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Abstract: Substitution of the diglyme ligand of [Eu(hfa)3(diglyme)] (where hfa is hexafluoroacety-
lacetonate) with a simple 1,10-phenanthroline leads to a six-fold increase of the product µβEFISH, as
measured by the Electric-Field-Induced Second Harmonic generation (EFISH) technique. Similarly,
[Eu(tta)3(1,10-phenanthroline)] (where Htta is 2-thenoyltrifluoroacetone) is characterized by a large
second-order NLO response. Both 1,10-phenanthroline europium complexes have great potential as
multifunctional materials for photonics.

Keywords: europium complexes; antenna-ligand; second-order nonlinear optics

1. Introduction

The design and characterization of molecules with a second-order nonlinear optical
(NLO) response have received considerable attention due to their application in a range
of fields such as optical communications, electrooptical devices, and optical data pro-
cessing [1,2]. To present good second-order NLO properties, a molecule has to be non-
centrosymmetric, with a great difference between the excited state and the ground state
dipole moment; in addition, it has to be characterized by charge-transfer transitions at
relatively low energy. Thus, organic molecules containing electron-acceptor and electron-
donor groups connected by a polarizable π-conjugated bridge can reach a good NLO
response [1–6]. In the last twenty years, coordination compounds, characterized by low-
energy ligand-to-metal, metal-to-ligand, ligand-to-ligand and intraligand charge-transfer
(LMCT, MLCT, LLCT, and ILCT, respectively) excited states, have shown their great po-
tential for second-order nonlinear optics [7–22]. In the design of NLO-active complexes,
a useful aspect is that the energy of the charge-transfer states is easily controlled by the
nature and oxidation state of the metal and by the choice of the ligands. In particular, it
appeared that the second-order NLO response of various π-delocalized nitrogen donor
ligands such as pyridines, stilbazoles, phenanthrolines, bipyridines, and terpyridines can be
greatly enhanced upon coordination to a metal center [8–15,20,22–26]. Coordination com-
plexes with various metals have been studied. However, surprisingly, although lanthanide
(Ln) complexes have been intensively investigated for their luminescent and magnetic
properties [27,28], as well as for biological applications [29–33], there are only a few reports
on their peculiar NLO properties [34–43].

It was reported that dipolar lanthanide complexes such as [LLn(NO3)3] (where L is
a dibutylaminophenyl-functionalized annelated terpyridine) are characterized by a good
second-order NLO response, measured by the Harmonic Light Scattering (HLS) technique in
solution [44–47], which increases as the number of f electrons increases [34,36]. Similarly, the
increase in the quadratic hyperpolarizability, βHLS, of Na3[Ln(pyridyl-2,6-dicarboxylate)3]
along the Ln series can be explained by the increased number of f electrons [35]. The
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unexpected fact that the quadratic hyperpolarizability depends on the number of f elec-
trons was attributed to the polarization of the 4f electrons [41]. Additionally, it has been
reported that the quadratic hyperpolarizibilities of Ln complexes bearing nonadentate lig-
ands based on triazacyclononane, functionalized with pyridyl-2-phosphinate groups, reach
a maximum around the center of the lanthanide series, with a bell-shaped trend [42]. A sim-
ilar trend of the quadratic hyperpolarizibilities was observed in the case of Ln complexes
of trans-cinnamic acid [44]. In parallel, some of us studied the second-order nonlinear
optical response of [Ln(hfa)3(diglyme)] (hfa = hexafluoroacetylacetonate; diglyme = bis
(2-methoxyethyl) ether) by a combination of Electric-Field Induced Second Harmonic genera-
tion (EFISH) and HLS techniques in solution, confirming the role of f electrons in controlling
the second-order NLO properties [38]. In these systems, the molecular quadratic hyperpo-
larizabilities measured by the EFISH method [48], βEFISH, initially increase rapidly with the
number of f electrons, whereas the increase is much lower for the last seven f electrons; addi-
tionally, the βHLS values increase, but much less rapidly, along the Ln series [38]. Similarly,
the βEFISH values of trinuclear lanthanide adducts [Ln(NO3)3(CuL)2] (Ln = La, Ce, Sm, Eu,
and Er; L = N,N′-1,3-propylen-bis (salicylideniminato)) are significantly influenced by the
number of f electrons: the values initially increase rapidly with the number of f electrons,
starting from lanthanum to europium; then the increase is less marked upon addition of
the other f electrons, with the βEFISH value of the Er complex (11 f electrons) being only
1.1 times higher than that of the Eu complex (6 f electrons) [39]. This study confirmed
that the surprising polarizable character of f electrons is the origin of the fascinating NLO
properties. As general trend, the increase of the second-order NLO response is significant
up to fulfilment of half f shell, while it becomes much less relevant with the addition of
further f electrons up to the total fulfilment of the f shell [39].

This latter observation and the fact that lighter lanthanides (Ce-Eu) are more abundant
than the heavier ones (Gd-Lu), and therefore are generally less expensive [49], render
europium complexes of particular interest for NLO studies.

In the present work, we found that two known luminescent β-diketonate europium
complexes [Eu(hfa)3(1,10-phenanthroline)] and [Eu(tta)3(1,10-phenanthroline)], from now
on [Eu(hfa)3(phen)] and [Eu(tta)3(phen)], show an unexpected large NLO response, much
higher than that previously reported for the related [Eu(hfa)3(diglyme)] [38], as evidenced
by the Electric-Field Induced Second Harmonic generation (EFISH) technique in solu-
tion [41], opening a promising route for easily prepared multifunctional NLO-active lan-
thanide complexes.

The Eu complexes under investigation are schematized in Figure 1. The structures
present the Eu as central metal in the most stable oxidation state 3+ and stabilized by
six oxygens coming from the β-diketonate ligands and by two nitrogens of the phenanthro-
line for [Eu(hfa)3(phen)] and [Eu(tta)3(phen)] (complexes 1 and 2 in Figure 1), while the
Eu coordination sphere is completed with three additional oxygens of the polyether for
[Eu(hfa)3(diglyme)], complex 3.
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2. Results and Discussion

The europium fluorinated β-diketonate complexes have been obtained through a facile
synthesis starting from the europium acetate and the ligands. The present approach
finds counterparts in the route previously reported for the analogous [Eu(hfa)3(diglyme)]
complex [28,38] and offers several advantages, such as high yield, synthesis in a single step,
low-cost route from commercially available chemicals. Additionally, all the complexes can
be handled in air, are non-hygroscopic, soluble in common organic solvents and present
high thermal and chemical stability.

Furthermore, the second-order nonlinear optical properties in chloroform solution of
complexes 1 and 2 have been deeply studied, working with an incident radiation of low
energy (λ = 1.907 µm), by the EFISH method in solution [48].

This technique, suitable for dipolar molecules, provides information on the molecular
NLO properties through the following equation:

γEFISH = (µβλ/5kT) + γ (−2ω;ω,ω, 0)

where µβλ/5kT is the dipolar orientational contribution and γ (−2ω;ω,ω, 0) is the elec-
tronic cubic contribution, which can usually be neglected when studying the second-order
NLO properties of dipolar molecules. Bλ is the projection along the dipole moment axis of
βVEC, which is the vectorial component of the tensor of the quadratic hyperpolarizability,
working with an incident wavelength λ of a pulsed laser. To avoid overestimation of the
quadratic hyperpolarizability value, due to resonance enhancements, it is necessary to
work with an incident wavelength λwhose second harmonic λ/2 is far from any absorption
band of the compound investigated. For this reason, a wavelength of 1.907 µm was chosen
to study complexes 1 and 2. To obtain the value of βEFISH it would be necessary to know
the ground state dipole moment µ of the molecule. However, from an applicative point
of view, it is the product µβEFISH that should be maximized. A compound with a µβEFISH
value higher than that of Disperse Red One (500 × 10−48 esu), proposed for electrooptic
polymeric poled films [50,51], can be considered of interest for photonic applications.

It turned out that [Eu(hfa)3(phen)] (1; Figure 1) is characterized, in solution, by
a µβEFISH of 1016 × 10−48 esu (Table 1), 6.3 times higher than that previously reported [38]
for the related complex [Eu(hfa)3(diglyme)] (3). Therefore, remarkably, replacement
of diglyme with a simple 1,10-phenanthroline leads to a huge increase of the second-
order NLO properties. Such a large NLO response is also observed for [Eu(tta)3(phen)]
(2; µβEFISH = 920 × 10−48 esu) in which the hexafluoroacetylacetonate ligand has been
replaced by the 2-thenoyltrifluoroacetonate. It is worth pointing out that these values
are higher than that observed for the europium adduct [Eu(NO3)3(CuL)2] in solution
(µβEFISH = 720 × 10−48 esu), which is much more difficult to prepare [39].

The large NLO response of 1 and 2 is thrilling also due to the simplicity of the
1,10-phenanthroline ligand. In fact, it is known that coordination of 5-X-1,10-phenanthrolines
to a “Zn(CH3CO2)2” moiety produces a significant enhancement of the product µβEFISH,
which becomes 99× 10−48, 254× 10−48, and 616× 10−48 esu for X = OMe, NMe2, and trans-
CH=CHC6H4NMe2, respectively) [52,53], but the best NLO response of these Zn(II) com-
plexes is lower than that obtained for complexes 1 and 2, although the 1,10-phenanthroline
ligand is functionalized in the Zn systems.
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Table 1. Main absorption bands in the UV-visible spectra and second-order NLO response.

Compound Absorption a λmax/nm (ε/M−1 cm−1) µβ (×10−48 esu) b

1
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Figure 2. UV-vis spectra of [Eu(hfa)3(phen)], [Eu(tta)3(phen)] and [Eu(hfa)3(diglyme)], complexes
from 1 × 10−4 M solutions in CH2Cl2.

In particular, the [Eu(hfa)3(diglyme)] adduct shows a strong band around 306 nm,
whereas the [Eu(hfa)3(phen)] presents bands centered at 233, 272 and 293 nm arising from
the phen and hfa contributions. Notably, in both complexes, a shoulder around 325 nm can
be assigned to the lowest spin-allowed π-π* transition of the β-diketonate hfa ligand [54,55].
Finally, the absorption spectrum of the [Eu(tta)3(phen)] displays, together with the bands at
230 and 272 nm due to the 1,10-phenanthroline, a broad and intense signal at 341 nm arising
from the tta ligand. For an easier comparison of the different contribution arising from
each ligand, overlays of the UV-vis spectra of the complexes and the associated ligands are
reported in Figure 3. Thus, the UV-vis spectra of 1 and 2 are due to the contribution of the
relative β-diketonate, hfa and tta for 1 and 2, respectively, and antenna ligand phen, while
the UV spectrum of 3 is only due to the hfa contribution, the diglyme beeing inactive in the
UV-vis region.
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In addition, the luminescence spectra of the adducts, registered at room temperature,
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Figure 4. Luminescence spectra (λexc = 348 nm), of [Eu(hfa)3(phen)], [Eu(tta)3(phen)] and
[Eu(hfa)3(diglyme)], complexes in CH2Cl2.

The spectra, recorded as CH2Cl2 solutions, are reported normalized in intensity, but
similar intensity values have been obtained with concentrations of 10−3 M, 10−5 M and
10−3 M for the complexes 1, 2 and 3, respectively. Therefore, the [Eu(tta)3(phen)] has
a much higher luminescence intensity. The emission peaks observed in Figure 4 consist of
f—f emission transitions from the 5D0 excited state to the 7FJ multiplet of the Eu(III) ion. In
particular, the peaks at 578, 590 and 612 nm are assigned to the Eu ion transitions 5D0→ 7F0,
5D0 → 7F1 and 5D0 → 7F2, respectively [56]. The presence of the band due to the 5D0-7F0
transition in the 574–582 nm spectral region due to a singlet-to-singlet transition indicates
that the Eu3+ ion occupies a low symmetry environment in all the three compounds [57].
This feature is also supported by the asymmetry ratio, i.e. the ratio between the 5D0 → 7F2
and 5D0 →7F1 electronic transitions, which, with a value ranging from 9.05, to 11.89 and
17.6 for 3, 1 and 2, respectively, indicates a highly asymmetric environment [57].

3. Materials and Methods

All reagents and solvents were purchased from Sigma-Aldrich and were used without
further purification.

[Eu(hfa)3(1,10-phenanthroline)], (1). The adduct was synthetized through a one-step
reaction from the Eu(III) acetate hydrate, Hhfa, 1,10-phenanthroline. Specifically, 1.5797 g
(4.8 mmol) of Eu(CH3COO)3·xH2O was first suspended in dichloromethane (50 mL).
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1,10-phenanthroline 0.8650 g (4.8 mmol) was added to the suspension. H-hfa 2.04 mL
(14.4 mmol; d = 1.47 g/mL) was added under vigorous stirring after 10 min and the mixture
was refluxed under stirring for 1 h. After solvent evaporation, the complex appears in
form of very light orange crystals. The crystals were collected, washed several times with
pentane in order to ensure a high degree of purity, and filtered. The yield was about 90%.
Elemental analysis (EuC27H11O6N2F18): Calc: C, 34.02; H, 1.16. Found: C, 33.69; H, 1.20.

[Eu(tta)3(1,10-phenanthroline)], (2). The adduct was synthetized following a reaction
similar to that of 1 from 1.5797 g (4.8 mmol) of the Eu(III) acetate hydrate suspended in
ethanol (100 mL), 0.8650 g (4.8 mmol) of 1,10-phenanthroline, and 3.1993 g (14.4 mmol)
of Htta. The adduct was collected after solvent evaporation, washed several times with
pentane, and a yield of about 88% was obtained. Elemental analysis (EuC36H20O6N2S3F9):
Calc: C, 43.43; H, 2.02. Found: C, 43.88; H, 1.97.

[Eu(hfa)3(diglyme)], (3). The adduct was synthetized following a procedure similar
to that of 1, from 1.5797 g (4.8 mmol) of the Eu(III) acetate hydrate, 2.04 mL (14.4 mmol;
d = 1.47 g/mL) Hhfa and 0.69 mL (4.8 mmol; d = 0.940 g/mL) of diglyme. A similar
purification process was also executed for this product. The yield was about 92%. Elemental
analysis (EuC21H17O9F18): Calc: C, 27.80; H, 1.89. Found: C, 27.35; H, 1.79.

Characterization. All EFISH measurements were carried out at the Dipartimento di
Chimica of the Università degli Studi di Milano, in CHCl3 solutions at a concentration
of 1 × 10−3 M, working with a non-resonant incident wavelength of 1.907 µm, obtained
by Raman shifting the fundamental 1.064 µm wavelength produced by a Q-switched,
mode-locked Nd3+: YAG laser manufactured by Atalaser. The spectrometer for the EFISH
measurements was a prototype made by SOPRA (France). The reported µβEFISH values are
the mean of 16 successive measurements performed on the same sample.

The UV-Vis spectra of the three adducts were collected using a JASCO V-650 UV − vis
spectrophotometer, starting from 1× 10−4 M solutions in CH2Cl2. Photoluminescence spectra
were collected at room temperature using a JASCO FP-8300 spectrofluorimeter at a λ excita-
tion of 348 nm for the [Eu(hfa)3(diglyme)], [Eu(hfa)3(phen)] and [Eu(tta)3(phen)] complexes.
Elemental microanalyses were carried out using a Carlo Erba 1106 elemental analyzer.

4. Conclusions

Lanthanide complexes have been intensively studied for their luminescent and mag-
netic properties, but recently, their NLO properties have also attracted great interest. Among
them, the Eu non-centrosymmetric molecules, containing the 1,10-phenanthroline antenna
ligand, have been the object of interest in the present study. This work has evidenced
the unexpected huge second-order NLO response of luminescent β-diketonate europium
complexes bearing a simple 1,10-phenanthroline, a result of particular relevance in the
search of new multifunctional building blocks for photonic nanomaterials. Their µβEFISH
values, higher than that of the benchmark Disperse Red One, open the way to the use of
these Eu complexes in a wide range of technological fields such as photonic applications.
Thus, the 1,10-phenanthroline ligand, a well-known antenna ligand for the photolumi-
nescence of Eu(III), plays a crucial role in boosting the NLO response of these systems.
In fact, the µβ value goes from 161(×10−48 esu) for the [Eu(hfa)3(diglyme)] complex to
1061 (×10−48 esu) for Eu(hfa)3(1,10-phenanthroline), due to the substitution of diglyme
by 1,10-phenanthroline. Because the two compounds have the same β-diketonate, the
unique difference, and thus the factor responsible for the significant increase in the µβ
value, is the phenanthroline. This observation is further supported by the µβ value of
920 (×10−48 esu) found for [Eu(tta)3(1,10-phenanthroline)]. Other important advantages
of the present work are, on the one hand, the facile, one-pot, low-cost synthetic approach,
and on the other hand, the non-hygroscopic, high-solubility and air stability features of the
complexes, which represent added values and open a promising route for easily preparing
multifunctional NLO-active lanthanide complexes.
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Finally, the present results open the door to other intriguing EFISH investigations such
as the study of the effect of donor substituents on the 1,10-phenanthroline coordinated
to lanthanides.
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