

Correction Correction: Zhu et al. Biodegradable and pH Sensitive Peptide Based Hydrogel as Controlled Release System for Antibacterial Wound Dressing Application. *Molecules* 2018, 23, 3383

Jie Zhu ¹, Hua Han ¹, Ting-Ting Ye ¹, Fa-Xue Li ^{1,*}, Xue-Li Wang ², Jian-Yong Yu ² and De-Qun Wu ^{1,*}

- ¹ Key Laboratory of Textile Science and Technology, Ministry of Education, College of Textiles, Donghua University, Songjiang District, Shanghai 201620, China
- ² Modern Textile Institute, Donghua University, Changning District, Shanghai 200051, China
- * Correspondence: fxlee@dhu.edu.cn (F.-X.L.); dqwu@dhu.edu.cn (D.-Q.W.); Tel.: +86-182-177-00746 (D.-Q.W.)

During the course of a review of our publication, we found two errors in Figures 4b and 9. We wish to make the following corrections to this paper [1]. We have inserted SEM and H&E images mistakenly, but the results and conclusions of the paper are not affected. We have provided the correct figures below.

All co-authors agree with the content of this correction and we would like to apologize for any inconvenience caused to the readers by these changes.

Figure 4. SEM images of homogeneous peptide-based bis-acrylate/AAc hydrogels before biodegradation: (a) Gel-1; (b) Gel-2; (c) Gel-3; (d) Gel-4. With the increasing of peptide-based bis-acrylate contents, the pore size of the hydrogels would decrease.

Citation: Zhu, J.; Han, H.; Ye, T.-T.; Li, F.-X.; Wang, X.-L.; Yu, J.-Y.; Wu, D.-Q. Correction: Zhu et al. Biodegradable and pH Sensitive Peptide Based Hydrogel as Controlled Release System for Antibacterial Wound Dressing Application. *Molecules* 2018, 23, 3383. *Molecules* 2022, 27, 6682. https://doi.org/10.3390/ molecules27196682

Received: 27 October 2020 Accepted: 4 July 2022 Published: 8 October 2022

Publisher's Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Copyright: © 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https:// creativecommons.org/licenses/by/ 4.0/).

Figure 9. In vivo toxicity assessment of hydrogels. Hematoxylin-eosin (H&E) stained tissue slices (liver, spleen, kidney, heart and lung) of mice injected with hydrogels after 24 h (the white scale bar is 200 µm).

Reference

1. Zhu, J.; Han, H.; Ye, T.-T.; Li, F.-X.; Wang, X.-L.; Yu, J.-Y.; Wu, D.-Q. Biodegradable and pH Sensitive Peptide Based Hydrogel as Controlled Release System for Antibacterial Wound Dressing Application. *Molecules* **2018**, *23*, 3383. [CrossRef] [PubMed]