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G W N e

Abstract: Cancer is one of the leading causes of morbidity and mortality around the globe and is likely
to become the major cause of global death in the coming years. As per World Health Organization
(WHO) report, every year there are over 10 and 9 million new cases and deaths from this disease.
Chemotherapy, radiotherapy, and surgery are the three basic approaches to treating cancer. These
approaches are aiming at eradicating all cancer cells with minimum off-target effects on other cell
types. Most drugs have serious adverse effects due to the lack of target selectivity. On the other
hand, resistance to already available drugs has emerged as a major obstacle in cancer chemotherapy,
allowing cancer to proliferate irrespective of the chemotherapeutic agent. Consequently, it leads
to multidrug resistance (MDR), a growing concern in the scientific community. To overcome this
problem, in recent years, nanotechnology-based drug therapies have been explored and have shown
great promise in overcoming resistance, with most nano-based drugs being explored at the clinical
level. Through this review, we try to explain various mechanisms involved in multidrug resistance in
cancer and the role nanotechnology has played in overcoming or reversing this resistance.

Keywords: cancer; chemotherapy; multidrug resistance; nanotechnology; nanomedicine

1. Introduction

Cancer is a global burden, and as per the latest GLOBOCAN 2020, over 19.3 and
10 million new cases and deaths occurred in 2020, respectively; female breast cancer has
surpassed lung cancer and is now the most commonly diagnosed cancer (11.7%), followed
by lung cancer (11.4%), colorectal cancer (10%), and prostate cancer (7.3%) [1]. In mortality,
lung cancer remains at the top [1]. As per World Health Organization (WHO) statistics 2019,
in 112 out of 183 countries in the world, people die of cancer before attaining the age of
70 years [2]. Despite the world having advanced in science and technology, chemotherapy
remains a promising option to treat cancer [3]. Conventional chemotherapy has greatly
improved the decline in the mortality rate of several dreadful cancers, but its major problem
is the killing of cancerous and noncancerous cells causing serious off-target effects such
as hair loss, bone marrow depression, and other toxic effects [4]. Therefore, a significant
percentage of cancer-related research over the past few decades has focused on creating
medications that more precisely target tumor cells rather than normal cells [5]. Precision
therapy has greatly advanced thanks to the development of targeted therapy, but there are
still numerous unavoidable side effects, and drug resistance has long been an issue [6].
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Over 90% of failures in chemotherapy are due to the development of resistance to the
already available drugs; this resistance resembles infectious disease treatment resistance
and is the most challenging aspect of treating and preventing cancers [7]. This has emerged
as a major obstacle and allows cancer to proliferate in presence of a chemotherapeutic
agent [8]. Significant resistance develops generally to repeated treatment with one kind of
anticancer agent and then develops further towards similar or completely different drugs
having a similar mechanism of action. This mechanism, known as multidrug resistance
(MDR), can be intrinsic or acquired [9].

To overcome this problem, in recent years, nanotechnology-based drug dosage forms
have been explored, which have shown great promise [10]. Most of these nanomedicines
are heading toward clinical trials [11]. Nanotechnology has been used in medicine more and
more over the past few decades, including applications for safer and more efficient tumor
targeting, detection, and treatment [12-20]. Drug delivery methods based on nanoparticles
(NPs) have demonstrated a number of benefits in the treatment of cancer, including good
pharmacokinetics, accurate targeting of tumor cells, a decrease in adverse effects, and
reduced drug resistance [21-25]. Nevertheless, nanomedicine-based formulations have
some demerits, such as difficulty in physical handling due to smaller size, particle aggre-
gation, limited drug loading, and burst release [19,20]. This review outlines the different
mechanisms of cancer chemotherapy resistance and describes the different mechanisms
such as the use of nanotechnology in overcoming multiple drug resistance.

2. Cancer Chemotherapy Resistance and Mechanism

Cancer chemoresistance is a growing concern in medical oncology. Some cancers,
including Hodgkin’s lymphomas, acute promyelocytic leukemia, and chronic myeloid
leukemia, have been successfully understood and treated despite their complex patho-
physiology [26]. The development of anticancer agents against these complex cancers
has been achieved by understanding the deep mechanisms, and various drugs have been
developed [7]. These mainly include the stimulation of immune response using interferon-
alpha (IF-o) and inhibition of oncogenes or oncoproteins [27-35]. Many of them are still in
practice; however, resistance has developed to the majority of them, which has ultimately
affected patient survival [36]. There are various reported resistance mechanisms associated
with cancer chemotherapy such as drug efflux, detoxification, stem cells, epithelial-to-
mesenchymal transition, inactivation of the drugs before reaching the target, multidrug
resistance, inhibiting cell death (apoptosis suppression), augmenting gene amplification
and DNA repair of oncogenes, and alteration in the metabolism of drugs. Figure 1 shows
the illustration of different possible mechanisms of chemotherapy resistance [37]. Drug
resistance in cancer is believed to be due to intrinsic and acquired resistance; however,
most cancers in clinical settings have become resistant owing to combinations of these
factors [38]. In this review, we will describe a few important drug resistance mechanisms
in cancer and will then focus our view on the use of nanotechnology in overcoming drug
resistance in cancer.
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2.1. Role of Drug Efflux Pumps in Cancer Drug Resistance

The human genome encodes 48 members of drug efflux proteins called ATP-binding
cassettes which are further classified into seven subgroups (ABCA, ABCB ABCC, ABCD,
ABCE, ABCEF, and ABCG) [39]. These proteins have a significant role in the development
of drug resistance [40]. These proteins expel the drug out of the cell, thereby reducing the
therapeutic concentration of the drug inside the cell [41]. Enough evidence suggests the
overexpression of these proteins, especially multiple drug resistance protein 1 (MDR 1)
known as P-glycoprotein, multiple drug resistance-associated protein (MDRA), and breast
cancer resistant protein (BCRP), on cellular surfaces [42]. Normally these transporters
help in pumping out toxins and foreign substances [43]. These transporters in general and
P-pg in particular transport a range of substances including anticancer agents out of the
cell, causing depletion of therapeutic concentration. Overexpression of P-pg in patients
causes efflux of paclitaxel and doxorubicin and leads to resistance to these drugs [44]. This
is evidenced by a study conducted on a genetically engineered mouse model (GEMM),
where the tumor recurred due to upregulation of ABCBla and b and was found to be
cross-resistant to docetaxel also [39,45]. Another study shows the non-responsiveness of
the tumor to olaparib, a PARP inhibitor, due to the overexpression of ABC1 a/b [46,47],
thus confirming the overexpression of these efflux proteins in drug-resistant cancers.

2.2. Suppression of Apoptosis

Although apoptosis and autophagy are altogether different, they ultimately contribute
to cell death [48]. Two different mechanisms in apoptosis contribute to cell death: (a) in-
trinsic, which involves the mitochondrial-mediated bcl2 proteins, Akt, and caspase-9, and
(b) extrinsic, which involves death receptors on the cellular surface [49]. Ample evidence
supports the initiation of human cancer from cancer stem cells (CSCs), and it is believed that
these apoptotic pathways become dysregulated and lead to cancer chemotherapy resistance
and tumor recurrence [50]. High levels of antiapoptotic proteins which are considered the
hallmarks of cancer have been seen in drug-resistant cancers [51]. The antiapoptotic protein
family which includes Bcl-2, Mcl-1, and Bcl-xj, has been seen at raised levels compared to
proapoptotic proteins Bax, Puma, Noxa, Bak, Bil, and Bid, causing an imbalance between
the pro- and antiapoptotic proteins which ultimately leads to cancer drug resistance [52].
The formation of the mitochondrial apoptosis-induced channel (MAC), which is formed by
binding of tBid with Bax and Bak through activated caspase-8, is hindered by the down-
regulation of proapoptotic and upregulation of antiapoptotic proteins, which leads to the
formation of resistant cancers by inhibiting the release of cytochrome C, a key protein
for electron transfer in mitochondria [53]. This overexpression of antiapoptotic proteins
is responsible for drug resistance in multiple cancers [54]. Additionally, overexpression
of Nf-kB, P53, and PI3/AKT cell death-related receptors is also involved in chemoresis-
tance [55]. In addition, apoptosis evasion through aberrant autophagy is another factor in
the development of multiple drug resistance [56].

2.3. Drug Inactivation

Before a drug reaches the gastrointestinal tract or systemic circulation, some drugs
that are in prodrug form interact with certain proteins which partially degrade, modify, and
form complexes with other endogenous substances, leading to the activation of a drug [57].
Certain cancers have developed resistance due to decreased activation of prodrugs to
active drugs [58]; the most prominent example is the mutation and downregulation of
phosphorylation events in the conversion of AraC into AraC-triphosphate which is used in
the treatment of acute myelogenous leukemia [8,59]. Several drugs metabolizing enzymes
such as uridine diphosphate-glucuronosyltransferase, the glutathione-S-transferase family,
and cytochrome P450 are muted one way or another and ultimately lead to resistance to
already available drugs [60]. The overactivity of cytochrome p450 has been reported to
lead to its resistance in breast cancer [61]. Detoxification of drugs by overproduction of
glutathione has led to the development of resistance to many platinum compounds and
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alkylating agents such as cisplatin and doxorubicin [62]. Thus, mutations in phase I and
phase Il reactions either reduce the activity of drugs by increasing their detoxification or
lead to the development of drug resistance by inactivating certain drugs.

2.4. Role of miRNAs in Cancer Drug Resistance

miRNAs are processed from RNA hairpin structures, which regulate genes in cancer,
especially in resistant ones [63]. They are involved in apoptosis, cellular proliferation,
stress tolerance, the cell cycle, and immune response [64]. Around 30% of human genes are
regulated by miRNAs and have a role in tumor development [63]. Some act as protumor
genes, some act as suppressor genes, and some act as both [65]. Studies conducted by
various researchers provide evidence of miRNAs being involved in cancer drug resistance
by either enhancing tumor cancer genes or having involvement in genes that are related to
apoptosis, cellular proliferation, and the cell cycle [66]. Due to their tissue specificity, one
kind of microRNA could be targeted by multiple microRNAs; hence the same miRNA can
either promote or inhibit resistance to chemotherapy [67,68]. In breast cancer, upregulation
of miRNA-21 downregulates phosphatase tensin homolog (PTEN) and thereby decreases
the susceptibility of doxorubicin to cancer cells, while overexpression of PTEN inhibits
miRNA-21 and reduces the resistance of breast cancer cells to doxorubicin [69]. Table 1
reports some of the miRNAs that regulate cancer chemotherapeutic drug resistance [70-80].

Table 1. List of some miRNAs that regulate cancer chemoresistance.

miRNA Target Cancer Type Drug Target Reference
miR-7 MDR1 SCLC Anthracyclines [70]
miR-21 PTEN Breast Trastuzumab [71]
miR-20a MAPK1 Colorectal 5-Fluorouracil [72]
miR-103/107 P-gp Gastric Doxorubicin [73]
miR-196a MDR1/MRP1 NSCLC Cisplatin [74]
miR-17-5p PHIPP2 MCL Topotecan [75]
microRNA-34a SIRT1, Bcl-2 Prostate Paclitaxel [76]
miR-96 XIAP Colorectal 5-Fluorouracil [77]
miR-499a UBE2V2 Cervical 5-Fluorouracil [78]
miR-RNA-449 NOTCH1 Ovarian Doxorubicin [79]
miR-320c SMARCC1 Pancreatic Gemcitabine [80]

Abbreviations: MDR1: multidrug resistance mutation 1; PTEN: phosphatase tensin homolog; MAPK1: mitogen-
activated protein kinase 1; P-gp: P-glycoprotein; MRP1: multidrug resistance-associated protein 1; PHIPP2: phage
phi-PP2; SIRT1: sirtuin 1; XIAP: X-linked inhibitor of apoptosis protein; Bcl-2: B-cell lymphoma-2; UBE2V2:
ubiquitin conjugated enzyme E2V2; NOTCHI: human gene; SMARCC1: protein; SCLC: small cell lung carcinoma;
NSCLC: non-small-cell lung carcinoma; MCL: mantle cell lymphoma.

2.5. Tumor Microenvironment (TME)

The TME leads to the development of resistance by providing an environment rich in
the stroma, immune cells, and vasculature which helps in the development of resistance by
several mechanisms such as hampering drug absorption, restricting immune clearing of
cancer cells, and stimulating factors for cancer cell proliferation [81]. Lactic acid produced
by intermediate glycolytic intermediates results in a change in pH in cancer cells; this
change in pH gradient results in neutralization and protonation of certain anticancer agents
such as doxorubicin, thereby preventing them from entering the target site [82,83]. Hypoxia
is a key factor in cancer drug resistance; its transcription factor hypoxia-inducible factor
(HIF) is expressed in many cancers [84], which is supported by numerous studies involving
HIF inhibitors as chemosensitizing agents in cancer. The TME also helps tumors to become
resistant by providing an environment for metabolic reprogramming, DNA repair, and the
immune microenvironment [85].
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3. Nanotechnology and Cancer

Nanotechnology is an interdisciplinary field that has recently emerged as one of the
most promising fields in the treatment of cancer [86]. Owing to this, an urgent need arises
for the development of novel and innovative technologies and methodologies that could
assist in characterizing tumors, recognizing micrometastasis and residuary tumor cells, and
ascertaining whether or not a certain tumor has been removed completely [87]. The focus on
nanotechnology for in vitro diagnostics and drug delivery has surged in recent years. This
technology comprises only a few sections, albeit analytic ones, which are being assembled
to triumph over the war against cancer [88]. Studies focusing on nano-based drugs have
achieved tremendous achievements in reversing drug resistance either by active or passive
mechanisms [89]. These nano-based drugs have successfully improved the efficacy of drugs,
reduced off-target effects, and overcome drug resistance [90]. The advantage of nano-based
drugs over conventional therapies is the selectivity of the target [91]. Over time, a number of
nanoparticles have been designed and studied, such as metal nanoparticles, polymer-based
nanoparticles, and nanovesicles such as liposomes and dendrimers which have greatly
overcome chemoresistance in cancer [10]. Figures 2 and 3 show the possible mechanisms
of resistance and how nanotechnology helped in achieving efficient chemotherapy and
overcoming resistance.

Mechanism of drug resistance in cancer Nano based dregs in cancer
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Figure 2. Illustration of the influence of nanotechnology on multidrug resistance in cancer.
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As already discussed, chemotherapy faces several unavoidable problems such as
short half-life, cytotoxicity, lack of selective targeting, poor solubility, and multiple drug
resistance. Nanomaterial-based chemotherapy, chemodynamic therapy (CDT), photo-
dermal therapy (PDT), molecular therapy, sonodynamic therapy (SDT), photothermal
therapy (PTT), and targeted therapy are currently being used in cancer treatment. In
addition, an ample number of studies on certain therapies such as signal modification
therapy, immunotherapy, nucleic-acid-based therapy, anti-angiogenesis therapy, therapies
regulating apoptosis, and molecular therapy have been conducted in recent years [92].
Table 2 summarizes the different types of nanoparticles that have been explored in cancer
research [93-100].

Table 2. Type of nanoparticles in cancer research.

Modification Payload Therapy Involved Outcome Reference

There was improved efficiency in

PLGA NP PTX Chemotherapy drug delivery compared with [93]
free PTX
Nucleic-acid-based Transfected leukemia cells with

PEG, transferrin-modified NP Nucleic acids thera K562 showed high efficiency [94]

Py compared to nontargeted particles

There was an overall increase in

cytotoxicity in HER2-positive

Trastuzumab-modified NP Docetaxel Ti;ii%iﬁzgapy BT474 cells with no or minimal [95]

Py effect in but not in HER2-negative

MCEF?7 cells

Tareeted thera There was much better efficacy in

Trastuzumab-modified NP PTX 5 Py treatment with low cytotoxicity to [96]
chemotherapy A
human breast epithelial cells

Significant induction of apoptosis

PLGA NP Alantoléc'tone Targeted therapy was seen in cancer treated with [97]
Erlotinib
NP-loaded drug

Accumulation of the drug in heart

Exosome Doxorubicin Chemotherapy Of fice was reducec% a.md an [98]
increase in cytotoxicity of
doxorubicin was seen
Gold NP-encapsulated
IONPs/ Ag cores ONPs/Ag PTT Gold NP complex acted [99]
Trithiol-terminated

poly-meth-acrylic Fe,P SDT, PTT It showed photodermal and [100]

acid-modified nanorods

therapeutic potential

Abbreviations: PLGA: poly(lactic-co-glycolic) acid; NP: nanoparticle; PEG: polyethylene glycol; IONPs: iron
oxide nanoparticles; Ag: silver; PTX: paclitaxel; ONPs: organic nanoparticles; Fe,P: iron phosphide; PTT:
photothermal therapy; SDT: sonodynamic therapy.

3.1. Targeting Mechanism of Nanoparticles in Chemotherapy

Several studies have been performed to determine the mechanism through which
nanoparticles execute their action against tumor cells. Before knowing the mechanism
of action, it is crucial to know the interaction between cancer cells and nanoparticle-
based drugs. Nanocarriers execute their mechanism of action in two ways, namely active
targeting and passive targeting. Figure 4 illustrates the two types of targeting mechanisms
of nanoparticles in cancer.
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Figure 4. Schematic diagram of active and passive targeting of nanocarriers in cancer cells. Image
reproduced with permission from reference [101].

3.1.1. Passive Targeting

Shreds of evidence support that the proliferation of tumor cells causes neovascu-
larization and very large pores in vessels, leading to a decrease in the permeability of
tumor cells compared to normal cells [102]. Passive targeting is achieved by the enhanced
permeability and retention (EPR) (one of the driving forces for passive targeting) effect
caused by retention of NPs due to poor lymphatic drainage associated with cancer cells,
thus allowing nanocarriers to release the drug at the target site [103]. In addition, this EPR
effect is achieved by the small particle size of NPs, which have better permeability [104,105]
compared to larger particles such as conventional drugs which are likely expelled from the
cell by the immune system [106].

3.1.2. Active Targeting

Receptors or molecules such as siRNAs, proteins, vitamins, amino acids, monoclonal
antibodies, and peptides that are expressed on the surfaces of cancer cells are utilized
to achieve the active target mechanism of nanoparticles; in other words, this is achieved
by the direct interaction between ligands and receptors. The ligand-mediated target of
nanoparticles in cancer cells helps these particles in distinguishing between tumor cells and
healthy cells [107,108]. This interaction leads to receptor-mediated endocytosis allowing
NPs to release the drug at the target site [109,110]. The targeting ligands used for active
targeting are usually monoclonal antibodies or antibody fragments or non-antibody ligands.

3.2. Polymeric Nanoparticles

Polymeric nanoparticles are defined as colloidal nanocarriers, having a submicron size
of 10-1000 nm. Sustained release to the target site is achieved by these nanoparticles [111].
The dimensions of nanocarriers are very important for targeting cancer. The dimension
of colloidal nanocarriers for reaching cancer cells should be less than 200 nm [112]. It is
difficult for nanoparticles with larger dimensions to reach cancer cells. API is encapsulated
on the surface of polymeric nanoparticles, forming a nanosphere and nanocapsule. Poly-
acrylamide, polystyrene, polymethyl methacrylate, and polyacrylate are some of the non-
biodegradable nanomaterials that have been used to fabricate these nanoparticles [113,114].
As there were certain limitations with the use of these materials, such as toxicity and other
pharmacokinetic problems, biodegradable polymers such as poly(lactic-co-glycolic acid),
poly amino acid, and polylactic acid have been introduced to overcome these limitations.
Table 3 lists some of the polymeric nanoformulations that have been recently investigated
with a positive outcome [115-120].
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Table 3. Some of the polymeric nanoparticle formulations that have been recently explored.
Type Targeting Agent Name of Polymer Used Result Reference
Polymeljlc Cytokeratm—spfeaflc Poly(D,L-lactide-co-glycolide) and Prevent metastasis [115]
nanoparticle monoclonal antibody polyethene glycol
Polymeric Monoclonal antibodies - . .
nanoparticle (antiHERT?) Poly(D,L-lactic acid) Selective targeting [116]
Polymeljlc Folic acid Polylactic acid and Enhan§ed .clrug [117]
nanoparticle polyethylene glycol accumulation in tumor
Polymer micelle Doxorubicin Folic acid PEG—co—po.ly(la'ctlc—co— Increased Cellula'r y ptake [118]
glycolic acid) and cytotoxicity
. . N PEG-poly(aspartate Increased endocytotic
Polymer micelle Doxorubicin Folic acid hydrazine doxorubicin) cellular uptake [118]
. Cyclo-(1,12)-
Polymeric Doxorubicin ~ penITTDGEATDGC PGLA o It showed enhanced [119]
nanoparticle (cLABL) Poly D,L-lactic-co-glycolic acid cellular uptake
Targeted cellular uptake
Polymeric . . S mPEG and enhanced tumor tissue
nanoparticle Mitomycin Folic acid poly(ethylene glycol) methyl ether distribution of the drug (120]
were achieved
3.3. Extracellular Vesicles
Extracellular vesicles are used in long-distance communications because they contain
protein, RNA, and DNA [121]. They have lipids similar to the cell, thus enabling them to
escape the immune surveillance of the body and interact with the target site easily [122].
There are several reports on the use of these extracellular vesicles in combatting multiple
drug resistance in several cancers [98,123]. Hadla et al. and colleagues reported that
exosomes loaded with doxorubicin showed better cytotoxicity and reduced accumulation
of doxorubicin in the heart when compared with free doxorubicin [98]. Another study
conducted by Jeong et al. and colleagues studied the use of exosomes to deliver mRNA-497
in a lung cancer cell line (A549) and found that tumor growth, as well as expression of
associated genes, was suppressed, indicating this exosome-mediated miRNA therapeutic
can be used in targeted cancer therapy to reduce cancer drug resistance [124]. Table 4 lists
some of the EVs developed for overcoming MDR in cancer [125-131].
Table 4. Some of the extracellular vesicles used in chemotherapy.
Nanocarrier Drug/System Cancer Type Results Reference
High loading capacity, better
Acryl acid Polyethylene Paclitaxel Lung cancer .accumulatlon of cancer cells, and [125]
glycol-modified exosome improved therapeutic outcome are
the advantages
The anticancer effect was increased
Exosome Doxorubicin Osteosarcoma while cytotoxicity was reduced in [126]
myocardial cells when compared to
free doxorubicin
Suppression of tumor growth as well as
Exosome miR-497 Lung cancer a decrease in expression of genes [127]
associated with tumors
Therapeutic Microvesicles loaded with miRNA led
Microvesicle mRN A/P rotein Schwannoma to the conversion of the prodrug into [128]
prote active form and resulted in cell death
Inhibition and suppression of migration
Extracellular vesicle miR-101 Osteosarcoma and cell invasion after administration of [129]
miR-101-loaded extracellular vesicles
These hybrid nanoparticles can deliver
Exosome-liposome hybrid NP CRISPR/Cas? Osteosarcoma the CRISPR/Cas9 system and have the [130]
system .
potential to be used for cancer therapy
Induction of immune response against
Exosome Interferon-y fusion Prostate cancer prostate cancer-derived exosomes and [131]

protein

inhibition of tumor growth by
exosomal vaccines
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3.4. Using Nanocarriers in the Delivery of Pooled siRNAs in Combatting MDR in Cancer

In addition to the strategies mentioned above, pooling siRNAs using nanocarriers has
emerged as a novel tool for overcoming multidrug resistance, which is confirmed by a study
conducted by Chen and coworkers in 2015 [132,133]. This technique inhibits the no flux and
efflux-related protein pumps which are involved or overexpressed in multidrug resistance,
thereby enhancing the efficacy of already existing drugs. In order to improve the treatment
result against resistant tumors, He et al. (2014) carried out a study on the loading of siRNA
with cisplatin into nanoscale metal-organic frameworks (NMOFs) [134]. Bcl-2, P-gp, and
survivin siRNAs were employed by He et al. to silence genes. In this study, cisplatin
(prodrug-based bisphosphonate bridging ligand) was linked with Zn?* metal and coated
with a cationic lipid layer, which enabled the adsorption of pooled siRNA. This increased
drug release increased the cellular uptake of pooled siRNA and cisplatin [135]. Table 5 lists
some pooled siRNAs combined with gene therapy to overcome MDR in cancer [136-144].

Table 5. Summary of some of the nanocarriers that can be combined with gene therapy and chemother-
apy for overcoming multidrug resistance in cancer.

Drug-Resistant Cell

Target Gene Nanocarrier Chemoagent Line Reference
PDA-coated m(e;/[egél)lymal stem cell Doxorubicin MCE-7/ADR [136]
P-gp SIRNA Chitosan nanoparticle Doxorubicin HepG2/ADR [137]
Polymeric NP Doxorubicin MCEF-7/ADR [138]
mRNA Molecular beacon-based micelle Doxorubicin OVCAR-8/ADR [139]
Survivin siRNA Hyaluronic acid NP Cisplatin A549/DDP [140]
. . .. HepG2/ADR
Bcl-2 siRNA Polymeric NP Doxorubicin MCE-7/ ADR [141]
GAPDH siRNA Liposome Paclitaxel HeLa, MCF-7 [142]
Autophagy siRNA Polymeric NP Doxorubicin A549/ADR [143]
P-gp, .Bc.l-2, siRNA Coordination polymerMOF Cisplatin SKOV-3 [144]
survivin
3.5. Using Nanoparticle-Based Combination Therapies in Overcoming Multidrug Resistance in Cancer
Since conventional therapies have developed resistance to various classes of drugs
by various mechanisms as described above, combination therapies using nanosystems
that are sensitive to changes in pH, certain enzymes, and ROS in cancer cells have gained
importance in cancer therapeutics [145]. Li and colleagues have reported that these systems
efficiently release the drug into the tumor cell [146]. The tumor microenvironment acts as a
physical and biological barrier to the drug as it controls and regulates its accumulation in
and outside the cell, thereby helping in inducing drug resistance [147]. Table 6 summarizes
the list of nanoparticle-based combinations as a strategic tool in overcoming drug resistance
in cancer [144,148-152].
Table 6. Some of the latest nano-based drug combinations to overcome MDR in cancer.
Drug Delivery System Treatment Strategy Loaded with Cancer Type Reference

Nanoparticulate targeting

Downregulation of pump-related Mitochondrial complex,

mitochondria proteins that are involved in P-gp siRNA Breast cancer [144]
drug resistance

Nanopar’flclefpeptlde Enhancement of efficient drug delivery Doxorubicin peptides H69AR [148]
drug biconjugate and release

Folate-decorated Combining C}}em.ot.herapy with Paclitaxel, dpxgrubmm, and MDR breast cancer [149]

polymersome P-gp inhibitors tariquidar

Polymer—drug conjugate Bypassing of pumps related to Doxorubicin Breast cancer [150]
drug efflux

Zinc oxide nanoparticle Synerglsnc autophagy. with 1ncrefased Doxorubicin and zinc oxide MCE-7 [151]

reactive oxygen species generation
. Its controlled drug release promotes Docetaxel (DTX) and KBY .
Liposome d L. Human epidermoid [152]
rug accumulation in cancers dexamethasone (DEX) carcinoma
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3.6. Application of Nanotechnology in Antibody-Mediated Targeting in Cancer

The immune response educed by tumor cells lacks adequate strength to counter the
cellar response to external stimuli, and thus monoclonal antibodies have gained importance
and have been used to counter tumor cells. Nanoparticles have been conjugated with anti-
bodies that are specific against different tumor antigens [153]. These conjugated antibodies
execute anticancer activity through various mechanisms, namely the inhibition of growth
and the induction of apoptosis which is usually suppressed in resistant cancers [154]. These
NP-mediated antibody targetings induce both complement and antibody-mediated cy-
totoxicity [155]. Researchers encapsulated the hepatic cancer therapeutic gene (HSV1tk)
by preparing hollow protein nanoparticles. These nanoparticles were modified to carry
the surface antigen of the hepatitis B virus so that its cells recognize it and form particles.
This was tested in an animal model, and the results were satisfactory in delivering the
gene into the target site after intravenous administration [155]. Another study conducted
by Wartlick and coworkers designed and developed a biodegradable nanoparticle whose
surface was altered by attaching a biotin-binding protein called NeutrAvidin; trastuzumab
(HER2 receptor-specific antibody) was then conjugated to its surface for specific targeting
of HER2-overexpressing cells, and this effect was confirmed by confocal laser scanning
microscopy [156,157].

3.7. Application of Natural Polyphenol Nanotechnology in Reducing Multidrug Resistance
in Cancer

Many studies showed that natural polyphenols have a great role in overcoming MDR
in cancer. The commonly used polyphenols for this purpose are curcumin, resveratrol,
and epigallocatechin-3-gallate (EGCG) [158,159]. Nanotechnology-based formulations of
natural polyphenols attracted much attention due to several reasons. Several investiga-
tions have been carried out on the role of polyphenols in designing nanoformulations
for drug targeting [158]. Gold nanoparticles based on gelatin-doxorubicin and EGCG
were prepared and characterized for targeting prostate cancer. These gold nanoparticles
coated with gelatin-doxorubicin and EGCG were found to increase the cellular uptake
of doxorubicin [160]. Some studies also revealed that EGCG is able to reduce gold ions;
this enabled the enhancement of gold nanoparticles, which showed higher drug uptake by
tumor cells [161-163]. EGCG-based nanoformulations have also been found suitable for
targeting drugs to non-small-cell lung carcinoma cells [164]. Curcumin-based nanoparticles
have been found suitable for targeting drugs to brain and breast cancer [165,166]. Resver-
atrol nanoparticles have been shown to provide protection against UV light in various
targets [167]. Liposomal-based formulations of resveratrol have been found effective in
targeting drugs to brain tumors in several studies [167-169]. Resveratrol-based nanoformu-
lations have also been found effective in the treatment of other tumors, such as lung cancer,
colorectal cancer, glioma carcinoma, hepatocarcinoma, and breast cancer [170-174].

4. Conclusions

Resistance to chemotherapy is as similar to infectious disease drug resistance and is
a complex phenomenon that is educed by the suppression of apoptosis-related proteins,
enhancement of DNA repair, inactivation of drugs, overexpression of efflux proteins, and
miRNAs and leads to the failure of already available drugs. Thus, overcoming this resis-
tance is a hot topic in cancer research currently. Nanotechnology has gained importance in
recent years in many diseases and has been applied to cancer therapy as well to overcome
this multidrug resistance either through passive or active targeting mechanisms. The use
of nanocarriers to pool siRNAs, nano-based drug combination with chemotherapy, and
antibody-mediated target action have been explored in many cancers. When compared to
conventional drugs, these nano-based drugs have successfully improved biocompatibility,
target selectivity, pharmacokinetics, and stability, while also simultaneously helping in
reducing systemic toxicity and overcoming the burden of multidrug resistance. In ad-
dition, nanocarriers are platforms for combination therapy, thereby helping to combine
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targeting agents with cytotoxic agents to achieve the reversal of drug resistance. Based
on evidence-based literature, nanotechnology has the potential to revolutionize cancer
chemotherapy through its robust mechanisms and target selectivity. Nevertheless, most
of the nanotechnology-based formulations have been tested in animal models instead of
human models. Therefore, more studies are required on human beings in order to reach
the commercialization of these nanotechnology-based formulations.
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