of curcumin to show neuroprotection specifically through the HMGB1/RAGE
inflammatory pathway [43].

3.5. Glycyrrhizin & Pentoxifylline

Glycyrrhizin has been found to be the positive binder of HMGB1 that can inhibit the
interactions of HMGB1 to RAGE to further block the inflammatory pathway [44]. In this
regard, Okuma et al. [45], in 2014, evaluated the potential of glycyrrhizin (Figure 3) to treat
traumatic brain injury using the fluid percussion-induced injury rat model. Initially, the
rotarod apparatus was used to access the motor function in rats which was performed
at 3, 6, and 24 h after brain injury. The results revealed the dose-dependent effect of
glycyrrhizin (Figure 3) on coordinated motor activity and the walking time period was
significantly increased compared to vehicle-treated and diseased rats. Rat brain tissues
were isolated to determine the protein and mRNA expression of HMGB1 and RAGE with
the treatment of glycyrrhizin. Intravenous administration of 4 mg/kg of glycyrrhizin
considerably decreased the translocation of HMGB1 in neuronal cells and maintained
their activity. The plasma level of HMGB1 was also decreased in animals treated with
4 mg/kg of glycyrrhizin compared to vehicle control animals. Similarly, treatment with
glycyrrhizin significantly decreased the mRNA transcripts of pro-inflammatory cytokines
(TNF-α, IL-1β, and IL-6). To examine if the neuroprotective effect of glycyrrhizin works
specifically through the HMGB1/RAGE axis, its effect was examined in RAGE−/− knock-out
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mice. Mice treated with 4 mg/kg of glycyrrhizin did not produce any inhibitory effect
suggesting that glycyrrhizin specifically affects the HMGB1/RAGE pathway to improve
the neuro-inflammatory condition [45]. The hemorheological agent pentoxifylline (Figure 3)
also showed its anti-epileptic effect through HMGB1/RAGE axis [46].

3.6. Dexmedetomidine

Very recently, the potential of dexmedetomidine (Figure 4) to act through the
HMGB1/RAGE axis was also identified [47]. For the treatment of acute lung injury (ALI)
they evaluated the effect of dexmedetomidine using in vitro as well as in vivo methods. In
the in vitro method, the MLE-12 cells (mouse lung type II epithelial cell line) were treated
with lipopolysaccharide (LPS) and in the in vivo model the cecal ligation perforation (CLP)
stimulated ALI mice model was used. After inducing the injury in the treatment and
control mice groups, protein and genetic expression levels of HMGB1, RAGE, and NF-
κB were examined using Western blot analysis and qRT-PCR, respectively. Hematoxylin
and eosin staining was also done to check the tissue injury. Lung tissue collected from
the dexmedetomidine (10 µg/kg i.p.)-treated mice showed that its treatment significantly
attenuated lung tissue damage. Genetic and protein expression was also significantly
decreased in the treatment groups. Moreover, cellular studies with MLE-12 cells revealed
that dexmedetomidine (Figure 4) treatment significantly suppressed HMGB1 translocation
from the nucleus to the cytoplasm, and this effect was reversed by RAGE overexpression.
Therefore, dexmedetomidine could be considered as an effective treatment option for the
ALI which acts through suppressing the HMGB1/RAGE pathway [47].
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3.7. Ketamine

In 2018, Zhang et al. [48] proposed a new molecular mechanism of ketamine (a known
anesthetic compound; Figure 4) to treat ALI and proposed that it blocks the HMGB1/RAGE
signaling pathway. To confirm this, they used an LPS-induced ALI male Wistar rat model
in which animals were injected with 10 mg/kg of LPS through their femoral veins. Blood
gas analysis was performed to check the arterial blood oxygen partial pressure and pH, and
compared between the control and 50 mg/kg ketamine (injected through femoral vein)-
treated animal groups. With the treatment with ketamine, the partial pressure of arterial
oxygen and pH were significantly increased, which were decreased in the LPS-induced
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ALI animals. Lung tissues were collected from the control and ketamine (Figure 4)-treated
animals to access the protein and mRNA expression of HMGB1 and RAGE using rt-PCR
and Western blotting, respectively, to check whether ketamine could act through the
HMGB1/RAGE axis or not. Significant reduction was found in both the protein and mRNA
expression in the tissues collected from ketamine-treated rats compared to the LPS-treated
rats, which supports the action of ketamine to block the HMGB1/RAGE signaling pathway
to treat ALI in rats [48]. This study corroborated the previous findings of Li et al. [49],
which also suggested the potential effect of ketamine acting through HMGB1/RAGE axis
to treat sepsis-induced ALI.

3.8. Epigallocatechin-3-Gallate

Treatment with (−)-epigallocatechin-3-gallate (EGCG: most abundant constituent
of green tea; Figure 4) has the ability to inhibit osteoclast differentiation, however the
exact mechanism of action is unknown. Recently, in 2020, Nishioku et al. [50] reported
various potential mechanisms of action of EGCG amongst which HMGB1/RAGE is the one
through which the inflammatory condition can be treated. They found that the extracellular
release of the HMGB1 was significantly decreased with the treatment with EGCG, which
was determined by using Western blotting analysis in cell lysates of osteoclast precursor
cells isolated from the bone marrow of femora and tibiae of C57BL/6N mice [51]. The
protein expression of RAGE was also significantly decreased with the treatment of EGCG.
Therefore, the study claimed the potential of EGCG to reduce the bone-resorbing activity
of osteoclasts acting through the HMGB1/RAGE pathway [50].

3.9. Telmisartan, Irbesartan and Candesartan

There is a well-established literature related to the sartan compounds such as telmis-
artan, irbesartan, and candesartan (Figure 4) suggesting their role in treating various
inflammatory conditions associated with cardiovascular diseases via the HMGB1/RAGE
axis [52]. The use of the drug molecules proved to be efficacious in the prevention and
acute treatment of stroke, reducing RAGE expression, thus inhibiting the HMGB1/RAGE
axis in stroke conditions [52].

4. Anti-Inflammatory Effect of HMGB1/RAGE Axis

Besides the role of the HMGB1/RAGE axis in inflammatory diseases, several molecules
can also switch their pro-inflammatory action to anti-inflammatory functions. This could reg-
ulate the immune tolerance by initiating the release of anti-inflammatory macrophages [53].
RAGE could perform various functions interacting through various membranous receptors,
which led to exerting tolerogenic functions at the HMGB1/RAGE axis. Recent stud-
ies revealed that HMGB1 can promote leukotriene production that induces TRAF5 in a
RAGE-dependent manner, and excretes pro-resolving mediators (SPMs), which act as
anti-inflammatory mediators [53–55]. This suggests that RAGE could not only facilitate
inflammation but also has an anti-inflammatory effect. However, the investigation of the im-
mune homeostasis regulating the role of RAGE in various conditions is warranted. Further
studies are required to determine the environmental factors that lead to the inflammatory
as well as anti-inflammatory function of the HMGB1/RAGE axis.

5. Conclusions and Future Directions

In the past two decades, HMGB1 and RAGE are the well-characterized therapeutic
targets for inflammatory diseases. The unique feature of these molecules is that they
operate in opposite directions in alarming conditions, such as chronic inflammation. The
extracellular secretion of HMGB1 mediates the inflammatory response upon binding with
RAGE, thus activating the release of pro-inflammatory cytokines such as TNF-α, IL-6, and
IL-1β through NF-κB signaling pathways.

A number of approaches have been proposed to block the HMGB1/RAGE axis to
treat inflammatory diseases such as Alzheimer’s disease, ALI, cardiovascular diseases,
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osteoarthritis, and others. Several strategies utilized small molecules that directly and
efficiently interact with HMGB1 or RAGE and some of them act as competitive antagonists,
for example, glycyrrhizin, curcumin, berberine and FPS-ZM1.

The most studied small molecule inhibitors of HMGB1/RAGE axis are glycyrrhizin
and FPS-ZM1. Glycyrrhizin is a natural triterpene glycosidic compound that has been
widely investigated in various HMGB1/RAGE-mediated diseases that confirm the inhi-
bition of the extracellular HMGB1 cytokine effect in animal models. FPS-ZM1 is a small
molecule that is a specific inhibitor of RAGE that further blocks the interactions of various
RAGE ligands including HMGB1 and has thus far been tested in the treatment of various
inflammatory conditions in animal models. Despite these studies, literature still lacks
the clinical data involving the interface of the HMGB1/RAGE axis, which may be due
to the lack of specific knowledge of the complex inflammatory signaling system. There-
fore, it is critical to analyze various structural and biological features associated with
the HMGB1/RAGE axis to block the interactions in order to develop new and specific
therapeutics through various drug designing approaches.

One limitation of this compilation is that, despite the potential targets of the HMGB1/RAGE
axis in various inflammatory diseases, other pathways are also involved in the patho-
physiology of the diseases. For example, in neuroinflammatory diseases such as
Alzheimer’s disease (AD), β-amyloid aggregation and cholinesterases are also the signif-
icant cause. In this article, the role of these targets including cyclooxygenases, lipoxy-
genases, reactive oxygen species, S100 proteins, β-amyloid, etc. and their inhibitors are
not discussed.
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