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Abstract: Hepatocellular carcinoma (HCC) and type 2 diabetes mellitus (T2DM) are common clinical
conditions, and T2DM is an independent risk factor for HCC. Sorafenib and lenvatinib, two multi-
targeted tyrosine kinase inhibitors, are first-line therapies for advanced HCC, while canagliflozin,
a sodium-glucose co-transporter 2 inhibitor, is widely used in the treatment of T2DM. Here, we
developed an ultra-performance liquid chromatography-tandem mass spectrometry method for
the simultaneous determination of canagliflozin, sorafenib, and lenvatinib, and investigated the
pharmacokinetic drug interactions between canagliflozin and sorafenib or lenvatinib in rats. The
animals were randomly divided into five groups. Groups I–III were gavage administrated with
sorafenib, lenvatinib, and canagliflozin, respectively. Group IV received sorafenib and canagliflozin;
while Group V received lenvatinib and canagliflozin. The area under the plasma concentration-
time curves (AUC) and maximum plasma concentrations (Cmax) of canagliflozin increased by 37.6%
and 32.8%, respectively, while the apparent volume of distribution (Vz/F) and apparent clearance
(CLz/F) of canagliflozin significantly decreased (30.6% and 28.6%, respectively) in the presence of
sorafenib. Canagliflozin caused a significant increase in AUC and Cmax of lenvatinib by 28.9% and
36.2%, respectively, and a significant decrease in Vz/F and CLz/F of lenvatinib by 52.9% and 22.7%,
respectively. In conclusion, drug interactions exist between canagliflozin and sorafenib or lenvatinib,
and these findings provide a reference for the use of these drugs in patients with HCC and T2DM.
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1. Introduction

Hepatocellular carcinoma (HCC) is one of the most common malignant tumors world-
wide with a poor prognosis, high recurrence rates, and high mortality rates. Diabetes
mellitus is a group of metabolic diseases with a high incidence rate and prone to a variety
of complications, which brings about a huge economic burden to society [1,2]. There is
growing evidence that type 2 diabetes mellitus (T2DM) is an independent risk factor for
HCC, and it can increase the risk of HCC [3–5]. Therefore, the combined use of drugs to
treat HCC and T2DM is very common in clinical settings.

Sorafenib (Figure 1), a multi-kinase inhibitor with poor solubility and high membrane
permeability, can inhibit tumor angiogenesis and tumor cell proliferation. It was the first
targeted drug to be approved as a first-line systemic therapy for patients with advanced
HCC [6–8]. Sorafenib reaches peak blood concentrations approximately 3 h after oral
administration, with a plasma protein binding rate of 99.5%. The metabolism of sorafenib
is associated with the phase I metabolic enzyme CYP3A4 and the phase II metabolic
enzyme uridine diphosphate-glucuronosyltransferase (UGT) 1A9, and it is metabolized
by CYP3A4 to the active metabolite sorafenib N-oxide and by UGT1A9 to the inactive
metabolite sorafenib glucuronide [9–11]. More importantly, studies have shown that
sorafenib can inhibit UGT1A1 and UGT1A9 activity and increase the exposure of irinotecan
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and its active metabolite SN-38 by inhibiting UGT1A1 [9,12]. Sorafenib is a substrate for
multiple transporters. For instance, organic cation transporter (OCT) 1 and organic anion
transporting polypeptide (OATP) 1B1/3 can mediate the hepatic uptake of sorafenib, and
sorafenib can be pumped out by the efflux transporters P-glycoprotein (P-gp), breast cancer
resistance protein (BCRP), and multidrug resistance-associated protein (MRP) [13,14].
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Lenvatinb (Figure 1) is another first-line systemic treatment drug for advanced HCC
due to its non-inferiority to sorafenib in terms of overall survival [15]. It is an oral, multi-
target tyrosine kinase inhibitor that can inhibit vascular endothelial growth factor receptor
(VEGFR) 1–3, fibroblast growth factor receptor (FGFR) 1–4, platelet-derived growth factor
receptor (PDGFR) α, stem cell factor receptor (KIT), and rearranged during transfection
(RET) [16]. Lenvatinb has low solubility, and it is rapidly absorbed after oral administration,
with peak blood concentrations between 1 and 4 h. A high-fat diet slows the absorption of
lenvatinib, but has no significant effect on systemic exposure [17]. The plasma protein bind-
ing rate of lenvatinib is approximately 98%, and it is mainly bound to albumin. Lenvatinib
is metabolized by multiple pathways, including the CYP450 pathway and non-CYP450
pathways such as those involving aldehyde oxidase. In vitro studies have shown that
the CYP3A4 pathway is critical for the oxidative metabolism of lenvatinib, and a recent
study has demonstrated that CYP1A1 plays an important role in the metabolism of lenva-
tinib [18,19]. Lenvatinib is extensively metabolized before excretion, and its half-life is 28 h.
Interestingly, body weight can affect the pharmacokinetics of lenvatinib, so patients with
HCC should be given different doses depending on their body weight [20,21]. In addition,
lenvatinib is a substrate for P-gp and BCRP. Single-dose rifampicin, an inhibitor of P-gp,
can cause an increase in systemic exposure of lenvatinib [22], and ABCB1 gene (encodes
P-gp) polymorphisms can affect the clearance and systemic exposure of lenvatinib [23].

Canagliflozin (Figure 1), the first approved sodium–glucose co-transporter 2 inhibitor
(SGLT2i), is a novel type of glucose-lowering drug that reduces the reabsorption of glucose
by the kidneys, thereby enhancing the excretion of glucose and lowering blood sugar
levels [24]. Canagliflozin is a Biopharmaceutics Classification System class IV drug with
low solubility and permeability. Canagliflozin is rapidly absorbed after oral administration,
and the area under the plasma concentration–time curves (AUC) and maximum plasma
concentrations (Cmax) increased in a dose-dependent manner within a range of 50–1600 mg.
It has a high protein binding rate of 99%. Canagliflozin is mainly glucuronidated by
UGT1A9 and UGT2B4, with a small amount metabolized by CYP3A4 [25], and it is a
substrate of BCRP, as well as a substrate and weak inhibitor of P-gp and MRP2 [26].
Canagliflozin is excreted by both hepatic and renal channels, with approximately 60%
ending up in the feces and 33% in the urine [27,28].

Recently growing evidence has indicated that SGLT2i exhibits potential anti-tumor
activity in specific types of cancer, which correlates with the presence or overexpression
of SGLT2 on the surface of some specific cancer cells [29,30]. Studies have showed that
SGLT2 is expressed in liver cancer cells, and canagliflozin can inhibit the proliferation of
liver cancer cells by blocking glucose uptake [31,32], while another study has reported that



Molecules 2022, 27, 5419 3 of 15

canagliflozin can inhibit the proliferation of liver cancer cells independently of SGLT2 inhi-
bition, possibly by blocking the glucose influx-induced β-catenin signaling pathway [33].
Therefore, canagliflozin is a promising drug in patients with HCC and T2DM. Sorafenib
and lenvatinib, which inhibit angiogenesis and suppress tumor proliferation, are first-
line therapies for advanced HCC, and their common adverse effect is hypertension [7,15].
Canagliflozin not only lowers blood sugar levels, but also lowers blood pressure and body
weight [24]. Thus, canagliflozin combined with sorafenib or lenvatinib are very common
and excellent combinations in clinical practice. However, canagliflozin and sorafenib
are metabolized by UGT1A9; while sorafenib is a potent inhibitor of UGT1A9. On the
other hand, they are both substrates of the efflux transporters P-gp, BCRP, and MRP, and
canagliflozin has a weak inhibitory effect on P-gp and MRP. Thus, pharmacokinetic drug
interactions between the two drugs may exist, which may be mediated by metabolizing
enzymes and/or transporters. Similarly, lenvatinib is also a substrate for P-gp and BCRP,
and canagliflozin and lenvatinib have the potential to compete for the same transporter
protein, which may alter the pharmacokinetics profiles of one or both drugs.

HCC and T2DM are diseases with high incidence rates worldwide, and T2DM is a risk
factor for HCC. Thus, it is possible to simultaneously prescribe canagliflozin and sorafenib
or lenvatinib. In this study, we developed an ultra-performance liquid chromatography-
tandem mass spectrometry (UPLC–MS/MS) method for the simultaneous determination
of canagliflozin, sorafenib, and lenvatinib concentrations, and investigated the pharmacoki-
netic interactions between canagliflozin and sorafenib or lenvatinib in rats.

2. Results
2.1. Method Development and Optimization

An UPLC-MS/MS bioanalytical method was developed for the simultaneous de-
termination of drug concentrations for sorafenib, lenvatinib, and canagliflozin, and the
method was optimized to meet the requirements for the simultaneous determination of
the three drugs in rat plasma. The aqueous phase (A), after adding 5 mM ammonium
acetate and 0.1% formic acid, improved the response of canagliflozin and the peak shape of
the analytes, and the organic phase (B), which was acetonitrile, showed a stronger elution
capacity than methanol. Signal acquisition of the analytes was performed in positive
ion and multi-response monitoring mode. [M + NH4]+ was used as the parent ion for
canagliflozin because it was stable and exhibited a great response. The reaction monitoring
transitions were as follows: sorafenib, m/z 465.2→270.2; lenvatinib, m/z 427.0→370.0;
and canagliflozin, 462.1→191.3. The use of stable isotope-labeled IS could maximize the
elimination of ionization differences and reduce matrix effects. Liquid–liquid extraction
was cleaner than protein precipitation, with less matrix effect, which was suitable for the
high-throughput determination of samples [34]. The extraction efficiency of the different
extractants was compared, and the results showed that sorafenib was extracted well in
methyl tert-butyl ether, while lenvatinib was extracted well in ethyl acetate. To obtain a
better extraction recovery, a mixture of methyl tert-butyl ether and ethyl acetate extractant
was used.

2.2. Method Validation

Representative chromatograms of sorafenib, lenvatinib, and canagliflozin under differ-
ent conditions are shown in Figure 2, and the results showed that endogenous substances
in rat plasma did not interfere with the determination of the three analytes. The linearity of
sorafenib, lenvatinib, and canagliflozin was determined over the concentration ranges of
5–5000 ng/mL, 0.2–1000 ng/mL, and 5–3000 ng/mL, respectively. Representative linear
regression equations for the calibration curve were established as follows:

Y = 0.00389 X + 0.00535 Sorafenib

Y = 0.0152 X − 0.000304 Lenvatinib
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Y = 0.0024 X − 0.00295 Canagliflozin

The correlation coefficients were greater than 0.999, indicating good linearity. The
intra-batch and inter-batch precision and accuracy for three analytes were evaluated at
LLOQ and three QC levels (Table 1). The intra-batch and inter-batch precision of the three
analytes were within 3.75–9.54%, and the intra-batch and inter-batch accuracy for the three
analytes were within −4.56–9.73%. Three concentrations of the QC samples were used to
assess the matrix effect and extraction recovery, and the results are summarized in Table 2.
The results indicated that the determination of the analytes was not affected by the matrix,
and the extraction recovery of the three analytes was high. The stability of the QC samples
was examined under different conditions, including at room temperature for 4 h, in an
autosampler after processing for 12 h, at −80 ◦C for 30 days, and after three cycles of
freezing (−80 ◦C) and thawing (room temperature), and the results are summarized in
Table 3. The results showed that sorafenib, lenvatinib, and canagliflozin were stable during
the different processing and storage conditions.
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Figure 2. Representative chromatograms of the sorafenib (I), lenvatinib (II), and canagliflozin (III)
in rat plasma samples. (A) Rat blank plasma samples; (B) rat blank plasma samples spiked with
analytes at the lower limit of quantification level; (C) rat plasma samples after oral administration of
analytes; and (D) internal standards in the lower limit of quantification samples.
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Table 1. Precision and accuracy of sorafenib, lenvatinib, and canagliflozin in rat plasma.

Analytes Concentration
(ng/mL)

Intra-Batch (n = 6) Inter-Batch (n = 18)

Mean ± SD CV (%) RE (%) Mean ± SD CV (%) RE (%)

Sorafenib

5 5.32 ± 0.29 5.42 6.30 5.48 ± 0.26 4.72 9.57
10 10.08 ± 0.59 5.86 0.80 10.60 ± 0.60 5.70 6.04

1500 1481.67 ± 84.72 5.72 −1.22 1471.67 ± 97.03 6.59 −1.89
3750 3900.00 ± 264.20 6.77 4.00 3855.59 ± 258.05 6.69 2.81

Lenvatinib

0.2 0.21 ± 0.02 9.54 6.08 0.22 ± 0.02 8.24 8.03
0.5 0.52 ± 0.02 4.76 3.20 0.51 ± 0.04 7.51 2.43
150 147.67 ± 5.92 4.01 −1.56 149.33 ± 10.13 6.78 −0.44
750 715.83 ± 30.51 4.26 −4.56 738.78 ± 43.23 5.85 −1.50

Canagliflozin

5 5.49 ± 0.21 3.75 9.73 5.26 ± 0.42 7.93 5.10
10 10.36 ± 0.46 4.43 3.55 10.31 ± 0.59 5.70 3.06

800 782.83 ± 42.24 5.40 −2.15 787.28 ± 66.44 8.44 −1.59
2250 2155.00 ± 103.10 4.78 −4.22 2200.56 ± 119.63 5.44 −2.20

Table 2. Matrix effect and extraction recovery of sorafenib, lenvatinib, and canagliflozin in rat plasma
(n = 6).

Analytes Concentration
(ng/mL)

Matrix Effect Extraction Recovery

Mean ± SD (%) CV (%) Mean ± SD (%) CV (%)

Sorafenib
10 105.44 ±4.81 4.57 97.55 ± 4.03 4.13

1500 99.57 ± 7.01 7.04 100.18 ± 3.67 3.66
3750 99.98 ± 5.08 5.08 100.59 ± 6.84 6.80

Lenvatinib
0.5 103.74 ± 11.20 10.80 89.97 ± 8.48 9.43
150 95.67 ± 10.44 10.91 100.08 ± 9.47 9.47
800 96.65 ± 2.17 2.25 99.40 ± 9.27 9.33

Canagliflozin
10 101.05 ± 9.13 9.03 97.07 ± 9.49 9.78

800 95.82 ± 7.21 7.52 100.25 ± 7.81 7.79
2250 103.16 ± 3.72 3.61 96.85 ± 6.22 6.42

Table 3. Stability of sorafenib, lenvatinib, and canagliflozin in rat plasma under various storage
conditions (n = 6).

Analytes Concentration
(ng/mL) Bench-Top a Autosampler b Freeze-Thaw c Long-Term d

Sorafenib
10 10.97 ± 0.29 11.13 ± 0.24 10.55 ± 0.43 10.51 ± 0.43

1500 1551.67 ± 84.00 1540.00 ± 95.71 1531.67 ± 117.88 1565.00 ± 123.25
3750 3948.33 ± 99.88 3961.67 ± 102.26 3698.33 ± 72.78 3583.33 ± 67.43

Lenvatinib
0.5 0.54 ± 0.03 0.53 ± 0.04 0.53 ± 0.03 0.47 ± 0.03
150 156.67 ± 7.42 162.67 ± 7.42 157.33 ± 11.02 157.00 ± 12.63
800 794.00 ± 18.24 819.50 ± 30.36 725.83 ± 18.06 714.00 ± 24.44

Canagliflozin
10 10.87 ± 0.52 11.13 ± 0.23 9.60 ± 0.45 10.02 ± 0.71
800 849.83 ± 44.57 847.67 ± 52.93 854.50 ± 48.73 830.00 ± 42.37

2250 2330.00 ± 80.00 2350.00 ± 72.94 2183.33 ± 82.62 2170.00 ± 59.67
a Room temperature for 4 h; b autosampler for 12 h; c freeze–thaw stability for three times; d −80 ◦C for 30 days.

2.3. Pharmacokinetic Interactions between Sorafenib and Canagliflozin
2.3.1. The Effect of Canagliflozin on the Pharmacokinetics of Sorafenib

The mean plasma concentration–time curves of sorafenib after administration of
sorafenib (100 mg/kg) or co-administration of sorafenib (100 mg/kg) and canagliflozin
(10 mg/kg) are shown in Figure 3. The results showed that the main pharmacokinetic
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parameters of sorafenib were similar and comparable when combined with canagliflozin
compared to sorafenib alone. The specific pharmacokinetic parameters are shown in Table 4.
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Figure 3. The mean plasma concentration–time curves of sorafenib after administration. Each data
point represents the mean ± standard deviation (n = 6). ISOR, sorafenib (100 mg/kg); IVSOR+CA,
sorafenib (100 mg/kg) oral co-administered with canagliflozin (10 mg/kg).

Table 4. Pharmacokinetic parameters of sorafenib in rat plasma after oral administration of single
dose sorafenib (100 mg/kg) and combined with canagliflozin (10 mg/kg); n = 6 for each group.

Parameters (Unit) ISOR IVSOR+CA p-Value

t1/2z (h) 12.30 ± 2.23 10.47 ± 0.94 0.109
Cmax (ng/mL) 1916 ± 298 2195 ± 535 0.292

AUClast (h·ng/mL) 39,970 ± 14,538 41,158 ± 9197 0.869
AUCinf (h·ng/mL) 40,273 ± 14,696 41,290 ± 9225 0.889

Tmax (h) 8.00 (7.00–8.00) 6.50 (5.50–7.25) 0.065
CLz/F (L/h/kg) 2.86 ± 1.30 2.52 ± 0.53 0.569

Vz/F (L/kg) 49.00 ± 18.83 38.30 ± 10.12 0.248
ISOR, sorafenib (100 mg/kg); IVSOR+CA, sorafenib (100 mg/kg) oral co-administered with canagliflozin (10 mg/kg).
Tmax was presented as median (range), and the other pharmacokinetic parameters are expressed as the
mean ± standard deviation. Compared with sorafenib alone, indicating statistically significant difference.

2.3.2. The Effect of Sorafenib on the Pharmacokinetics of Canagliflozin

Figure 4 shows the mean plasma concentration–time curves after administration of
canagliflozin, and the main pharmacokinetic parameters are summarized in Table 5. The
results showed that the AUClast and AUCinf for canagliflozin increased by 37.7% and
37.6%, respectively, when canagliflozin was co-administered with sorafenib compared
to canagliflozin alone. The Cmax of canagliflozin increased by 32.8% in the presence of
sorafenib, while the Vz/F (30.6%) and CLz/F (28.6%) of canagliflozin decreased in the
presence of sorafenib. However, the other pharmacokinetic parameters, including t1/2, did
not show significant changes between the two groups.
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Figure 4. The mean plasma concentration–time curves of canagliflozin after oral administration.
Each data point represents the mean ± standard deviation (n = 6). IIICA, canagliflozin (10 mg/kg);
IVSOR+CA, canagliflozin (10 mg/kg) oral co-administered with sorafenib (100 mg/kg); VLEN+CA,
canagliflozin (10 mg/kg) oral co-administered with lenvatinib (1.2 mg/kg).

Table 5. Pharmacokinetic parameters of canagliflozin in rat plasma after oral administration of single
dose canagliflozin (10 mg/kg) and combined with sorafenib (100 mg/kg) and lenvatinib (1.2 mg/kg);
n = 6 for each group.

Parameters (Unit) IIICA IVSOR+CA VLEN+CA
IIICA vs.

IVSOR+CA p-Value
IIICA vs. VLEN+CA

p-Value

t1/2z (h) 8.84 ± 0.35 8.56 ± 0.61 10.12 ± 3.59 0.347 0.394
Cmax (ng/mL) 3096 ± 776 4103 ± 335 3008 ± 484 0.041 * 0.818

AUClast (h·ng/mL) 48,875 ± 7446 67,320 ± 3637 67,970 ± 18,572 0.002 ** 0.054
AUCinf (h·ng/mL) 49,103 ± 7508 67,554 ± 3597 68,654 ± 19,418 0.002 ** 0.058

Tmax (h) 3.50 (3.00–6.25) 5.50 (3.50–6.00) 4.00 (3.74–4.50) 0.699 0.818
CLz/F (L/h/kg) 0.21 ± 0.03 0.15 ± 0.01 0.15 ± 0.04 0.002 ** 0.029 *

Vz/F (L/kg) 2.65 ± 0.39 1.84 ± 0.22 2.12 ± 0.32 0.001 ** 0.030 *

IIICA, canagliflozin (10 mg/kg); IVSOR+CA, canagliflozin (10 mg/kg) oral co-administered with sorafenib
(100 mg/kg); VLEN+CA, canagliflozin (10 mg/kg) oral co-administered with lenvatinib (1.2 mg/kg). Tmax was
presented as median (range), and the other pharmacokinetic parameters are expressed as the mean ± standard
deviation. * p < 0.05, ** p < 0.01, compared with canagliflozin alone, indicating statistically significant difference.

2.4. Pharmacokinetic Interactions between Lenvatinib and Canagliflozin
2.4.1. The Effect of Canagliflozin on the Pharmacokinetics of Lenvatinib

The mean plasma concentration–time curves of lenvatinib after oral administration of
lenvatinib (1.2 mg/kg) or co-administration of lenvatinib (1.2 mg/kg) and canagliflozin
(10 mg/kg) are shown in Figure 5, and the main pharmacokinetic parameters are tabulated
in Table 6. The systemic exposure of lenvatinib increased when canagliflozin was co-
administered with lenvatinib. In the presence of canagliflozin, the Cmax of lenvatinib
increased by 36.2% compared to lenvatinib alone. At the same time, the AUClast and
AUCinf of lenvatinib were significantly greater by 28.9%. The t1/2 and Vz/F of lenvatinib
decreased by 38% and 52.9%, respectively; and CLz/F was significantly slower by 22.7%
than those without canagliflozin.
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Figure 5. The mean plasma concentration–time curves of lenvatinib after oral administration. Each
data point represents the mean ± standard deviation (n = 6). IILEN, lenvatinib (1.2 mg/kg); VLEN+CA,
lenvatinib (1.2 mg/kg) oral co-administered with canagliflozin (10 mg/kg).

Table 6. Pharmacokinetic parameters of lenvatinib in rat plasma after oral administration of single
dose lenvatinib (1.2 mg/kg) and combined with canagliflozin (10 mg/kg); n = 6 for each group.

Parameters (Unit) IILEN VLEN+CA p-Value

t1/2z (h) 10.48 ± 4.53 6.49 ± 1.04 0.004 **
Cmax (ng/mL) 721 ± 144 985 ± 162 0.014 *

AUClast (h·ng/mL) 5640 ± 1292 7281 ± 1167 0.044 *
AUCinf (h·ng/mL) 5653 ± 1299 7285 ± 1167 0.045 *

Tmax (h) 1.75 (1.38–2.75) 1.50 (0.88–1.63) 0.240
CLz/F (L/h/kg) 0.22 ± 0.05 0.17 ± 0.03 0.047 *

Vz/F (L/kg) 3.31 ± 1.51 1.56 ± 0.29 0.004 **
IILEN, lenvatinib (1.2 mg/kg); VLEN+CA, lenvatinib (1.2 mg/kg) oral co-administered with canagliflozin (10
mg/kg). Tmax was presented as median (range), and the other pharmacokinetic parameters are expressed as
the mean ± standard deviation. * p < 0.05, ** p < 0.01, compared with lenvatinib alone, indicating statistically
significant difference.

2.4.2. The Effect of Lenvatinib on the Pharmacokinetics of Canagliflozin

The mean plasma concentration–time curves and the main pharmacokinetic param-
eters of canagliflozin after oral administration of canagliflozin or co-administration of
canagliflozin and lenvatinib are shown in Figure 4 and Table 5, respectively. Compared to
the control group, the Vz/F and CLz/F of canagliflozin decreased when canagliflozin was
co-administered with lenvatinib. In addition, the AUC was elevated but the change was
not statistically significant. The other main pharmacokinetic parameters of canagliflozin
did not show significant changes.

3. Discussion

The combination of medications is a common approach in clinical practice. On the
one hand, the combination medication can play a synergistic role in reducing the dose
and toxicity or decreasing the drug resistance. On the other hand, the co-morbidity of
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multiple diseases and the presence of disease complications make the combination of drugs
an inevitable choice. However, combination drugs may also cause drug interactions that
pose unknown risks. Sorafenib and lenvatinib are the first-line drugs for the systemic
treatment of advanced HCC, and canagliflozin is a novel SGLT2i for the treatment of T2DM
that can also potentially inhibit the proliferation of liver cancer cells. Canagliflozin is often
co-prescribed with sorafenib or lenvatinib in patients with advanced HCC and T2DM.
Thus, it is important to evaluate drug interactions between canagliflozin and sorafenib
or lenvatinib.

To our best knowledge, there is no method for the simultaneous determination of
canagliflozin, sorafenib, and lenvatinib. In this study, a method was developed for the
simultaneous determination of sorafenib, lenvatinib, and canagliflozin concentrations in
rat plasma, and applied to pharmacokinetic interaction studies between canagliflozin and
sorafenib or lenvatinib. This method requires only a small volume of plasma sample
(50 µL) and is suitable for pharmacokinetic analysis of small volumes of animals. Liquid–
liquid extraction with mixed extractants, which shows good extraction recovery and low
matrix effect, enables accurate quantification. Furthermore, the method has a short analysis
time and a wide range of calibration curves, which are suitable for the determination of
high-throughput samples.

The dose of 100 mg/kg for sorafenib administration was selected after consulting
previous studies [35,36], and the doses of 1.2 mg/kg for lenvatinib and 10 mg/kg for
canagliflozin were the chosen reference for the conversion of human doses to animal doses
for clinical applications [37].

Drug exposure in vivo is closely associated with drug efficacy and adverse drug
reactions. Studies have shown that the plasma concentration of sorafenib is closely related
to its main adverse effects, including diarrhea, fatigue, hepatic impairment, hand–foot skin
reaction, and hypertension [38,39]. Similarly, the plasma drug concentration and systemic
exposure of lenvatinib were associated with its efficacy and adverse effects. For instance,
the incidence of hypertension and anorexia was higher in patients with higher trough
concentrations of drugs [21,40,41]. More importantly, the excretion of urinary glucose in
patients treated with canagliflozin was increased in concentration and dose-dependent
manner [26,42]. Therefore, changes in the concentrations of drugs, when combined with
certain drugs, can lead to reducing or enhancing drug efficacy or causing adverse effects.

In this study, pharmacokinetic interactions between canagliflozin and sorafenib were
investigated in rats. The main pharmacokinetic parameters of sorafenib were not altered
when sorafenib was co-administered with canagliflozin. Sorafenib is a substrate for ef-
flux transporters, such as P-gp, BCRP, and MRP, and thus, transporter-mediated drug
interactions may occur when the substrates, inducers, or inhibitors of transporters are
applied simultaneously. On the one hand, some studies have shown that inhibitors, such as
verapamil and baicalin [43,44] can significantly increase sorafenib exposure by inhibiting
P-gp. On the other hand, 5,7-dimethoxyflavone, an inhibitor of BCRP, can elevate the AUC
of sorafenib, possibly by inhibiting BCRP-mediated sorafenib efflux [45]. Canagliflozin
is a substrate of BCRP, P-gp, MRP2, and a weak inhibitor of P-gp and MRP2. However,
canagliflozin had only a slight effect on sorafenib, and thus, did not have a clinically
relevant effect.

The systemic exposure of canagliflozin was significantly increased in the presence
of sorafenib. The Cmax, AUClast, and AUCinf of canagliflozin were significantly elevated,
while the Vz/F and CLz/F were significantly decreased. There are several possible reasons
for the apparent discrepancy. First, sorafenib is primarily metabolized by the phase II
metabolic enzyme UGT1A9, and is an inhibitor of UGT1A9 [9,10], whereas canagliflozin
is mainly metabolized by UGT1A9 and UGT2B4. Therefore, sorafenib can directly inhibit
UGT1A9, thereby blocking the metabolism of canagliflozin and increasing its exposure
in vivo. In addition, sorafenib can also inhibit the metabolism of canagliflozin by competing
with canagliflozin for the same metabolic enzymes, leading to an increase in its blood
concentration. According to a study by Karbowniket al. [46], the exposure of tapentadol,
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which is mainly metabolized by UGT1A9 and UGT2B7, significantly increased when it was
co-administered with sorafenib, indicating that UGT can mediate the interactions between
the two drugs, which supports our conjecture. Second, sorafenib is not only a substrate
for P-gp, BCRP, and MRP, but also an inhibitor of P-gp, while canagliflozin is a substrate
for P-gp, BCRP, and MRP. As such, there may be transporter-mediated drug interactions
between the two drugs.

Lenvatinib is another tyrosine kinase inhibitor that has been approved for the first-line
treatment of advanced HCC. This study also investigated the drug interactions between
lenvatinib and canagliflozin in vivo. The pharmacokinetic results showed that canagliflozin
increased the systemic exposure and decreased the clearance and Vz/F of lenvatinib, while
lenvatinib slowed the clearance and decreased the Vz/F of canagliflozin. P-gp and BCRP,
two efflux transporters, are widely distributed in the body. P-gp and BCRP are expressed by
epithelial cells of the intestine, and can reduce the absorption and decrease the bioavailabil-
ity of substrates; P-gp and BCRP are expressed by liver cells and can increase the hepatic
excretion of drugs [47–50]. Lenvatinib and canagliflozin are both substrates of P-gp and
BCRP, and canagliflozin is a weak inhibitor of P-gp, and when combined, the two drugs
may cause drug interactions through competition or inhibition of the drug transporters.
Interestingly, despite the fact that sorafenib, like lenvatinib, is a substrate for P-gp and BCRP,
when co-administrated, the canagliflozin had little effect on the blood concentration-time
profile of sorafenib. In the next study, the affinity of sorafenib and lenvatinib with the
transporter protein P-gp and BCRP can be examined using molecular docking to explore
the specific mechanism [51–53]. In addition, lenvatinib and canagliflozin are both high
protein binding drugs and may compete for the same binding sites, leading to changes in
free drug concentrations and causing changes in pharmacokinetics. Thus, drug interactions
between lenvatinib and canagliflozin may be the result of a combination of multiple links
and factors.

4. Materials and Methods
4.1. Materials

Sorafenib (purity: 99.5%, ZZS-20-638-G3), sorafenib-d3 (purity: 99.9%, ZZS-20-X261-A1),
2H5-lenvatinib (purity: 99.5%, ZZS-20-624-A9), canagliflozin (purity: 98%, ZZS19092401), and
2H4-canagliflozin (purity: 98%, 21J167-D1) were purchased from Shanghai Zhen Zhun
Biological Technology Co., Ltd. (Shanghai, China). Lenvatinib (purity: 98%, Q75191201)
was kindly provided by Shijiazhuang Pharmaceutical Group (Shijiazhuang, China). High-
performance liquid chromatography (HPLC)-grade ammonium acetate, formic acid, ace-
tonitrile, methyl tert-butyl ether, and ethyl acetate were obtained from Fisher Scientific
Ltd. (Pittsburgh, PA, USA). Ultrapure water was acquired from Wahaha Group Co., Ltd.
(Hangzhou, China).

4.2. Animals

Healthy male Sprague Dawley rats (body weight: 220–250 g) were purchased from
Beijing Weitong Lihua Experimental Animal Technology Co., Ltd. (Beijing, China). The
animals were kept in a controlled environment with a humidity of 40–60%, a temperature
of 23–27 ◦C, a 12-h light/12-h dark cycle, and they were provided food and water ad
libitum. All animal manipulations and experimental protocols were approved by the Ethics
Committee of Hebei General Hospital (No. 2022011).

4.3. Preparation of Calibration Standards and Quality Control (QC) Samples

The stock solutions were prepared in dimethyl sulfoxide (DMSO), and the concentra-
tions were 1 mg/mL for sorafenib, 2H5-lenvatinib, canagliflozin, and 2H4-canagliflozin;
2 mg/mL for lenvatinib; and 1.43 mg/mL for sorafenib-d3. A series of mixed working
solutions containing sorafenib, lenvatinib, or canagliflozin were prepared by diluting with
50% acetonitrile–water and mixing. The stock solutions for sorafenib-d3, 2H5-lenvatinib,
and 2H4-canagliflozin were prepared in the same manner with 50% acetonitrile–water,
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and the final concentrations of the mixture internal standard (IS) working solutions were
500, 500, and 2000 ng/mL, respectively. A 5 µL aliquot of the mixed working solution
was added to 45 µL of blank plasma to prepare the calibration standards. The plasma
standard points of the calibration curve were at the concentrations of 5, 15, 50, 200, 800,
2000, 4000, and 5000 ng/mL for sorafenib; 0.2, 1, 2, 10, 100, 200, 400, and 1000 ng/mL for
lenvatinib; and 5, 20, 100, 500, 1000, 1500, 2000, and 3000 ng/mL for canagliflozin. The low,
medium, and high QCs of sorafenib were 10, 1500, and 3750 ng/mL, respectively; the low,
medium, and high QCs of lenvatinib were 0.5, 150, and 750 ng/mL, respectively; and the
low, medium, and high QCs of canagliflozin were 10, 800, and 2250 ng/mL, respectively.

4.4. Plasma Sample Preparation

First, 50 µL of the plasma sample was added to 5 µL of the mixture IS working solution
and 500 µL of the extraction reagent (methyl tert-butyl ether and ethyl acetate, 1:4) vortex-
mixed for 3 min and then centrifuged at 12,000 rpm for 10 min. Next, 400 µL of supernatant
was transferred into a new centrifuge tube, which was blown dry under a stream of nitrogen,
and the residue was re-solubilized with 150 µL of 50% acetonitrile–water.

4.5. UPLC–MS/MS Conditions

The concentrations of analytes were determined by UPLC–MS/MS, which consisted
of an LC-30A ultra-performance liquid chromatography (Shimadzu, Japan), and Sciex
Triple Quad 5500 tandem triple quadrupole mass spectrometer (Applied Biosystems Sciex,
Framingham, MA, USA). The XSelect HSS T3 column (2.1 mm × 100 mm, 2.5 µm, Waters,
Milford, MA, USA) was used for chromatographic separation. Phase A (0.1% formic acid
in ultrapure water containing 5 mM ammonium acetate) and phase B (acetonitrile) were
used as the mobile phases for gradient elution at 0.35 mL/min. The following gradient
conditions for phase B were used: 0–1 min, 60% B; 1–2 min, 60–90% B; 2–4 min, 90% B;
4.0–4.1 min, 90–60% B; and 4.1–5.1 min, 60% B. The positive ion mode with multi-reaction
detection was used, and the multiple reaction monitoring transitions of the analytes were as
follows: m/z 465.2→270.2 for sorafenib, 468.2→255.4 for sorafenib-d3, m/z 427.0→370.0 for
lenvatinib, 432.1→370.0 for 2H5-lenvatinib, 462.1→191.3 for canagliflozin, and 466.1→195.3
for 2H4-canagliflozin.

4.6. Method Validation

The method for the simultaneous determination of sorafenib, lenvatinib, and canaglifl-
ozin was fully validated according to USA Food and Drug Administration guidelines and
Chinese Pharmacopoeia. The selectivity of the method was assessed by comparing the
chromatograms of six independent blank rat plasma samples, simulated plasma samples
in which blank rat plasma samples were spiked with working solution at a lower limit of
quantitation (LLOQ) and IS, and actual plasma samples collected from rats. The linearity
of sorafenib, lenvatinib, and canagliflozin was evaluated using weighted least squares
with the nominal concentration as the horizontal coordinate and the peak area ratio of
the analyte to the IS as the vertical coordinate at concentration ranges of 5–5000 ng/mL,
0.2–1000 ng/mL, and 5–3000 ng/mL, respectively. Different concentrations of the QC and
LLOQ samples, with six replicates at each concentration, were used to evaluate precision
and accuracy, and inter-batch precision and accuracy were evaluated by measurements for
three consecutive days. The precision was expressed as the coefficient of variation (CV%),
and the accuracy was expressed as the relative error (RE%). The extraction recovery was
evaluated by comparing the peak areas of blank plasma spiked with working solution
pre-extraction and blank plasma spiked with working solution post-extraction. The matrix
effect was evaluated by the ratio of the peak area of the analyte in the plasma to the peak
area of the analyte in solution at three concentrations of the QC samples. The stability of
sorafenib, lenvatinib, and canagliflozin in rat plasma was estimated under different storage
and handling conditions. Three concentrations of the QC samples, with six replicates at
each concentration level, were used to examine the stability of the three analytes at room
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temperature for 4 h, in the autosampler for 12 h, at −80 ◦C for 30 days, and freeze–thaw
three times.

4.7. Pharmacokinetic and Drug–Drug Interaction Study

Before starting this experiment, the rats were fasted for 12 h, but were allowed to drink
water freely. The experimental animals were randomly divided into five groups (n = 6 per
group). Sorafenib gavage solution was prepared by 0.5% sodium carboxymethyl cellulose
(CMC-Na) containing 5% DMSO, while lenvatinib and canagliflozin gavage solutions were
prepared directly with 0.5% CMC-Na. Groups I–III were control groups, and rats in these
groups were gavaged with sorafenib at 100 mg/kg (ISOR), lenvatinib at 1.2 mg/kg (IILEN),
and canagliflozin at 10 mg/kg (IIICA), respectively. Rats in Group IV were gavaged with
sorafenib at 100 mg/kg and canagliflozin at 10 mg/kg (IVSOR+CA), and rats in Group V
were gavaged with lenvatinib at 1.2 mg/kg and canagliflozin at 10 mg/kg (VLEN+CA).
Approximately 0.25 mL of blood was collected from the orbital venous plexus of rats in
pre-heparinized centrifuge tubes. The blood collection time points were as follows: 0, 0.5, 1,
1.5, 2, 3, 4, 5, 6, 7, 8, 12, 24, 48, 72, and 96 h for sorafenib; 0, 0.25, 0.5, 1, 1.5, 2, 3, 4, 5, 6, 7,
8, 12, 24, 48, 72, and 96 h for lenvatinib; and 0, 0.25, 0.5, 1, 1.5, 2, 3, 4, 5, 6, 7, 8, 12, 24, 48,
and 72 h for canagliflozin. Blood samples were centrifuged at 3500 rpm for 10 min, and the
plasma was transferred to new centrifuge tubes and then stored at −80 ◦C.

The Cmax and Tmax (time to maximum plasma concentration) were read directly from
the drug concentrations. The other pharmacokinetic parameters were analyzed using a
non-compartmental analysis with Phoenix WinNonLin 8.2 software (Pharsight, Mountain
View, Certara, CA, USA). The other pharmacokinetic parameters were as follows: AUClast,
area under the plasma concentration–time curve from time zero to last time point; AUCinf,
area under the plasma concentration–time curve from time zero to infinity; t1/2, time
required for a 50% decrease in the plasma drug concentration; CLz/F, volume of plasma
that is cleared of the drug per unit time; and Vz/F, apparent volume of distribution.

4.8. Statistical Analysis

All pharmacokinetic results were expressed as the mean ± standard deviation (SD),
and the Tmax was expressed as the median (range). SPSS 25.0 software was used for
statistical analysis, and p < 0.05 was considered a statistically significant difference. Shapiro–
Wilk test was used to assess the normality of the pharmacokinetic parameters, and Student’s
t-test or Mann–Whitney U test was used based on the results of the normality test.

5. Conclusions

This study established an UPLC-MS/MS method for the simultaneous determination
of sorafenib, lenvatinib, and canagliflozin in rat plasma. The method was successfully
applied to pharmacokinetic drug interaction studies between canagliflozin and sorafenib or
lenvatinib. The results indicated that there were drug interactions between sorafenib and
canagliflozin, and the simultaneous administration of sorafenib can significantly increase
the in vivo systemic exposure of canagliflozin. Although drug interactions exist between
lenvatinib and canagliflozin, but the results are different from the drug interaction between
sorafenib and canagliflozin. The presence of lenvatinib led to a decrease in the Vz/F and
CLz/F of canagliflozin, while the presence of canagliflozin led to a significant increase in the
in vivo systemic exposure of lenvatinib, and a decrease in the Vz/F and CLz/F of lenvatinib.
Considering the increased risk of HCC in patients with T2DM and the fact that SGLT2 is
expressed on certain cancer cells including HCC and canagliflozin has been reported to
inhibit the growth of hepatoma cells, it is expected that the opportunity for combined use
of canagliflozin and sorafenib/lenvatinib in clinical practice will continue to increase in the
future. This study may provide an important reference for the use of drugs in patients with
HCC with T2DM in clinical practice.
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