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Abstract: The reliance of tumor cells on aerobic glycolysis is one of the emerging hallmarks of cancer.
Pyruvate kinase M2 (PKM2), an important enzyme of glycolytic pathway, is highly expressed in
a number of cancer cells. Tumor cells heavily depend on PKM2 to fulfill their divergent energetic
and biosynthetic requirements, suggesting it as novel drug target for cancer therapies. Based on this
context, we performed enzymatic-assay-based screening of the in-house phenolic compounds library
for the identification of PKM2 inhibitors. This screening identified silibinin, curcumin, resveratrol,
and ellagic acid as potential inhibitors of PKM2 with IC50 values of 0.91 µM, 1.12 µM, 3.07 µM, and
4.20 µM respectively. For the determination of Ki constants and the inhibition type of hit compounds,
Lineweaver–Burk graphs were plotted. Silibinin and ellagic acid performed the competitive inhibition
of PKM2 with Ki constants of 0.61 µM and 5.06 µM, while curcumin and resveratrol were identified as
non-competitive inhibitors of PKM2 with Ki constants of 1.20 µM and 7.34 µM. The in silico screening
of phenolic compounds against three binding sites of PKM2 provided insight into the binding pattern
and functionally important amino residues of PKM2. Further, the evaluation of cytotoxicity via
MTT assay demonstrated ellagic acid as potent inhibitor of cancer cell growth (IC50 = 20 µM). These
results present ellagic acid, silibinin, curcumin, and resveratrol as inhibitors of PKM2 to interrogate
metabolic reprogramming in cancer cells. This study has also provided the foundation for further
research to validate the potential of identified bioactive entities for PKM2 targeted-cancer therapies.

Keywords: tumor metabolism; pyruvate kinase M2; phytochemicals; enzymatic assay

1. Introduction

Cancer has been recorded as the second leading cause of mortality globally, with
approximately 9.9 million deaths during 2020 [1]. The tumor heterogeneity, non-selectivity,
and toxicity of chemotherapeutic drugs are major hurdles towards successful cancer treat-
ment, which represents an emerging clinical challenge nowadays [2,3]. Therefore, new
therapies with enhanced selectivity, increased antitumor potency, and low toxicity are
urgently needed.

The recent evidence suggests that targeting the cancer-specific mitochondrial and
metabolic remodeling, tumor metabolism, has potential to offer selective treatment for
cancer [4]. Cancer cells rewire their metabolic profile by modulating the expression pattern
of enzymatic machineries from metabolic pathways (glycolysis, the Krebs cycle, etc.) to
fulfil the energy and biosynthetic requirements of highly proliferating cancer cells [5].
Among these rewired metabolic pathways, glycolytic enzymes have emerged as a novel
therapeutic target for anti-cancer drug development [6].

The pyruvate kinase is a key regulator of glucose metabolism that encodes for four
isoenzymes in cells of mammals [7]. Most of the adult animal tissues have been known
to express M1 isoform of pyruvate kinase (PKM1), while the less active isoform of PK
(PKM2) is predominantly expressed in embryonic tissues and cancer cells [8]. Tumor cells
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switch towards PKM2 in order to maintain the pool of glycolytic metabolites to fulfil the
biosynthetic requirements of tumor cells [7]. The overexpression of PKM2 has been reported
in prostate, breast, lung, hepatocellular, and colorectal cancers. Thus, the inhibition of
PKM2 expression in tumor cells could serve as a novel therapeutic approach to halt cancer
development and progression [5].

Since PKM2 emerged as a novel target for anti-cancer drugs, it is interesting to discover
the inhibitors of PKM2 from natural products (NPs) [5]. Multiple lines of evidence have
demonstrated plant-based natural products as a rich database for the identification of
metabolic inhibitors [9,10]. Although various inhibitors of PKM2 has been discovered,
however, the researches on the discovery of bioactive entities targeting PKM2 are on-going,
and the identification of selective, potent, and safer inhibitors could potentially contribute
towards the development of effective and safer therapies for cancer patients. Based upon
this context, we have performed enzymatic-assay-based screening to evaluate the potential
of natural compounds against PKM2. Here, we have provided biochemical, computational,
and in vitro evidence that suggests that silibinin, curcumin, resveratrol, and ellagic acid
target PKM2 to induce cytotoxicity in cancer cells.

2. Results
2.1. In Vitro Inhibitory Activity of Phenolic Compounds against PKM2

In the preliminary screening, the effect of thirty eight phenolic compounds (Table S1)
on human PKM2 enzymatic activity was investigated at a single standard dose. To confirm
the activity of eight hit compounds, based on their strong inhibitory effects against PKM2,
we performed the second potent compounds screen at varying concentrations to calculate
their IC50 (the concentration of the compound that reduced 50% of the enzymatic activity)
values. The IC50 values were calculated under comparable enzymatic activity assay by
generating dose-response curves (Figures 1 and 2).
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Figure 2. Activity (%) versus phenolics concentration (bisdemethoxycurcumin, demethoxycurcumin,
polydatin, and chlorogenic acid) regression analysis plots for PKM2.

The velocity of reaction catalyzed by PKM2 was calculated at saturating concentrations
of substrate (PEP) and ADP with six various concentrations of the test compounds.

Results of the study including IC50 values are summarized in Table 1.

Table 1. The results of in vitro studies of some phytochemicals against PKM2.

Compound Name IC50 Values (µM) Effect

Silibinin 0.91 Inhibition
Curcumin 1.12 Inhibition

Resveratrol 3.07 Inhibition
Ellagic acid 4.20 Inhibition

Bisdemethoxycurcumin 16 Inhibition
Demethoxycurcumin 21.38 Inhibition

Polydatin 25.40 Inhibition
Chlorogenic acid 43.40 Inhibition

Among these eight compounds, five compounds exhibited strong inhibitory effects
against PKM2 with an IC50 value of less than 20 µM. The highest inhibition was expressed
by silibinin against PKM2 with an IC50 value of 0.91 µM, followed by curcumin, resveratrol,
ellagic acid. bisdemethoxycurcumin exhibited moderate PKM2 inhibitory activity with
an IC50 value of 16 µM, while three compounds (demethoxycurcumin, polydatin, and
chlorogenic acid) were found to possess an IC50 value greater than 20 µM.

2.2. Determination of Ki Constant Values of PKM2 Inhibitor Phenolic Compounds

For the determination of Ki constants, the Lineweaver–Burk graphs were plotted (1/V
versus 1/[S] (Figure 3). The plotted graphs clearly represent that silibinin, ellagic acid, and
demethoxycurcumin are competitive inhibitors of PKM2, while curcumin, resveratrol, and
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bisdemethoxycurcumin performed the non-competitive inhibition of PKM2 enzyme activity.
The Ki constants calculated from the Lineweaver–Burk graphs are provided in Table 2.
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Table 2. Ki constants for PKM2 calculated from Lineweaver–Burk graphs for different phen-
olic compounds.

Compound Name Ki Constants (µM) The Type of Inhibition for Substrate (FEP)

Silibinin 0.61 ± 0.26 Competitive
Curcumin 1.20 ± 0.40 Non-competitive

Ellagic acid 5.02 ± 0.73 Competitive
Resveratrol 7.34 ± 1.70 Non-competitive

Demethoxycurcumin 14.87 ± 3.03 Competitive
Bisdemethoxycurcumin 18.04 ± 5.80 Non-competitive

Polydatin - -
Chlorogenic acid - -

2.3. Determination of PKM2 Binding Affinities of Hit Compounds by Molecular Docking Analysis

The docking of phenolic compounds was performed against PEP (phosphoenolpyru-
vate), FBP (fructose-1,6-bisphosphate), and the amino-acid binding sites of PKM2, to
understand their binding pattern, with the target protein using the Molegro virtual docker
and AutoDock Vina. The selected binding sites of PKM2 are depicted in Figure 4.

The obtained docking scores for each binding site of PKM2 are presented in Table 3.
The results of the in silico studies that validated the inhibition mode of compounds

obtained by in vitro studies are highlighted in bold. Silibinin and ellagic acid possess
good binding energies (kcal/mol) with the PEP binding site of PKM2, indicating that these
compounds bind to PEP binding sits and perform the competitive inhibition of PKM2.
The interaction modes of silibinin and ellagic acid at the PKM2 binding cavity are shown
in Figure 5.
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Table 3. The binding affinities of phytochemicals against PEP, FBP, and amino-acid binding site
of PKM2.

Compound Name

Phosphoenolpyruvate (PEP)
Binding Site

Fructose-1,6-bisphosphate
(FBP) Binding Site Amino-Acid Binding Site

Molegro
Virtual-

Docking
Score

AutoDock
Vina

kcal/mol

Molegro
Virtual-

Docking
Score

AutoDock
Vina

kcal/mol

Molegro
Virtual-

Docking
Score

AutoDock
Vina

kcal/mol

Silibinin −133.086 −9.8 −148.074 −7.3 −111.364 −1.2
Curcumin −148.904 −8.2 −162.057 −7.3 −123.1 −5.4

Resveratrol −121.483 −7.1 −118.621 −6.9 −148.976 −4.6
Ellagic acid −80.5511 −8.0 −94.4214 −5.3 −149.257 −5.8

Demethoxy-curcumin −149.617 −7.8 −160.966 −7.4 −144.438 −5.3
Bisdemethoxy-curcumin −137.166 −7.6 −154.467 −7.2 −88.9558 −5

Polydatin −131.792 −8.2 −150.452 −8.1 −87.9797 −6.4
Chlorogenic acid −133.36 −7.9 −149.592 −8.0 −132.646 −6.1

Bold numbers: in silico scores validating the results of in vitro studies.

Docking complexes of curcumin, bisdemethoxycurcumin, resveratrol, polydatin,
demethoxycurcumin, and chlorogenic acid are shown in Figures 6 and 7, respectively.

The results of docking studies indicate that these ligands exhibit good binding efficacy
with the PKM2 protein by making electrostatic and hydrophobic interactions as well as
hydrogen bonds. LYS270, ARG489, and ARG73 were found as common amino acids
forming interactions with the docked ligands. Table 4 shows the interaction details between
hit compounds and the amino-acid residues of PKM2.
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Figure 5. Representation of the PKM2 protein–ligand complexes. (A) The binding site of the molecule
in the crystal structure of the PKM2; (B) molecule at the PKM2 active region; and (C) 2D interaction
map of the molecule with amino-acid residues of PKM2.

Figure 6. Cont.
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Figure 6. Docking complexes of curcumin, bisdemethoxycurcumin, resveratrol, and polydatin with
PKM2. (A) The binding site of the ligand in the crystal structure of the PKM2; (B) ligand interacting
with the active region of PKM2; and (C,D) amino residues interacting with the compound in the
active site of PKM2.

Figure 7. Molecular docking complexes of ligands with PKM2. (A) Binding site of ligand in the
crystal structure of PKM2, (B) ligand interacting with the PKM2 active region, and (C) amino residues
involved in the protein–ligand interactions.



Molecules 2022, 27, 7113 8 of 12

Table 4. Important PKM2 binding residues interacting with phenolic compounds.

Interactions Silibinin Curcumin Resveratrol Ellagic Acid Demethoxy-
Curcumin

Bisdemethoxy
curcumin Polydatin Chlorogenic

Acid

Hydrogen
bond

ASP296
ILE51

THR432
LYS433
TRP482
THR522
ASP407
SER434

ARG437

ARG73
ARG73
GLN329
GLU272

ARG73
ASN75
TYR83
ASP296

LYS433
SER434
ARG489
GLY520
PHE521
SER519
ASP407

THR436
THR414

TRP464
ARG471
GLY502
THR504
ARG498
GLY500

Carbon
hydrogen

bond
- - ARG437

GLY295
GLY295
SER362

- - LYS415 PRO499

Electrostatic
ARG342
LYS270
HIS78

ARG489 ARG471 ARG73
LYS270

ARG73
LYS270
LYS367

-
LYS415

ARG437
ASP467

LYS415
ARG437
ARG471

Hydrophobic -

PRO517
ARG436
LEU431
VAL486
TRP482

- - - LYS433
ARG436 VAL460 -

2.4. Anti-Cancer Potential of PKM2 Inhibitor Compounds against TNB (Triple-Negative Breast)
Cancer Cells

The results of our biochemical and in silico studies led us to investigate whether
the PKM2 inhibitor compounds possess cytotoxicity towards breast cancer cells. Higher
expression of the PKM2 protein has been reported in MDA-MB231 cells [5]. In addition,
the MDA-MB231 cell line is preferred as a pre-clinical cancer model due to its highly
proliferative nature in vitro as well as in vivo [11]. Thus, MDA-MB231 cells were selected
as a model in order to investigate the anti-breast cancer potential of hit compounds. The
obtained results clearly indicate that these compounds showed dose-dependent inhibition
of the growth of cancerous cells (Figure 8).
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The calculated IC50 values are represented in Table 5. According to the obtained
results, ellagic acid and curcumin were found to be the most potent inhibitors of cancer-cell
growth, with IC50 values of 20 and 26 µM, respectively.
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Table 5. IC50 values of hit compounds against breast cancer (MDA-MB231) cells.

Compound Name IC50 Value

Silibinin 208 µM
Curcumin 26 µM

Ellagic acid 20 µM
Resveratrol 306 µM

3. Discussion

Aerobic glycolysis is an emerging metabolic signature of cancer cells [12]. The well-
established role of PKM2 in tumor glycolysis and TNBC growth indicates that it is a novel
drug target for TNBC. In addition, PKM2 inhibition possesses no effects on normal mam-
mary tissues, further supporting its role for cancer treatment [13]. Based on this context,
we tried to identify the inhibitors of PKM2 from NPs for the treatment of breast cancer.
Here, we have presented biochemical and computational in silico evidence suggesting
that silibinin, curcumin, ellagic acid, and resveratrol directly target PKM2 to exert their
anti-cancer effects.

Ellagic acid, a polyphenolic compound, is naturally found in pomegranates, berries,
and dry fruits. Ellagic acid is endowed with strong anti-cancer properties with inhibitory
potential against metastasis and angiogenesis [14]. Although ellagic acid has been already
known as anti-cancer agent, this is the first study that demonstrated that ellagic acid acts as
tumor-metabolism modulator, binds with PKM2 at the active site, and inhibits its activity in
cancer cells. The identification of ellagic acid as a PKM2 inhibitor is a novel finding of this
study. Our findings are in line with recently reported data demonstrating the potential of
ellagic acid to induce apoptosis in MCF-7 and MDA-MB-231 cancer cells with IC50 values
of 23 µM and 27 µM, respectively [15]. A previous toxicity study has also revealed ellagic
acid as a safer compound to the concentration of 39 g/kg body weight of test animals
with no histopathological signs or treatment-associated clinical alterations [16], further
validating its potential for therapeutic applications.

Silibinin is a nature-derived polyphenolic compound that possesses anti-cancer ef-
fects via apoptosis induction, cell-cycle arrest, and inhibiting metastasis [17]. Silibinin is
also a major active constituent of Silymarin, which is promising drug used for various
ailments [18]. Silibinin also possess synergistic effects in enhancing paclitaxel drug toxicity
in gastric cancerous cells [19], supporting the claim that metabolic inhibitors in combination
with chemo drugs have the potential to cure cancer. Despite indications that silibinin is an
anti-cancer agent, the mechanism of action or molecular target of silibinin still remains to be
elucidated. Silibinin has been previously known to decrease the levels of PKM2 mRNA and
protein in TNBC cells. Metabolomic analysis illustrated that silibinin inhibited the synthesis
of glycolytic ATP, glucose uptake, and NADPH production in TNBC cells. Silibinin-induced
reduced glucose utilization and glycolytic flux starved other metabolic pathways fed by
glycolysis products and intermediates. Further, the silibinin-induced reprograming of
cancer metabolism led to reduced cellular proliferation and stemness with enhanced com-
binatorial chemotherapeutic (Taxol) outcomes. In addition to PKM2, silibinin also inhibited
the activity of HK2 in TNBC cells. All of these findings support the results of this study, sug-
gesting that targeting TNBC metabolism by silibinin has the potential to improve clinical
outcomes in TNBC patients [20].

Curcumin is an anti-cancer polyphenolic nutraceutical derived from Curcuma longa [21].
Curcumin has been known to exert its anticancer effects via the inhibition of the cell
cycle, the Warburg effect, and metastasis. Our results are in line with previous studies
demonstrating that curcumin inhibits cancer metabolism and suppresses the expression
of the PKM2 protein. The overexpression of PKM2 reversed the inhibitory effects of
curcumin on tumor glycolysis [22], suggesting that the curcumin-induced inhibition of
tumor metabolism was mediated by PKM2.

Resveratrol is a stilbene-polyphenolic compound that is abundantly found in grapes.
A plethora of in vitro, in vivo, and preclinical studies has reported the anticancer properties



Molecules 2022, 27, 7113 10 of 12

of resveratrol in various cancer types [23]. Resveratrol has also been reported previously to
down-regulate the expression of PKM2 and suppress cancer metabolism, which support
the results of this study. Resveratrol has the potential to reduce PKM2 mRNA and protein
by two folds in various cancer cell lines (HeLa, MCF-7, and HepG2). Further, the overex-
pression of PKM2 counteracted the effects of resveratrol, which provides evidence for the
PKM2-mediated suppression of tumor glycolysis by resveratrol [24].

Although findings of this study revealed ellagic acid, silibinin, resveratrol, and cur-
cumin as tools to interrogate cancer cell metabolic plasticity, it is also imperative to investi-
gate the potential pre-clinical implications of these results.

4. Materials and Methods
4.1. Chemicals

All of the chemicals and recombinant PKM2 protein were acquired from Sigma Chem-
ical Co. (Saint Louis, MO, USA).

4.2. PKM2 Activity Assay

The activity assay used for PKM2 was based on spectrophotometric measurements us-
ing a Rayleigh UV-2601 UV/VIS spectrometer set at 340 nm, where we detected the NADH
decreasing with lactate dehydrogenase activity. The absorbance value was measured after
every 1 min. The total sample volume was 1 mL. Each sample contained 50 nanogram re-
combinant enzyme, 5 mM MgCl2, Tris pH 7.5 (50 mM), 100 mM KCl, ADP (0.6 mM), 0.5 mM
PEP (Phospho-enol pyruvic acid), 180µM NADH (β-Nicotinamide adenine dinucleotide),
8 units of lactate dehydrogenase (LDH), and 10µM of FBP (Fructose 1,6-bisphosphate). All
of the enzymatic reactions were repeated three times [5].

4.3. Inhibition Studies

Compounds were dissolved in DMSO (1 mg/mL) and were diluted ten times with
water. These compounds were tested for their enzymatic inhibitory activity at different
concentrations. The reaction mixture and inhibitor except PEP were incubated for 10 min.
The reaction was initiated by the adding substrate. Enzyme activity without inhibitors was
used as the control, and the percent activity caused by them was calculated in proportion
to the activity of the control using the corresponding absorbance values. To calculate the
IC50 values of compounds, % activity versus inhibitory concentration graphs were drawn
using Microsoft Excel 2010 [25].

4.4. Kinetic Studies

The measurement of PKM2 inhibition was carried out by varying the concentration of
PEP in the presence of three various concentrations of phytochemicals. Enzyme velocities
were assessed from the change in absorbance per minute up to 5 minutes from the begin-
ning of the reaction. The inhibition types of compounds on the enzymatic activity were
determined by Lineweaver–Burk graphs (1/V) (inverse of velocities) versus 1/[S] µm−1

(inverse of substrate concentration). The inhibitor constant, Ki, was computed by using the
formula slope = Km/Vmax (1 + I/Ki) obtained from these graphs [25].

4.5. Molecular Docking

The structure of human PKM2 was obtained from a protein data bank (PDB) (www.
rcsb.org (accessed on 31 August 2022)) that had PDB ID 6V74. The target protein structure
was prepared for docking using UCSF Chimera 1.10.1 software (1.10.1, San Francisco, CA,
USA). Missing residues were repaired and minimized at Molegro Virtual Docker 7.0. PEP,
FBP, and amino-acid binding sites were selected as docking regions. The compound’s 3D
structures were obtained from PubChem. Ligand docking simulations were employed
on all the compounds against the crystal structure of PKM2 using the Molegro Virtual
Docker and AutoDock Vina in the UCSF Chimera platform. The grid box centers were
adjusted as reference ligands. For validation, the reference ligands were re-docked with

www.rcsb.org
www.rcsb.org
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different parameters and the docking procedure was continued with the parameters with
the RMSD value below 2. The compounds were docked against selected cavities of the
PKM2 enzyme, with ten numbers of runs for each docking. The 3D graphics of docking
poses were depicted using Discovery Studio 2021 Client.

4.6. MTT Assay

The cytotoxicity of phenolic compounds towards cancerous cells was evaluated by
MTT assay. Cancer cells were cultured in 96 well plates. The cancer cells were treated at
varying concentrations of test drugs for 48 h. After 48 h of the treatment, 10 µL of MTT
(5 mg/mL) solution was mixed, and incubation was carried out at 37 ◦C for 4 h. Subse-
quently, 150µL of DMSO was used for dissolving the formazan crystals, and absorbance
was obtained at 570 nm at a microplate reader [26]. The absorbance of the control cell and
cells with treatment were used to calculate the cytotoxicity of compounds.

I% = (A570 (control) − A570 (treated))/(A570 (control)) × 100

5. Conclusions

This study screens plant-derived natural compounds by PKM2 enzymatic activity
assay to find out the potent inhibitors of PKM2 that can be utilized as drug leads for
PKM2-dependent cancers. Silibinin, curcumin, resveratrol, and ellagic acid were identified
as potential inhibitors of PKM2. Molecular docking analysis has provided insights into the
binding pattern highlighting the possible binding pockets of silibinin, curcumin, resveratrol,
and ellagic acid, and important binding residues of PKM2. Conclusively, this research
provides an insight into the molecular target of silibinin, curcumin, resveratrol, and ellagic
acids as anti-cancer agents. As PKM2 is a rate-limiting enzyme of glycolysis; therefore, it
is recommended to detect the effect of these compounds on the expression of other key
proteins of the glycolytic pathway. These results also warrant further detailed therapeutic
evaluation of identified inhibitors for PKM2 targeted anti-cancer therapies.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/molecules27207113/s1, Table S1: Natural compounds library
used for the screening of PKM2 inhibitors.
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