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Abstract: In Tartary buckwheat (Fagopyrum tataricum), the edible parts are mainly grain and sprouts.
Tartary buckwheat contains protecting substances, which make it possible for plants to survive on
high altitudes and under strong natural ultraviolet radiation. The diversity and high content of
phenolic substances are important for Tartary buckwheat to grow and reproduce under unfriendly
environmental effects, diseases, and grazing. These substances are mainly flavonoids (rutin, quercetin,
quercitrin, vitexin, catechin, epicatechin and epicatechin gallate), phenolic acids, fagopyrins, and
emodin. Synthesis of protecting substances depends on genetic layout and on the environmental
conditions, mainly UV radiation and temperature. Flavonoids and their glycosides are among Tartary
buckwheat plants bioactive metabolites. Flavonoids are compounds of special interest due to their
antioxidant properties and potential in preventing tiredness, diabetes mellitus, oxidative stress, and
neurodegenerative disorders such as Parkinson’s disease. During the processing and production of
food items, Tartary buckwheat metabolites are subjected to molecular transformations. The main
Tartary buckwheat traditional food products are bread, groats, and sprouts.

Keywords: buckwheat; rutin; quercetin; flavonoids; metabolites; nutrition

1. Introduction

Tartary buckwheat (Fagopyrum tataricum (L.) Gaertn.) originates in the area of the
Himalayas. It is cultivated in this mountain region and still exists as well as a wild
plant [1–3]. Cultivated plants are reproduced in the fields, and local farmers use the crop
in their meals. Tartary buckwheat is related to its sister species, common buckwheat
(Fagopyrum esculentum Moench). Still, it differs in the grain’s much higher concentration
of flavonoid rutin and resistance to UV-B radiation [4–6]. Tartary buckwheat is the only
known field crop with a high concentration of the flavonoid rutin in the grain [7].

Ultraviolet radiation can damage the gentle tissue of plants. There could be a shield
from UV radiation by synthesis of protecting substances. These substances are mainly
polyphenols, with aromatic rings of six carbon atoms, double ties, and groups bound to
carbon atoms, often with attached OH or sugars. In the case of Tartary buckwheat, the
most important protecting substances are rutin, quercetin, and fagopyrin [5,8–11]. Genes
and enzymes that make possible the gradual build-up of phenolic substances in Tartary
buckwheat have been studied [12].

Tartary buckwheat is cultivated on the Himalayan mountains and elsewhere in the
world, mainly in China, Korea, Nepal, Bhutan, and Europe (Ukraine, Russia, Sweden, Lux-
emburg, Slovenia, Italy, Serbia, Bosnia, and Herzegovina) [13]. In Bosnia and Herzegovina,
Tartary buckwheat is mainly cultivated as a mixed crop with common buckwheat [14].
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Due to its robust husk and high content of protective phenolic substances, dormant
Tartary buckwheat seeds may remain alive in the soil for several years and, under favorable
conditions, plants can emerge and grow (Figures 1 and 2). Tartary buckwheat, due to
its content of protecting substances, survives on high altitudes, under strong ultraviolet
radiation, and on stony areas (Figure 2). The diversity and high content of phenolic
substances in Tartary buckwheat protect the plants from unfriendly environmental effects,
diseases, and grazing. These substances are also of importance in nutrition to preserve
human health.
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In Tartary buckwheat and in its milling fractions, there are, besides the main phenolic
compounds, many other secondary metabolites as volatile aromatic compounds, which
may appear as well in Tartary buckwheat food products. They are in low concentrations,
so it is not expected that they would have any major bioactive impact of some importance,
at least such was not reported according to the knowledge of the present authors [15,16].

The content of total phenols in buckwheat is estimated by the Folin–Ciocalteu method [17].
For the isolation and identification of metabolites, Tartary buckwheat samples are sub-
jected to extraction at room temperature by methanol for 30 min, using an ultrasound bath.
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Extracted metabolites are fractionated by HPLC using a reverse phase C-18 column. A
UV/ VIS detector is included in the system. The components of extract are detected by
absorbance at 360 nm. It is suitable to use for mobile phase methanol in the combination
methanol-water-acetic acid [5]. Another method of isolation and extraction is shaking for
40 min methanol/water (67:33) at room temperature. HPLC is performed using a Spectra
System P4000, Hibar–LiChrospher 100, with a reversed phase RP-18 column. In this case,
the solvent for HPLC is acetonitrile, methanol (1:2), and phosphoric acid [18]. Methanol
extracts can also be produced by extraction in 80% aqueous methanol. The identification
of metabolites is obtained by the reverse phase C18 column. In such a case, the mobile
phase consists acetonitrile and 0.1% phosphoric acid in water [19,20]. Among other suitable
methods for isolating rutin and other flavonoids is extraction with 60% ethanol and 5% am-
monia in water [21]. Further analyses are performed by HPLC or capillary electrophoresis
with uncoated capillaries [21].

For the identification of metabolites in diverse Tartary buckwheat tissues, it is possible
to develop the potential application of micro-proton induced X-ray emission (micro-PIXE),
synchrotron-based micro-X-ray fluorescence (micro-XRF), and inductively coupled plasma-
mass spectrometry (ICP-MS) hyphenated with pulsed laser ablation [22]. The results reveal
a connection between a plant structure’s morphology and its phytochemical layout with
specific bioactivities and functions [22]. With the application of UHPLC-ESI- MS/MS, it is
possible to analyze in buckwheat a broad list of metabolites, such as three different phenolic
acids, four flavanols, four flavones, seven flavonols, and two flavanones [23,24]). The
multimodal bioimaging of Tartary buckwheat for revealing the allocation of metabolites
in different parts of Tartary buckwheat plants is under development [22,25–27]. Ultra-
performance liquid chromatography-electrospray ionization-tandem mass spectrometry
multiple reaction monitoring (UPLC-MS/MS MRM) seems to be suitable for determining
fagopyrins in Tartary buckwheat extracts as suggested [28]. A novel sensitive electrochemi-
cal sensor for rutin determination in Tartary buckwheat was developed recently and will
be of much help in the simple and quick determination of rutin in Tartary buckwheat [29].
Other specific methods potentially applied in the determination of bioactive metabolites in
buckwheat are reviewed by Huda et al. [30].

Potential bioactivities of Tartary buckwheat and its metabolites are studied: (1) By
computer simulation methods. Molecular docking is performed in silico using software
and a potential possibility has been found that the buckwheat substance emodin could have
a binding affinity to the active sites of the RNA binding domain of the nucleocapsid protein
of the COVID-19 virus [31]. According to computer modeling, it was found that hypericin
can interact with HIV-1 protease, additional research of the antiviral effects of fagopyrin
or other Tartary buckwheat substances similar to hypericin should be performed [32].
(2) In vitro methods are used for studies of the antigenotoxic effect of Tartary buckwheat by
induced DNA damage in the human hepatoma cell line, evaluated by the use of the comet
assay, and the effects of flavonoids on in vitro Tartary buckwheat starch digestibility [33,34].
(3) Tartary buckwheat reduced the level of low-density lipoprotein cholesterol, total choles-
terol, triacylglycerols, glutamic-pyruvic transaminase, glutamic oxaloacetic transaminase,
creatinine, urea, uric acid, and malonaldehyde, but increased the level of total protein and
the activity of glutathione peroxidase in experimental rats, mice, and piglets [35–37]. (4) By
epidemiological and clinical studies, the impact of Tartary buckwheat on the prevention
of tiredness and cardio-vascular diseases was confirmed [38–41]. According to the epi-
demiological study performed in Liangshan, Sichuan, China, Tartary buckwheat nutrition
correlated with a lower concentration of low-density-lipoprotein cholesterol, lower total
cholesterol, and a higher ratio of serum high-density-lipoprotein in cholesterol in people
regularly consuming Tartary buckwheat [41].

2. Flavonoids

Among the important protecting substances of buckwheat are rutin and other flavonoids
such as quercetin, quercitrin, vitexin, catechin, epicatechin, and epicatechin gallate (Figure 3).
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Genes, involved in rutin biosynthesis and regulation were identified in buckwheat [42].
The capability of Tartary buckwheat to tolerate high levels of UV-B radiation and other
abiotic stress factors is due to several gene families involved in signal transfer and gene reg-
ulation [42]. Researchers identified 769 gene families in phylogenetic trees, which showed
the ancestors of Tartary buckwheat [42,43]. The Liangshan Prefecture of Sichuan Province
in China is the area famous for cultivating Tartary buckwheat, with the highest content
of flavonoids, due to the very high light intensity in the mountain areas. The research in
Liangshan reveal that the activity of enzymes involved in the synthesis of flavonoids is pos-
itively correlated with the content of Tartary buckwheat flavonoids [44]. High temperatures
are affecting the increase of polyphenol and flavonoid content, mainly in the inflorescences,
and so it is boosting antioxidant production in Tartary buckwheat plants [45].
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However, Zhang et al. [42] defined differences in the Tartary buckwheat that appeared
in comparison to its relatives. These differences are obviously responsible for the adapta-
tion of Tartary buckwheat to the environment rich in UV-B radiation and other adverse
environmental factors (Figure 2). Genes included in the rutin biosynthetic pathway and
the myeloblastosis (MYB) transcription factors were described by Zhou et al. and Zhang
et al. [12,42].

Flavonoids and their glycosides are one of the major groups of plant bioactive metabo-
lites. Several bioactive compounds have been detected in various plant parts of buckwheat
(roots stem, leaves, flowers, seeds, sprouted seeds, seedlings, seed husks, and processed
food of buckwheat) by using different detection methods [46–48]. These compounds com-
prise flavonoids, phenolic acids, and their derivatives, fagopyrins, tannins, triterpenoids,
steroids, stilbenes, and so on. Their content depends on various factors including the
plant growth stage, organ, cultivated varieties or buckwheat species, growing season, and
area [47] (Table 1).

Table 1. Content of total polyphenols and flavonoids isolated from different parts of Tartary buck-
wheat (/: no data, BTB: black Tartary buckwheat accessions, YTB: yellow Tartary buckwheat
accessions).

Compounds Name
Content in Dry Weight

References
Roots Stem Leaves Flowers Seeds

Total polyphenols (mg/g) 19.76 / 32.51 / / [49]
Total polyphenols (µg/mg) / 96.5–109.8 / / 208 [50]
Total flavonoids (mg/g) / 17 100 160 / [51]
Total flavonoids (%) / / / / 2.04 [52]
Total flavonoids (µg/mg) / 38.1 / / 142.2 [50]
Total flavonoids (mg/g) / / 76.40 145.4 20.24 [53]
Total flavonoids YTB (mg/g) / / / 49.07 / [54]
Total flavonoids BTB (mg/g) / / / 52.81 / [54]
Total flavonoids (mg/g) / / 213.66 / / [55]

Flavonoids are phenolic compounds, with a 15-carbon skeleton consisting of two
benzene rings connected to a heterocyclic pyran or pyrone ring. Rutin (Figure 3) is a flavonol
glycoside and quercetin (Figure 3) is its aglycone. In plant and food appearance, quercetin
is mainly a result of enzymatic degradation of rutin, due to rutinosidase activity [56–62].
Flavonoids are compounds of special interest due to their antioxidant properties and
potential in preventing tiredness, diabetes mellitus, oxidative stress, and neurodegenerative
disorders such as Parkinson’s disease [26,39,49]. Quercetin orally received is able to enter
and accumulate in the brain as it can cross the blood–brain barrier [63,64].

One of the activities of rutin in buckwheat plants is the protection of plant tissues and
organs from solar UV radiation [65,66]. In addition, quercetin derivatives were detected
among the main bioactive substances in buckwheat root exudates, protecting buckwheat
plants from weeds [67,68]. The exposure of milled or crushed buckwheat grain to water
results in the rutinosidase enzymatic breakdown of rutin to quercetin [69–71].

Tartary buckwheat grain contains 0.8 to 2.9% of rutin [8,72]. In the green parts of
Tartary buckwheat, there is 0.1% of rutin in young leaves and up to 3.4% in developed
leaves (Table 2) [8]. In Tartary buckwheat sprouts, there is approximately 0.3% of rutin in
young sprouts and up to 2.5% in developed sprouts [8].
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Table 2. Content of flavonols isolated from different parts of Tartary buckwheat (/: no data, BTB:
black Tartary buckwheat accessions, YTB: yellow Tartary buckwheat accessions).

Compounds Name
Content in Dry Weight

References
Roots Stem Leaves Flowers Seeds

Rutin (mg/g) / / / / 16.7 [73]
Rutin (%) / / / / 0.8–1.7 [5]
Rutin (g/100 g) / / / / 1.83–1.97 [74]
Rutin (g/100 g) 22.3 482.6 2876.0 3518.6 1469.8 [75]
Rutin (mg/g) / / / / 8.68–13.34 [76]
Rutin (mg/g) / / / / 7.56–8.9 [77]
Rutin (mg/g) / / / / 11.99–21.4 [66,78]
Rutin (%)
different varieties / / / / 1.19–2.91 [79]

Rutin (mg/g) / / / / 16.69 [52]
Rutin (mg/g)
different varieties / / / / 6.5–16.64 [72]

Rutin (mg/g) / / / / 18.08–18.53 [80]
Rutin (mg/g) / / / / 14.1 [81]
Rutin (mg/g) / / / / 11.97 [50]
Rutin (%) / / 6.06 % 7.77 % 1.35 % [53]
Rutin (mg/g) / / / / 14.1 [82]
Rutin (mg/g) 0.8 3.0 28 38 18 [42]
Rutin (mg/mg)
YTB / / / 35.93 / [54]

Rutin (mg/mg)
BTB / / / 38.80 / [54]

Rutin (µg/g) 1963.4 2949.3 2253.8 / [83]
Rutin (mg/g) 3–8 6–14 / 47–63 / [46]
Quercetin (mg/g)
different varieties / / / / 0.47–0.9 [72]

Quercetin (µg/g) 7.2 2.1 172.1 844.7 / [83]
Quercetin(mg/mg)
YTB / / / 3.06 / [54]

Quercetin(mg/mg)
BTB / / / 6.49 / [54]

Kaempferol(mg/mg)
YTB / / / 0.09 / [54]

Kaempferol(mg/mg)
BTB / / / 0.06 / [54]

Myricetin (mg/mg)
YTB / / / 0.40 / [54]

Myricetin (mg/mg)
BTB / / / 0.43 [54]

Catechin (mg/mg) / / / / 0.12 [84]
Catechin (µg/g) 5.3 1.1 9.9 11.9 / [83]
Epicatechin (mg/g) / / / / 0.04 [84]

Suzuki et al. [58] reported results from the experiment with rats on the possibilities of
toxic effects of rutin-rich dough from Tartary buckwheat by acute and subacute toxicity
studies (10,000 and 5000 mg/kg flour per animal body weight, respectively). The concentra-
tion of rutin in Tartary buckwheat grain material was 1570 mg/100 g. No toxic symptoms
were found. The reports of Suzuki et al. and Vogrinčič et al. [85,86] confirmed that Tartary
buckwheat grain flour was not genotoxic.

3. Phenolic Acids

Native and germinated buckwheat is a source of phenolic acids such as neochloro-
genic acid, chlorogenic acid, vanillic acid, caffeic acid, and ferulic acid (Figure 4) [87,88].
Compared to raw Tartary buckwheat, the contents of phenolic acids in fermented Tar-
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tary buckwheat are increased. Podolska et al. [89] reported that total phenolic acid con-
tents are higher in Tartary buckwheat than in common buckwheat. The concentration of
neochlorogenic acid was higher in the non-treated Tartary buckwheat grain than in the
hydrothermally treated flour-water mixtures [90], meaning that neochlorogenic acid is
degraded during the dough making. However, neochlorogenic acid concentrations were
maintained if the temperatures of hydrothermally treated samples were at least 80 ◦C.
So, the Tartary buckwheat grain enzymes are in the mixture of flour and water at the
moderate temperature transforming neochlorogenic acid, but the initial treatments with
high-temperature enzymes are inactivated [90]. The transformation of other phenolic acids
during the treatment of Tartary buckwheat flour or grain is, according to the knowledge of
present authors, not yet investigated.
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Noratto et al. [91] reported that neochlorogenic and chlorogenic acids have potential
as chemopreventive dietary compounds because they have shown relatively high growth
inhibition on an estrogen-independent breast cancer cell line. Neochlorogenic acid might
be a colon cancer suppressive plant component [91,92].

4. Tartary Buckwheat Flour Products

The typical buckwheat flour product is bread, prepared in the central part of Europe
at least since 1689 [93]. It is not known if common or Tartary buckwheat, or a mixture
of both, was used for bread. It is not known when Tartary buckwheat was introduced to
central Europe, but it is documented that it was widely cultivated several years after 1816,
when weather conditions were not favorable for other crops [14]. In Tartary buckwheat
bread making experiments from an initial 7 mg of rutin per g DM in buckwheat flour, bread
contained 2 mg of rutin per g DM. Additionally, 6 mg of quercetin appeared in the bread as
a result of the enzymatic decomposition of rutin [19,20]. Rutin is better conserved in Tartary
buckwheat flour products if the Japanese trace-rutinosidase variety of Tartary buckwheat
‘Manten-Kirari’ is used for making Tartary buckwheat flour food products [20,23].

Tartary buckwheat was used in experimental bread made from 10% chia seeds and
90% Tartary buckwheat (with total flavonoids 22.2 mg rutin equivalents per g flour, dry
matter). In the resulting bread, there was 16.1 mg of total flavonoids, expressed in rutin
equivalents per g of bread, or 16.8 rutin equivalents per gram of bread without the addition
of chia [94].
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Dark and light buckwheat flour differ in composition [8,95]. Dark buckwheat flour
and bran contain more proteins, fiber, secondary metabolites (e.g., rutin), and more mineral
substances compared to light buckwheat flour [96,97]. Very bright buckwheat flour contains
mostly intact starch grains and has water-repellent properties. Unlike large wheat starch
grains, buckwheat starch grains are not easily damaged during grinding [98]. The use of
light buckwheat flour for mixtures of buckwheat and wheat flour does not improve the
taste of bread, while dark buckwheat flour improves its taste [99].

Buckwheat bread is normally made with approximately 30% of buckwheat flour, and
the rest is wheat flour. One possibility is to make buckwheat bread dough and add Tartary
buckwheat groats (kasha). In such a case, it is best to use buckwheat kasha obtained by
traditional technology to husk pre-cooked buckwheat grain.

At the Education Centre, Piramida Maribor, they developed several food products
from Tartary buckwheat flour, namely various dumplings, gluten-free Tartary buckwheat
bread, Tartary buckwheat sticks, diverse Tartary buckwheat potica, Tartary buckwheat
pasta, and other products. Some of these recipes are described in the bilingual (Slovenian-
English) book Ajda-Buckwheat [95].

Buckwheat phenolic compounds can inhibit fungal development due to the phenolic
hydrophobic interactions with cell membranes [100]. This effect is important for the
antifungal properties of sourdoughs. Lactic acid bacteria can split flavonoid glycosides
to flavonoid aglycones and sugar and can further metabolize aglycones. The resulting
metabolites, which include lactic acid and other organic acids, also serve to increase the
antifungal activity of buckwheat sourdough. This might explain the prolonged shelf life of
Tartary buckwheat sourdough bakery products.

In Asia, and in some places in Europe (Slovenia, Italy, France) noodles are popular
traditional buckwheat food products, either freshly made or as dry industrial products [14].
However, in Japan, Korea, and China, Tartary buckwheat noodles are produced in some
places as well [12,101]. Cooking Tartary buckwheat noodles at a temperature lower than
80 ◦C is an adequate way to save the flavonoids in Tartary buckwheat pasta from loss [101].

Approximately 90% of rutin in pasta from ‘Manten-Kirari’ Tartary buckwheat cultivar
remained unchanged. ‘Manten-Kirari’ noodles exhibited only slight bitterness while the
control variety showed the strong bitterness of quercetin, the degradation product of rutin.
The new Tartary buckwheat variety ‘Manten-Kirari’ is promising for making Japanese
buckwheat (soba) rutin-rich noodles with minimal bitterness [102].

5. Tartary Buckwheat Groats

Preparing husked buckwheat grain, kasha, is very challenging. The process has been
known for a long time, as it was described by Valvasor in 1689 [93]. To husk buckwheat
grain, first they must be soaked in boiling water; during this treatment the starch swells.
When ready, the water is removed, and the grain is dried at a moderate temperature. It
should be dried only so that the husk is dry and brittle, and the inside of the grain is elastic
but solid enough not to squeeze or smear when the process is continued. Properly dried
grain is placed into a husking device.

The modern husking of buckwheat grain is essentially the same as it used to be—
cooking, drying, husking, again drying, and blowing off the husk. Buckwheat kasha is
obtained the traditional way by pre-cooking it before husking so it has a special taste and
properties [14].

Another method to husk buckwheat is to use non-precooked grain. The raw husked
common buckwheat groats are green while the just-harvested buckwheat was husked.
After some weeks, the chlorophyll fades and phenolic substances oxidize, so the older
non-precooked buckwheat groats are yellow, and later become reddish. By the green color,
it is possible to estimate that the raw husked groats are fresh and made from just-harvested
common buckwheat [14]. Buckwheat groats obtained by pre-cooking are harder, and by
pressure break into larger particles with a vitreous appearance. Pre-cooked buckwheat
groats are cooked nicely, and they also have a special taste. The substances of traditional
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buckwheat groats, important for this distinctive taste, were studied [103]. Buckwheat groats
are popular in Slovenia, Croatia, Poland, Belarus, Ukraine, Russia, and in some parts of
China. Many dishes can be made with common or Tartary buckwheat kasha [95].

Tartary buckwheat has thick husks and it is difficult to remove them when obtaining
groats. However, rice-Tartary buckwheat is a form of Tartary buckwheat with less firmly
attached husks. It is used in breeding programs to obtain higher levels of flavonoids,
including rutin and quercetin [44].

When buckwheat groats are repeatedly heated and cooled down, the starch molecules
change their structure; they are retrograded and become not easily digestible by our
enzymes [104–106]. Thus, retrograded starch is a part of dietary fiber. There are microflora
in the colon, which have enzymes to break down retrograded starch molecules. The starch
is broken down here into short fatty acids, which have a beneficial effect on the cells of
the colon [106]. Eating buckwheat kasha also improves insulin response and prolongs
satiety sensation [106,107]. In buckwheat dishes, especially in Tartary buckwheat dishes,
are also metabolites, such as tannins and quercetin, that inhibit starch degradation during
digestion [108,109].

6. Green Parts of Tartary Buckwheat Plants

In the green parts of Tartary buckwheat plants is an anthraquinone secondary metabo-
lite fagopyrin (Figure 5). Among buckwheat’s secondary metabolites, fagopyrin appears
to present a potential health threat when the green parts of the plants are consumed. The
ingestion of buckwheat grain and resulting grain food products has been shown to be
safe due to the low concentrations of fagopyrin (Table 3) [11,110–114]. It is reported that
it is possible to use fagopyrin as a protective substance against Phytophthora [115]. The
other anthraquinone metabolite in Tartary buckwheat is emodin [116] (Figure 5). Tartary
buckwheat emodin is concentrated in leaves and grain, but less in the stem and cannot be
detected in roots [117,118]. Emodin has some antiviral effects and was identified that it
may be used for clinical trials [119].
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Table 3. Content of vitexin and fagopyrins isolated from different parts of Tartary buckwheat (/:
no data).

Compounds Name
Content In Dry Weight

References
Roots Stem Leaves Flowers Seeds

Vitexin (µg/g) 5.0 / 3.3 42.2 / [83]
Fagopyrins (µg/g) / / / 38.2 / [83]
Fagopyrins (mg/g) / 2 0.56 6.08 / [112]



Molecules 2022, 27, 7101 10 of 17

Tartary and common buckwheat sprouts (Figure 6) are popular in Korea, mainly as
an addition to buckwheat noodle dishes or as a filling for buckwheat pancakes [120,121].
Tartary buckwheat sprouts have higher biological activity and are a good dietary source of
phenolic and flavonoid compounds, especially for rutin and antioxidant activity compared
to common buckwheat sprouts [122–126].
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The rutin concentration in Tartary buckwheat sprouts does not depend on the mineral
element composition of water in sprouts, but the concentration of quercetin and cate-
chin does. While Tartary buckwheat grain contained 914 mg rutin per kg dry weight,
resulting sprouts contained approximately 10,000 rutin per kg dry weight. In grain and
sprouts, it was approximately 1270 of quercetin in mg per kg, and in sprouts approximately
700–1100 mg per kg, depending on the mineral element composition of the water. In grain
and sprouts, it was approximately 4510 mg per kg of catechin, and in sprouts approxi-
mately 7000–8000 mg per kg, again depending on the mineral element composition of the
water [127,128].

Adequate light and sucrose and calcium chloride treatment have a significant effect
on the growth of buckwheat sprouts. Shin et al. and Nam et al. [129,130] investigated the
influence of different light qualities on the synthesis of phenolic compounds, antioxidant
activity, rutin content, free amino acids, and vitamin C in both types of buckwheat sprouts.
Sucrose and calcium chloride treatment in buckwheat sprouts resulted in the significant
accumulation of bioactive compounds such as polyphenols, flavonoids, vitamins C and E,
and antioxidant activity, without negatively affecting sprout growth [131]. The number of
individual metabolites is also greatly influenced by the age of the sprouts. Yang et al. [132]
showed a chemical difference between the 3-day-old and 8-day-old sprouts using orthog-
onal partial least squares analysis (OPLS–DA). Twenty-seven metabolites were higher in
the 3-day-old sprouts and only three metabolites were higher in the 8-day-old sprouts. A
total of 25 differential compounds were all significantly upregulated upon UV-B radiation,
especially for epicatechin.
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7. Conclusions

Tartary buckwheat metabolites are analyzed using diverse combinations of methanol,
ethanol, and water extraction. The most convenient and widely used are HPLC methods,
but capillary electrophoresis can be used as well.

For the identification of metabolites in diverse Tartary buckwheat tissues, it is possible
to develop the potential application of micro-proton induced X-ray emission (micro-PIXE),
synchrotron-based micro-X-ray fluorescence (micro-XRF), inductively coupled plasma-
mass spectrometry (ICP-MS), and other recently developed physical methods. In this way
it is possible to reveal a connection of plant structures, their phytochemical constitution,
and bioactivities. The information on the phytochemical composition of the details of
Tartary buckwheat plant structures by bioimaging and other newly developed methods
can provide the basis for obtaining the optimal nutritional and functional value of final
products for grain milling and processing. A recently developed electrochemical sensor for
rutin determination will be of much help in the simple determination of rutin in Tartary
buckwheat products. Another challenge is to develop electrochemical sensors for other
Tartary buckwheat bioactive substances.

Studies of the potential bioactivities of Tartary buckwheat metabolites include com-
puter simulation methods by molecular docking performed in silico, in vitro methods on hu-
man tissues, experiments with laboratory animals, and epidemiological and clinical studies.

The capability of Tartary buckwheat to tolerate high altitudes and high levels of UV
radiation is due to several groups of genes involved in signal transfer and gene regulation
for the synthesis of secondary metabolites.

Flavonoids are compounds of special interest in food products due to their antioxidant
properties and potential in preventing tiredness, diabetes mellitus, oxidative stress, and neu-
rodegenerative disorders such as Parkinson’s disease. Important bioactivities of quercetin
are connected with the ability of quercetin to cross the blood-brain barrier and accumulate
in the brain. Some Tartary buckwheat metabolites are transformed during the processing
and preparation of food products. In plants and food products, the appearance of quercetin
is mainly the result of the enzymatic degradation of rutin due to rutinosidase activity.

Buckwheat groats (kasha) are, during the production and preparation of food, repeat-
edly heated and cooled down; the starch molecules change their structure and become
retrograded and slowly digestible by human enzymes. Retrograded starch is a part of
dietary fiber. There are microflora in the colon, which produce enzymes to break down
retrograded starch molecules. Starch is broken down in the colon into short fatty acids,
which have a beneficial effect on the colon cells. Eating buckwheat kasha also improves
insulin response and prolongs satiety sensation. In buckwheat dishes, especially in Tartary
buckwheat dishes, are also metabolites, such as tannins and quercetin, that inhibit starch
degradation during digestion.
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with continuous primary beam. J. Am. Soc. Mass Spectrom. 2019, 30, 1801–1812. [CrossRef] [PubMed]

28. Kim, J.; Kim, S.; Hwang, K.T. Determination and photochemical conversion of protofagopyrins and fagopyrins in buckwheat
plants. J. Food Compos. Anal. 2021, 100, 103894. [CrossRef]

29. Shi, Y.; Chao, L.; Mei, L.Z.; Chen, Z.; Li, X.; Miaoa, M. Soluble tetraaminophthalocyanines indium functionalized graphene
platforms for rapid and ultra-sensitive determination of rutin in Tartary buckwheat tea. Food Control 2022, 132, 108550. [CrossRef]

30. Huda, M.N.; Lu, S.; Jahan, T.; Ding, M.; Jha, R.; Zhang, K.; Zhang, W.; Georgiev, M.I.; Park, S.U.; Zhou, M. Treasure from garden:
Bioactive compounds of buckwheat. Food Chem. 2021, 335, 127653. [CrossRef]

31. Rolta, R.; Yadav, R.; Salaria, D.; Sourirajan, A.; Dev, K. In silico screening of hundred phytocompounds of ten medicinal plants as
potential inhibitors of nucleocapsid phosphoprotein of COVID-19: An approach to prevent virus assembly. J. Biomol. Struct. Dyn.
2020, 39, 7017–7034. [CrossRef]

32. Qu, X.B.; Su, Z.M.; Hu, D.H.; Bao, Y.L.; Meng, X.Y.; Wu, Y.; Li, Y.X. Studies on molecular structure of hypericin and its interactions
with HIV-1 protease by molecular modeling. Chem. J. Chin. Univ. 2009, 30, 1402–1405.
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65. Kreft, S.; Štrukelj, B.; Gaberščik, A.; Kreft, I. Rutin in buckwheat herbs grown at diferent UV-B radiation levels: Comparison of
two UV spectrophotometric and an HPLC method. J. Exp. Bot. 2002, 53, 1801–1804. [CrossRef] [PubMed]

66. Suzuki, T.; Honda, Y.; Mukasa, Y. Effects of UV-B radiation, cold and desiccation stress on rutin concentration and rutin
glucosidase activity in Tartary buckwheat (Fagopyrum tataricum) leaves. Plant Sci. 2005, 168, 1303–1307. [CrossRef]

67. Gfeller, A.; Glauser, G.; Etter, C.; Signarbieux, C.; Wirth, J. Fagopyrum esculentum alters its root exudation after Amaranthus
retroflexus recognition and suppresses weed growth. Front. Plant Sci. 2018, 9, 50. [CrossRef]

68. Kalinova, J.; Vrchotova, N.; Triska, J. Exudation of allelopathic substances in buckwheat (Fagopyrum esculentum Moench). J. Agric.
Food Chem. 2007, 55, 6453–6459. [CrossRef] [PubMed]

69. Suzuki, T.; Honda, Y.; Mukasa, Y.; Kim, S. Effects of lipase, lipoxygenase, peroxidase and rutin on quality deteriorations in
buckwheat flour. J. Agric. Food Chem. 2005, 53, 8400–8405. [CrossRef] [PubMed]

70. Yasuda, T.; Nakagawa, H. Purification and characterization of the rutin-degrading enzymes in Tartary buckwheat seeds.
Phytochemistry 1994, 37, 133–136. [CrossRef]

71. Fujita, K.; Yoshihashi, T. Heat-treatment of Tartary buckwheat (Fagopyrum tataricum Gaertn.) provides dehulled and gelatinized
product with denatured rutinosidase. Food Sci. Technol. Res. 2019, 25, 613–618. [CrossRef]

72. Fabjan, N. Zel in Zrnje Tatarske Ajde (Fagopyrum tataricum Gaertn.) Kot Vir Flavonoidov. Ph.D. Thesis, Biotechnical Faculty,
Ljubljana, Slovenia, 2007; p. 104.

73. Kitabayashi, H.; Ujihara, A.; Hirose, T.; Minami, M. On the genotypic differences for rutin content in tartary buckwheat Fagopyrum
tataricum Gaertn. Breed. Sci. 1995, 45, 189–194. [CrossRef]

74. Briggs, C.J.; Campbell, C.; Pierce, G.; Jiang, P. Bioflavonoid Analysis and Antioxidant Properties of Tartary Buckwheat Accessions.
In Proceedings of the 9th International Symposium on Buckwheat, Prague, Czech Republic, 18–22 August 2022; Faberová, I.,
Dvořáček, V., Čepková, P., Hon, I., Holubec, V., Stehno, Z., Eds.; Research Institute of Crop Production: Prague, Czech Republic,
2004; pp. 593–597.

http://doi.org/10.1016/j.foodres.2006.10.009
http://doi.org/10.3390/molecules17089668
http://www.ncbi.nlm.nih.gov/pubmed/22890171
http://doi.org/10.1016/j.pbiomolbio.2016.11.003
http://doi.org/10.3390/molecules24071310
http://doi.org/10.6090/jarq.49.37
http://doi.org/10.3136/fstr.21.733
http://doi.org/10.3177/jnsv.61.175
http://doi.org/10.3390/plants10040791
http://doi.org/10.3390/plants11030320
http://doi.org/10.1016/j.foodchem.2019.01.038
http://doi.org/10.1155/2018/6241017
http://doi.org/10.1039/C4FO01178C
http://doi.org/10.1155/2022/8962149
http://doi.org/10.1093/jxb/erf032
http://www.ncbi.nlm.nih.gov/pubmed/12147730
http://doi.org/10.1016/j.plantsci.2005.01.007
http://doi.org/10.3389/fpls.2018.00050
http://doi.org/10.1021/jf070795u
http://www.ncbi.nlm.nih.gov/pubmed/17630762
http://doi.org/10.1021/jf0512499
http://www.ncbi.nlm.nih.gov/pubmed/16218693
http://doi.org/10.1016/0031-9422(94)85012-7
http://doi.org/10.3136/fstr.25.613
http://doi.org/10.1270/jsbbs1951.45.189


Molecules 2022, 27, 7101 15 of 17

75. Park, B.J.; Park, J.I.; Chang, K.J.; Park, C.H. Comparison in Rutin Content in Seed and Plant of Tartary Buckwheat (Fagopyrum
tataricum). In Proceedings of the 9th International Symposium on Buckwheat, Prague, Czech Republic, 18–22 August 2022;
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buckwheat sprouts and impact of Se and Zn on the sprout development. In Proceedings of the International Symposium of
Buckwheat Sprouts—Developement and Utilization of Buckwheat as Medicinal Natural Products, Bongpyoung, South Korea,
7–9 September 2009; pp. 46–53.

122. Lee, H.S.; Park, C.H.; Park, B.J.; Kwon, S.M.; Chang, K.J.; Kim, S.L. Rutin, catechin derivatives, and chemical components of
Tartary buckwheat (Fagopyrum tartaricum Gaertn.) sprouts. Korean J. Crop Sci. 2006, 51, 277–282.

123. Kim, S.J.; Zaidul, I.S.M.; Maeda, T.; Suzuki, T.; Hashimoto, N.; Takigawa, S.; Noda, T.; Matsuura-Endo, C.; Yamauchi, H.A.
Time-course study of flavonoids in the sprouts of Tartary (Fagopyrum tataricum Gaertn.) buckwheats. Sci. Hortic. 2007, 115, 13–18.
[CrossRef]

124. Kuwabara, T.; Han, K.H.; Hashimoto, N.; Yamauchi, H.; Shimada, K.I.; Sekikawa, M.; Fukushima, M. Tartary buckwheat sprout
powder lowers plasma cholesterol level in rats. J. Nutr. Sci. Vitaminol. 2007, 53, 501–507. [CrossRef]

125. Nam, T.G.; Lee, S.M.; Park, J.H.; Kim, D.O.; Back, N.I.; Eom, S.H. Flavonoid analysis of buckwheat sprouts. Food Chem. 2015, 170,
97–101. [CrossRef]

http://doi.org/10.1111/j.1745-4549.2011.00607.x
http://doi.org/10.1021/acs.jafc.0c04538
http://doi.org/10.3390/foods10112543
http://doi.org/10.3136/fstr.25.915
http://doi.org/10.1094/CCHEM-87-2-0141
http://doi.org/10.1021/jf970756q
http://doi.org/10.1006/jcrs.1998.0200
http://doi.org/10.1021/jf000779w
http://www.ncbi.nlm.nih.gov/pubmed/11170616
http://doi.org/10.3390/molecules27196172
http://doi.org/10.3986/fag0002
http://doi.org/10.1626/pps.12.475
http://doi.org/10.1016/j.foodchem.2013.07.118
http://doi.org/10.1016/j.jfca.2019.103354
http://doi.org/10.3390/molecules27123689
http://doi.org/10.1017/S0954422415000190
http://doi.org/10.1080/13880209.2016.1211716
http://doi.org/10.1016/j.foodchem.2020.126478
http://www.ncbi.nlm.nih.gov/pubmed/32126466
http://doi.org/10.1021/jf304804c
http://www.ncbi.nlm.nih.gov/pubmed/23305287
http://doi.org/10.3986/fag0013
http://doi.org/10.1021/acsomega.2c01907
http://www.ncbi.nlm.nih.gov/pubmed/35755383
http://doi.org/10.3986/fag0025
http://doi.org/10.1016/j.scienta.2007.07.018
http://doi.org/10.3177/jnsv.53.501
http://doi.org/10.1016/j.foodchem.2014.08.067


Molecules 2022, 27, 7101 17 of 17

126. Kim, H.Y.; Woo, S.Y.; Seo, W.D.; Lee, M.J. Changes of antioxidant activity as affected by cultivation period in buckwheat
(Fagopyrum species) sprouts. J. Korean Soc. Food Cult. 2020, 35, 590–596.
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