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Abstract: This paper analyzes the properties of composite particleboards made from a mix of giant
reed with gypsum plaster and starch as binders. Experimental boards were manufactured with
a 10:2 weight ratio of giant reed/gypsum plaster particles and different amounts of starch. Giant
reed particles used were ≤0.25 mm. The mix was pressed at a temperature of 110 ◦C with a pressure
of 2.6 MPa for 1, 2, and 3 h. The results showed that the boards manufactured with longer times in
the press and with 10 wt.% starch achieved the best physical and mechanical properties, obtaining
a modulus of rupture (MOR) of 17.5 N/mm2, a modulus of elasticity (MOE) of 3196 N/mm2, and
an internal bounding strength (IB) of 0.62 N/mm2. Thickness swelling (TS) at 24 h of the panels was
reduced from 36.16% to 28.37% when 10 wt.% starch was added. These results showed that giant
reed–gypsum–starch particleboards can be manufactured with physical and mechanical properties
that comply with European standards for use in building construction.
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1. Introduction

The world is facing a shortage of wood as a row material. In the last 30 years, forest
area decreased from 32.5% to 30.8% of the total land, representing a net loss of 178 million
hectares [1], and it is forecasted that, by 2030, there will be a deficit of 300 million m3. The
use of wood is only expected to increase by 30% in the energy sector within this decade [2].
The scarcity of wood has a negative influence on the performance and the quality of the
commercial boards. In this present situation, the construction and furniture industries must
find a reliable substitute to traditional wood.

The most common wood board on the market is particleboard, which is obtained
by binding wood particles with an adhesive, usually urea–formaldehyde (UF). In the
construction sector, several types of particleboards include gypsum plaster as an inorganic
glue (gypsum plasterboard—GPB). These panels have the advantages of no formaldehyde
emission, combustion blocking off, and less loss of heat exchange [3]. However, they
also have low mechanical properties, resistance to withdrawal of screws, hardness, and
dimensional stability in response to changes in humidity.

In order to reduce the use of wood and replace it with other lignocellulosic materials in
GPB, several investigations have been focused on using agricultural residues: banana fiber
and rice straw [4], paper cellulose and abacá fiber [5,6], bagasse [7], jute and cabuya [8],
sisal [9], recycled cellulose [10], and bagasse with natural rubber [11]. However, in general,
these panels have low mechanical behavior and need to be reinforced with cement [12–16].

Currently, gypsum boards have a high market share since they are commonly used in
the finishing of interior walls and ceilings. GPB made from agricultural residues is more
environmentally friendly and could replace traditional gypsum boards. It is, however,
necessary to improve their quality by making them more resistant and durable.
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Giant reed (Arundo donax L.) is one of the largest types of grass growing in the Mediter-
ranean region; it is a wild plant that grows annually, reaching average heights of 4 m and
a mean thickness of 4 cm. It was used in building construction in many Mediterranean
countries; however, it is today in disuse and has been replaced by different types of wood.
Currently, reeds grow unchecked and at a great rate. When reeds colonize riverbanks,
the riverside vegetation is impoverished, and infrastructures that cross watercourses are
blocked, making drainage difficult. When the water level rises more than usual, this leads
to flooding that causes environmental, economic, and material damage. These problems
force the competent authorities to make significant economic investments in cleaning and
clearing this plant waste [17]. Some investigations focused on valorizing giant reed with
different adhesives such as cement [18], UF [19], citric acid [20], and starch [21].

Starch is a macroconstituent of many foods, being one of the most important plant
products [22]. With a production of approximately 60 million tons, 60% is used in food and
40% is used in nonfood industries [23] as an additive in cement, paper, gypsum, adhesives,
bioplastics, composites, etc. [24]. Due to their nature, starches have great potential as
substitutes for synthetic polymeric materials for environmental purposes. In particleboards,
they are used as a substitute for binders such as UF, phenol–formaldehyde (PF), and other
petroleum derivatives.

The aim of the present research was to study the manufacturability of particleboards
made from giant reed (Arundo donax L.) with gypsum plaster and starch following a method
based on the wood industry dry process but with variations (no pretreatments, different
parameters at the hot press, and adhesives) so that it can be produced in the particleboard
industry and, therefore, counteract the high dependence on wood imports using an easily
renewable resource such as giant reed. By controlling this reed, a more sustainable and
formaldehyde-free particleboard can be obtained, which would reduce pressure on forest
resources and create new job opportunities.

2. Materials and Methods
2.1. Materials

The materials used in the manufacturing of the particleboards were giant reed (Arundo
donax L.), calcium sulfate hemihydrate (gypsum plaster), and different amounts of potato
starch (Solanum Tuberosum L.).

Giant reed biomass was provided by the authorities in charge of clearing the banks of
the Segura river, in southeast Spain. Reeds were cleaned from impurities and left outside
for 12 months for air-drying (Figure 1). They were then cut and shredded in a blade
mill. In order to obtain the particles, a vibrating sieve was used, and only those which
passed through the 0.25 mm sieve were selected. Reed particles had a moisture content
approximately of 8 wt.% and an apparent density of 537 ± 38 kg/m3. Particles were kept in
ambient laboratory conditions with an average temperature of 20 ◦C and an approximate
ambient humidity of 65%.

Commercial gypsum plaster (CaSO4 · 1
2 H2O) without any additives with an apparent

density of 2330 ± 20 kg/m3 was mixed with the giant reed. Potato starch from the
food industry with a purity of 90% and a bulk density of 320 ± 15 kg/m3 was added
to the gypsum and giant reed. This starch is a mixture of amylose and amylopectin (both
polysaccharides), and it typically contains large oval granules and gels at a temperature of
58–65 ◦C.
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2.2. Methods 
2.2.1. Board Manufacture 

The method followed was based on the wood industry dry process but with varia-
tions (no pretreatments and different parameters at the hot press). 

The experimental boards were manufactured with a 100:20 proportion by weight of 
giant reed/gypsum, adding different amounts of starch (0, 5, and 10 wt.%). Figure 2 shows 
the raw materials of a panel type 20:10. 

 

Figure 1. Giant reed left outside for 12 months for air drying.

2.2. Methods
2.2.1. Board Manufacture

The method followed was based on the wood industry dry process but with variations
(no pretreatments and different parameters at the hot press).

The experimental boards were manufactured with a 100:20 proportion by weight of
giant reed/gypsum, adding different amounts of starch (0, 5, and 10 wt.%). Figure 2 shows
the raw materials of a panel type 20:10.
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First, particles of giant reed, starch, and gypsum were dry-mixed. Then, 10% water
was sprayed in relation to the weight of the giant reed particles in a laboratory glue blender
mixer with rotating blades and a volumetric capacity of 100 dm3 (model LGB100, IMAL
S.R.L, Modena, Italy).

Afterward, the mat was formed manually in a mold with dimensions of 400 × 600 mm
(Figure 3). Then, it was hot-pressed with the following processing parameters: 110 ◦C
pressing temperature, 2.6 MPa pressing pressure, and three different pressing times
(1, 2, and 3 h).
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Figure 3. Mat formed manually to manufacture the particleboards.

Particleboards were single-layered with an approximately thickness of 7 mm. Charac-
teristics of the panels are shown in Table 1.

Table 1. Characteristics of the experimental panels.

Panel Type Ratio Giant Reed/Gypsum
Plaster/H2O in Weight

Ratio Giant
Reed/Starch in Weight Particle Size (mm) Time (h) Temperature (◦C)

20:0
100:20:10

100:0
<0.25 1, 2, and 3 11020:5 100:5

20:10 100:10

For each panel type and time, four replicates were made. Therefore, 36 particleboards
were manufactured in total.

2.2.2. Experimental Tests

The method followed was experimental. The tests were conducted in the Materials
Laboratory of the Higher Technical College of Orihuela at the Miguel Hernández University
of Elche.

In order to characterize the mechanical, physical, and thermal properties of each of
the boards being studied, samples (Figure 4) were cut to the appropriate dimensions to
carry out the tests [25] and to determine their values according to the European standards
established for wood particleboards [26]. Tests performed were as follows: density [27],
thickness swelling (TS) and water absorption (WA) after 2 and 24 h immersed in water [28],
internal bonding strength (IB) [29], modulus of elasticity (MOE) and modulus of rupture
(MOR) [30], and thermal conductivity [31].



Molecules 2022, 27, 7305 5 of 11

Molecules 2022, 27, x FOR PEER REVIEW 5 of 11 
 

 

[28], internal bonding strength (IB) [29], modulus of elasticity (MOE) and modulus of rup-
ture (MOR) [30], and thermal conductivity [31]. 

 
Figure 4. Samples of the experimental particleboards. 

The moisture content of the material was measured with a laboratory moisture meter 
(model UM2000, Imal S.R.L, Modena, Italy), the water immersion test was carried out in 
a heated tank, and the mechanical tests and density were performed with a universal test-
ing machine (model IB700, Imal, S.R.L., Modena, Italy). 

For the statistical analysis, SPSS v. 28.0 software (IBM, Chicago, IL, USA) was used. 
Analysis of variance (ANOVA) was performed, and, for the mean values of the tests, the 
standard deviation was obtained. 

3. Results and Discussion 
3.1. Physical Properties 

Table 2 shows the mean results and the standard deviation of thickness, density, TS, 
and WA after 2 and 24 h, as well as the thermal conductivity of each type of particleboard 
manufactured. 

Mean density of the boards ranged between 925 and 1095 kg/m3; therefore, they can 
be considered as high-density particleboards. The panels with the highest density were 
the 20:10 type, which included 10% starch in their manufacture. Longer times in the hot 
press resulted in more density. 

Meanwhile, the 20:10 type had lower values of TS and WA than the remaining ex-
perimental panels. Increasing time in the hot press also improved the TS and WA results. 
This was probably related to the increase in density, since there were fewer gaps between 
the particles that could be filled with water. 

Thermal conductivity seemingly decreased with the addition of starch and longer 
pressing times, but this could not be concluded. Panels manufactured with more than 5% 
starch for 2 h had the lowest conductivity values. Given the standard deviation of the 
results, it is possible that pressing the panels for more than 2 h would not have improved 
the results when starch was added. 

  

Figure 4. Samples of the experimental particleboards.

The moisture content of the material was measured with a laboratory moisture meter
(model UM2000, Imal S.R.L, Modena, Italy), the water immersion test was carried out
in a heated tank, and the mechanical tests and density were performed with a universal
testing machine (model IB700, Imal, S.R.L., Modena, Italy).

For the statistical analysis, SPSS v. 28.0 software (IBM, Chicago, IL, USA) was used.
Analysis of variance (ANOVA) was performed, and, for the mean values of the tests, the
standard deviation was obtained.

3. Results and Discussion
3.1. Physical Properties

Table 2 shows the mean results and the standard deviation of thickness, density,
TS, and WA after 2 and 24 h, as well as the thermal conductivity of each type of
particleboard manufactured.

Table 2. Physical properties of the experimental panels.

Panel Type Time (h) Thickness
(mm)

Density
(kg/m3) TS2h (%) TS24h (%) WA2h (%) WA24h (%) T. Cond.

(W/mK)

20:0 1 7.70 (0.57) 925 (18) 29.16 (0.63) 47.60 (0.73) 75.75 (0.19) 84.19 (4.88) 0.072 (0.003)
2 7.72 (0.34) 984 (28) 30.64 (1.91) 44.05 (3.87) 66.79 (2.84) 76.71 (0.12) 0.068 (0.005)
3 7.11 (0.16) 994 (18) 31.32 (1.45) 39.66 (2.83) 63.66 (8.53) 75.11 (2.41) 0.064 (0.003)

20:5 1 7.36 (0.11) 929 (12) 37.06 (4.81) 44.47 (0.89) 74.14 (2.88) 85.53 (1.01) 0.063 (0.002)
2 7.18 (0.14) 974. (59) 29.40 (3.12) 40.99 (1.45) 57.50 (7.58) 71.21 (4.23) 0.061 (0.002)
3 6.89 (0.35) 1052 (11) 29.34 (0.00) 35.72 (3.93) 66.55 (0.35) 71.07 (5.28) 0.061 (0.001)

20:10 1 7.50 (0.55) 1024 (42) 25.72 (5.91) 36.16 (6.84) 48.96 (3.77) 58.85 (6.83) 0.066 (0.003)
2 7.27 (0.41) 1053 (60) 26.34 (8.17) 32.19 (8.04) 43.84 (9.07) 57.67 (9.31) 0.063 (0.002)
3 6.89 (0.14) 1095 (46) 23.19 (6.17) 28.37 (6.09) 41.47 (8.93) 52.25 (7.23) 0.061 (0.002)

Values in parentheses are the standard deviation.

Mean density of the boards ranged between 925 and 1095 kg/m3; therefore, they can
be considered as high-density particleboards. The panels with the highest density were the
20:10 type, which included 10% starch in their manufacture. Longer times in the hot press
resulted in more density.

Meanwhile, the 20:10 type had lower values of TS and WA than the remaining experi-
mental panels. Increasing time in the hot press also improved the TS and WA results. This
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was probably related to the increase in density, since there were fewer gaps between the
particles that could be filled with water.

Thermal conductivity seemingly decreased with the addition of starch and longer
pressing times, but this could not be concluded. Panels manufactured with more than
5% starch for 2 h had the lowest conductivity values. Given the standard deviation of the
results, it is possible that pressing the panels for more than 2 h would not have improved
the results when starch was added.

3.2. Mechanical Properties

MOR values of the experimental panels can be seen in Figure 5. Increasing time in
the hot press improved the results in types 20:0 and 20:5. In type 20:10, the standard
deviation overlapped between 2 and 3 h of pressing time; therefore, this statement cannot
be confirmed. The addition of starch resulted in better MOR results in all types, reaching
a maximum in type 20:10 3 h with a mean value of 17.5 N/mm2.
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The MOE results showed in Figure 6 followed a similar trend to MOR values but more
pronounced. Increasing the pressing time and the starch proportion resulted in higher
MOE values. Type 20:10 3 h reached 3196 N/mm2 of MOE.
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From the results of IB in Figure 7, it can be concluded that increasing the proportion of
starch resulted in better mechanical behavior in the three categories: MOR, MOE, and IB.
Type 20:10 3 h had the highest IB value with 0.65 N/mm2. The standard deviation in types
20:0 and 20:5 of the results prevent concluding that increasing the pressing time between
2 and 3 h improved the results.
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3.3. Statistical Analysis

Statistical analysis of Table 3 indicates that all the properties had dependency relation-
ships (p-value < 0.05) with the panel type and the pressing time except for IB, which was
only influenced by the panel type.

Table 3. ANOVA of the results of the tests.

Factor Properties Sum of Squares d.f. Half Quadratic F p-Value

Panel Type

Density (kg/m3) 84,534.65 2 33,660.139 12.248 0.000
TS 24 h (%) 1551.53 2 524.107 17.039 0.000

WA 24 h (%) 1213.56 2 2254.850 44.949 0.000
T. Cond. (W/mK) 0.001 2 0.001 11.57 0.000
MOR (N/mm2) 15.08 2 175.442 14.294 0.000
MOE (N/mm2) 754,422.53 2 6,978,605.131 23.840 0.000

IB (N/mm2) 0.03 2 0.491 82.366 0.000

Pressing Time

Density (kg/m3) 115,661.14 2 29,069.446 9.781 0.000
TS 24 h (%) 7.93 2 249.800 5.647 0.007

WA 24 h (%) 38.76 2 417.170 2.984 0.042
T. Cond. (W/mK) 0.001 2 0.001 5.580 0.007
MOR (N/mm2) 13.36 2 166.638 13.118 0.000
MOE (N/mm2) 130,082.85 2 3,131,162.189 6.518 0.000

IB (N/mm2) 0.083 2 0.042 1.490 0.237

d.f.: degrees of freedom. F: Fisher–Snedecor distribution.

3.4. Discussion of the Results

The European standards [32] establish a minimum requirement for particleboards
according to their thickness. Panels from 6 to 13 mm with an MOR value of 10.5 N/mm2

and an IB value of 0.28 N/mm2 can be considered as particleboards for general use in
a dry environment (grade P1). Particleboards that can be used in the manufacture of
furniture (grade P2) have to reach an MOR of 11.0 N/mm2, an MOE of 1800 N/mm2, and
an IB of 0.40 N/mm2. For nonstructural boards in a humid environment, the minimum
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requirements are 15.0 N/mm2 for MOR, 2050 N/mm2 for MOE, 0.45 N/mm2 for IB, and
17% for TS at 24 h.

In the present study, boards manufactured with less than 10% starch did not reach
the minimum mechanical values to be commercialized. Table 4 shows a comparison of
type 20:10 results regarding European standards. Increasing the pressing time improved
the performance of the particleboards. Type 20:10 with 1 h of pressing time could be
classified as P1, whereas board types 20:10 with 2 and 3 h of pressing time reached the
P2 grade. None of them could be classified as P3 since they did not meet the required TS
value at 24 h. Further research is needed to take into account the density of the panels, the
peak time, the amount of added starch, and the addition of hydrophobic substances in the
manufacturing process.

Table 4. Comparison of the properties of the experimental panels with 10% starch and the European
standards [32].

Panel Type MOR
(N/mm2)

MOE
(N/mm2)

IB
(N/mm2) WA 24 h (%)

20:10—1 h 10.82 1573 0.39 58.85
20:10—2 h 15.40 2324 0.52 57.67
20:10—3 h 17.49 3196 0.62 52.25

Grade P1 [32] 10.50 - 0.28 -
Grade P2 [32] 11.00 1800 0.40 -
Grade P3 [32] 15.00 2050 0.45 17.00

The selection of a particle size of less than 0.25 mm for the manufacturing of the boards
was based on our previous experience and the existing literature, since smaller particle
sizes resulted in better properties [33].

The process followed in the research was slightly different since GPBs are not usually
pressed or heated. Particleboards that follow a dry process usually require a pretreatment
that consists of drying the material until it reaches a maximum of 4% moisture content. In
the present study, there was no need for pretreatments, and the material could be used
with a 8% moisture content.

Kim et al. [34] manufactured GPBs with Eucalyptus sp. and Pinus massoniata with citric
acid (CA) with a targeted density of 1200 kg/m3 and dimensions of 300 × 300 × 10 mm.
They reduced the moisture content of the GPB mats to about 2–3% in a dryer at 45 ◦C
before pressing at room temperature the particleboards. Kim [35] used the same process
for manufacturing particleboards with rice husk particles of 2 mm in different ratios (0%,
10%, 20%, 30%, and 40%). MOR and MOE values of the particleboards improved with
the addition of rice husk with a peak content of 30% and then declined. IB reached its
maximum with 20% and had a lower value with 40%. These two studies obtained similar
results and are in line with commercial GPB, as shown in Table 5. The experimental boards
of the present study achieved better mechanical results with the difference of applying heat
in the pressing (110 ◦C) and only adding 20% gypsum.

Table 5. Comparison with other particleboards made from gypsum and other lignocellulosic materials.

Material Ratio Material/
Gypsum/H2O in Weight

Other
Additions

Press.
(MPa) Time (h) MOR

(N/mm2)
MOE

(N/mm2)
IB

(N/mm2)
WA 24 h

(%)

This study
(type 20:10—2 h) 100:20:10 10% Starch 2.6 2 10.82 1573 0.39 58.85

Eucalyptus sp. [34] 30:100:40 0.05% CA 3 2 6.80 2700 0.24 29.50
Pinus

massoniata [34] 30:100:40 0.05% CA 3 2 5.50 2100 0.43 28.00

Rice husk [35] 40:100:40 0.05% CA 3 2 6.70- 3800 0.34 17.00

Commercial
GPB [34] - - - - 9.20 4500 0.30 28.00
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This lower gypsum content is not enough for the binding of the particles. If the method
used was cold pressing, the particles would have disaggregated. Therefore, since type
20:0 resulted in stable particleboards, some self-binding could have happened in the hot
press within the giant reed in the absence of starch. The elucidation of this process is very
complex with multiple theories such as the glass transition of cellulose, hemicellulose,
and lignin [36], the starches, gluten, sorbitol, and sugars contained in the lignocellulosic
material [37], and the presence of furfural [38,39].

In comparison with binderless particleboards, some authors indicated that a high
temperature of at least 180 ◦C and high pressures of 3.5 MPa are needed in order to
manufacture the boards [37]. Others concluded that, by extending the time in the hot press,
better results can be achieved [40]. In the present investigation, the temperatures of the
press (110 ◦C) and the pressure (2.1 MPa) were lower; therefore, this method consumes
less energy and is more environment friendly. Good MOR and MOE values were obtained
with a pressing time of 2 and 3 h. It may be possible for the mechanical behavior to be
improved with longer pressing times; however, the energy required in the manufacture
of the particleboards would increase, which is counterproductive, and the panels already
reached the P2 grade values within 2 h.

4. Conclusions

It is feasible to manufacture particleboards made from giant reed, gypsum plaster, and
starch that have good mechanical properties according to the European standards.

Through the addition of starch and increasing the pressing time of the experimental
panels, better mechanical and physical properties were obtained. With 10% starch and
a pressing time of 2 or 3 h, the panels reached the P2 classification for furniture production.

Using giant reed waste in manufacturing particleboards would be beneficial in
terms of the environment and energy efficiency since less energy is required than the
conventional process.
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