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Abstract: We investigated the effects of water absorption on the dynamic mechanical properties of
poly(methyl methacrylate) doped with various generic lithium salts, such as lithium perchlorate tri-
hydrate (LiClO4), lithium trifluoromethanesulfonate (LiCF3SO3), lithium nonafluorobutanesulfonate
(LiC4F9SO3), and lithium bis(trifluoromethanesulfonyl)imide (LiN(CF3SO2)). The rates of weight
change during water absorption of lithium salt-doped samples were higher in the following order:
LiClO4, LiCF3SO3, LiC4F9SO3, and LiN(CF3SO2). Interestingly, the aforementioned order was the
same as the order of the terminal relaxation times in the flow region of the viscoelastic measurement
in the melting-state. This implies that the water absorption of the salt-doped PMMA occurs due to
the factors that affect the pinning of the PMMA molecular chains in the places.

Keywords: dynamic mechanical properties; lithium salts; pinning effect; poly (methyl methacrylate)

1. Introduction

It is common knowledge that generic lithium salts, typically used as polymer elec-
trolytes, exhibit a well-developed aggregate structure in a polymer matrix [1,2]. In recent
years, examples of the use of glassy polymers as electrolytes have been reported: a trans-
parent PMMA-based gel electrolyte [3], polymer-based electrolytes using PMMA-based
copolymers introducing LiCF3SO3 (lithium trifluoromethanesulfonate; LFMS) with high
ionic conductivity [4], PEO-PMMA and alumina-based electrolyte doped with lithium
(istrifluoromethanesulfonimide lithium) (LiTFSI) with a high electrical conductivity [5].

In a previous study, we demonstrated that the well-aggregated salts interact strongly
with the polar groups of PMMA in compression-molded sheets, increasing Tg [6–8], de-
creasing birefringences [9], and enhancing brittleness [10]. According to the rheological
spectra at compression-molding temperature, the doping with salts was found to prolong
the relaxation times in the glassy and flow regions at the compression-molding tempera-
ture. These results imply that both the segmental and macro-Brownian motions of PMMA
chains were suppressed in the matrix during the comp-molding process [10]. Moreover,
we found that the mechanical properties of the compression-molded PMMA sheets after
rapid cooling are directly influenced by the relaxation times in the flow regions at the
compression-molded temperature [10]. These findings resulted in the conclusion that the
brittleness of the PMMA sheets is dominated by the molecular morphology in the glassy
state reflecting the molecular mobility under the compression-molded process.

Moisture absorbability of PMMA makes it difficult to control the mechanical properties,
such as toughness and brittleness, because of its unstable mechanical characteristics based
on the circumstances. Ishiyama et al. [11] conducted tensile tests for PMMA at three
different elongation speeds under humidity conditions, and they found that the Young’s
modulus of PMMA increases linearly with decreasing humidity.

Doping of the salts enables us to control the water absorption concentration in the
PMMA matrix using the high-water absorbency of generic lithium salts. We have previously
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reported that water-absorbed PMMA-salt samples revealed a novel peak shoulder at the
Tg relaxation mode in the viscoelastic spectra in a solid state [6]. Thus, this study focuses
on the effects of absorbed water on the rheological and dynamic mechanical properties of
PMMA doped with lithium salts.

Furthermore, “water-in-salt” electrolyte has received a lot of attention from the point
of view of thermal stability in recent years [12–14]. Given the circumstances, our study also
provides a simple method for enhancing PMMA’s water retention capacity using lithium
salts, thus expanding future materials design possibilities.

2. Results and Discussion

Figure 1a–d compares the dynamic mechanical spectra of the salt-doped PMMA solids
for dried and moisten sheets. The dynamic mechanical spectra of PMMA are shown in
Figure S1 in the supporting information. Table 1 lists the water absorption contents of these
sample sheets. We have previously reported that PMMA and salt-doped PMMA samples
plasticize under constant humidity. In PMMA, there are typically two relaxation E” peaks—
α (around at 100–120 ◦C) and β (around at−50–100 ◦C). The broad peak around 100–120 ◦C
appeared due to the overlapping of dual a-relaxation (glass transition) peaks above 100 ◦C;
the peak in the lower temperatures is attributed to dried PMMA domains, whereas the
one lower is attributed to water-absorbed PMMA domains due to the plasticization by
water. It has been reported that a novel shoulder peak (β′), which partially overlaps the
β relaxation, appeared due to moisture absorption at the lower temperature side of the β
relaxation peak [15,16]. This phenomenon also depends on the molecular weight of PMMA,
according to Shen et al. [17]. Figure 1 shows that the water absorption also increased β and
β′ relaxation, which is consistent with Ceccorulli’s report [16]. They also reported that the
increase in β′ is due to some association of water–water molecules partially interacting
with the ester units of PMMA [16] based on “complex relaxation” [18].
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Figure 1. Temperature dependence of dynamic mechanical properties of dried (black) and water-
absorbed (blue) samples: PMMA doped with (a) LiClO4, (b) LiCF3SO3, (c) LiC4F9SO3, and
(d) LiN(CF3SO2)2, with a 0.07-molar ratio salt concentration. α relaxation around at 100–120 ◦C
is ascribed to the glass transition; β relaxation around at −50–100 ◦C is to the relaxation of side
groups; γ relaxation around at −150–−50 ◦C is to the relaxation of local relaxation mode.
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Table 1. The sample code, salt concentrations (weight and molar concentrations), and moisture
concentrations of the dried and the equilibrium saturated moisture contents of the PMMA sheets
doped with salts.

Sample Code Condition Weight Percent
of Salt/wt.%

Molar Ratio of
Salt/mol mol−1

Absorbed Water
Content/wt.%

PMMA
Dried

0 0
0

Water absorbed 0.31

PMMA/LiClO4
Dried

7 0.07
0

Water absorbed 0.19

PMMALiCF3SO3
Dried

10 0.07
0

Water absorbed 1.7

PMMA/LiC4F9SO3
Dried

18 0.07
0

Water absorbed 1.3

PMMA/LiN(CF3SO2)2
Dried

17 0.07
0

Water absorbed 1.1

Figure 2a–d compare the master curves at 200 ◦C in the melting-state viscoelastic
measurements between pristine and salt-doped PMMA. Notably, the reference temperature
(200 ◦C) is the compression-molding temperature for preparing the sheets for tensile tests.
The dried samples were used for the rheology measurements.

A significant increase in the average relaxation times in the glassy region was observed
for three salt-doped samples (PMMA/LiClO4, PMMALiCF3SO3, and PMMA/LiC4F9SO3),
and the terminal relaxation time zone was prolonged. Alternatively, the master curve in
PMMA/LiN(CF3SO2)2 almost overlapped with the master curve of the pristine PMMA,
and the terminal relaxation was almost the same as that of pristine PMMA, but the tan δ
peak was higher than that of pristine PMMA.

Table 2 adds the specific ratio of the mean relaxation time in the glassy region
(<τG>/<τG0>), the specific entanglement density (<νe>/<νe0>) and the specific ratio of
mean relaxation times in the flow region (<τF>/<τF0>), where the suffix 0 in these specific
ratios denotes those three parameters of the pristine PMMA. The analytical details for
estimating these three parameters are presented in our previous paper [7,8,10]. Here, the
overall master curves, including the relative relaxation times in the glass transition and
the flow regions, shift to longer time regions due to the addition of these salts. These
longer time shifts are responsible for ion–dipole interactions between carbonyl groups
of PMMA and ions, demonstrating the pinning effects on PMMA chains, as shown in
previous studies.

Table 2. The specific ratio of the mean relaxation times in glassy and flow regions and the specific
entanglement densities of the dried salt-doped samples. The suffix 0 indicates the pristine-PMMA.

Sample Code <τG>/<τG0> <νe>/<νe0> <τF>/<τF0>

PMMA 1 1 1
PMMA/LiClO4 8.9 0.14 9.8
PMMALiCF3SO3 6.3 0.83 4.9
PMMA/LiC4F9SO3 3.2 0.81 3.1
PMMA/LiN(CF3SO2)2 0.63 0.72 1.7

Here, these parameters are independent of the anion radius or ovality of the anions,
implying that these salts aggregate in PMMA, which is also consistent with our previous
report [7,8].
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Figure 2. Dynamic viscoelastic spectra in the melts. PMMA (gray) and PMMA doped with the
different lithium salts (blue): (a) LiClO4, (b) LiCF3SO3, (c) LiC4F9SO3, and (d) LiN(CF3SO2)2, with a
0.07 molar ratio salt concentration. The open circle denotes G′; the closed one denotes G”; the open
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Figure 3 shows the specific relaxation times in the terminal zone of dried samples
plotted against the water absorption contents. The terminal relaxation region elongates to
longer periods as the water absorption progresses. The aggregated salts with the pinning
effects of the absorbed water and the free salts in the PMMA matrix are isolated in the
PMMA matrix because the pinning effects of PMMA chains appear in the terminal zone
for Li-salt-doped PMMA. Further, the salt-doping process makes it possible to retain the
water content in the PMMA matrix and to control the rheological properties via the pinning
effects. It is considered that the stronger pinning effects on the molecular chains imply that
the aggregation of the present salts is weaker than that of the other salts, making them
absorb water easily.
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Figure 3. Equilibrium water content plotted against relative relaxation time in the terminal zone of
PMMA doped with LiClO4 (green), LiCF3SO3 (blue), LiC4F9SO3 (red), and LiN(CF3SO2)2 (brown)
with a 0.07 molar ratio salt concentration stored at 23 ◦C and 70% RH. The black symbol shows the
value of PMMA.

We performed the tensile tests of PMMA doped with salts before and after moisture
absorption (see Figures S2 and S3). Table 3 summarizes the averaged value of toughness,
which is the area under stress–strain curve up to break, and the terminal relaxation times.
The sheets doped with the salts with higher pinning effects, i.e., LiClO4 and LiCF3SO3, in
the dried sample had higher toughness due to moisture absorption. Alternatively, the sheets
doped with salts with lower pinning effects, i.e., C4F9SO3 and LiN(CF3SO2)2, had lower
toughness values after moisture absorption. This is because the salts with stronger pinning
effects possess higher water-absorbability around the pinning position. We previously
showed that salt-doped PMMA becomes brittle [7,8,10]. However, the embrittlement is
suppressed in samples where water is more easily adsorbed to the pinning positions of
the salts since they are plasticized by moisture absorption. These results imply that the
mechanical properties are dominated by the competition among the three-body interactions
of PMMA, salt, and water.

Table 3. Toughness values of dried samples and water-absorbed samples PMMA and PMMA doped
with LFMS, LFBS, LiClO4, and LiN(CF3SO2)2 at a molar concentration of 0.07.

Sample Code Condition Toughness/MJm−3

PMMA
Dried 7.4

Water absorbed 8.3

PMMA/LiClO4
Dried 4.2

Water absorbed 4.7

PMMALiCF3SO3
Dried 3.7

Water absorbed 5.5

PMMA/LiC4F9SO3
Dried 3.8

Water absorbed 2.2

PMMA/LiN(CF3SO2)2
Dried 4.9

Water absorbed 4.0
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3. Experimental Procedure
3.1. Materials and Sample Preparation

PMMA pellets (Mw = 1.0× 105 and Mw/Mw = 1.9) calibrated using a PMMA standard
were used in this study. The four types of lithium salts used in this study include the
following: lithium perchlorate trihydrate (LiClO4, Nacalai Tesque, inc., Kyoto, Japan),
lithium trifluoromethanesulfonate (LiCF3SO3, purity≥ 98.0%; Tokyo Chemical Industry Co.
Ltd. (TCI), Tokyo, Japan), lithium nonafluorobutanesulfonate (LiC4F9SO3, purity ≥ 95.0%;
Tokyo Chemical Industry Co. Ltd. (TCI)), and lithium bis(trifluoromethanesulfonyl)imide
(LiN(CF3SO2), purity ≥ 98.0%; Tokyo Chemical Industry Co. Ltd. (TCI)), without any
additional purification. Figure 4 shows their chemical structures. The PMMA sheets doped
with these salts were prepared for solution casting using a mixture of dichloromethane
and methanol at a weight ratio of 9:1 for 1 h. The salt concentrations for each sheet were
fixed at molar ratios of 0.07 in PMMA for each blend. The salt-doped PMMA sheets were
dried at 135 ◦C for 30 h to evaporate the residual solvents after being dried in a draft
chamber for 1 day. Approximately 200-µm-thick sample sheets with salts were obtained by
compression-molding at 200 ◦C and 20 MPa for 5 min after preheating at 200 ◦C for 5 min
and rapid cooling at 25 ◦C for 5 min.
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Figure 4. Lithium salts used in this study: (a) LiClO4, (b) LiCF3SO3, (c) LiC4F9SO3, and
(d) LiN(CF3SO2)2.

3.2. Characterization

The dried sample sheets were stored in a desiccator with 20% relative humidity (RH)
until just before each measurement.

The moisture sheets were stored under the conditions of the temperature of 23 ◦C and
the relative humidity of 70% RH. The amount of absorbing water in these PMMA sheets
was estimated from the weight changes using an electronic balance (ASR224/E, Kanazawa,
Japan). Figure 5 shows the weight changes during water absorption [6]. The sample
weight increased as time increased and reached an equilibrium value after 30 min for all
salt-doped samples. Table 1 lists the equilibrium absorbed water content. The salt-dopped
PMMA sheets absorbed more water than pristine PMMA, in which the water absorption
was in the following order: PMMA/LiClO4 > PMMA/LiCF3SO3 > PMMA/LiC4F9SO3 >
PMMA/LiN(CF3SO2)2, at the salt concentration of 0.07 molar ratio. Moisture samples in
the equilibrium state were used for the measurements. The sample codes in Table 1 indicate
the dried and the equilibrium water-absorbed (w) ones.
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3.3. Measurements

A viscoelastic spectrometer (DVE-V4, UBM Co. Ltd., Kyoto, Japan) was used to
conduct solid state dynamic mechanical analysis. The temperature dependence of the
dynamic mechanical properties was obtained in the temperature range of −150–200 ◦C at
2 ◦C/min and 10 Hz. The distance between the chucking apparatus was 20 mm.

The melting-state viscoelastic measurement was conducted using a rotational rheome-
ter (Discovery HR-2, TA Instruments, New Castle, DE, USA) and a parallel plate with
a diameter of 8 mm under nitrogen flow. The initial gap distance was 1000 µm, the
angular frequency was 0.1–100 rad/s, and the temperature range was 120–240 ◦C (at
10 ◦C increments).

The tensile test was conducted at an elongation speed of 10 mm/min using a ten-
sile testing machine (TC 05–010, Abe Seisakusho, Kanazawa, Japan). Thin rectangular
specimens with gauge size 5 mm × 10 mm were cut from the sample sheets using an
ultrasonic cutter.

4. Conclusions

This study showed that the PMMA samples doped with lithium salts with a high
pinning effect exhibited the highest levels of water absorption. This implies that the
salts with stronger interaction with PMMA and less tendency to aggregate in PMMA
have superior water retention in PMMA. Further, the salts with stronger pinning effects
can enhance PMMA’s fracture energy after water absorption compared with other salts.
Therefore, the results are also interesting for the industry because they demonstrate that
fracture toughness in glassy polymers, such as PMMA and polystyrene, can be improved
by adequate water retention.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/molecules27207114/s1, Figure S1: Temperature dependence of
dynamic mechanical properties of PMMA; Figure S2: Stress-strain curves of dried and moisture
pristine PMMA: dried (solid line) and moisture-absorbed (dashed line) samples; Figure S3: Stress-
strain curves of dried and moisture PMMA/salt sheets with a 0.07 molar ratio salt concentration:
dried (solid line) and moisture-absorbed (dashed line) samples.
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