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S1 Derivation of the governing equations

S1.1 Kinematic relations

We consider deformation of a TR gel immersed into a binary mixture of two solvents, water

(solvent-1) and ions (solvent-2), at a temperature T . The gel is treated as a three-phase

medium composed of a solid constituent (an equivalent polymer network) and two fluid

constituents.

The initial state of the gel coincides with that of an undeformed dry specimen at some

temperature T0. Transformation of the initial state into the actual state is described by the

deformation gradient F. The molecular incompressibility condition is adopted in the form

det F = 1 + (C1 + C2)v, (S-1)

where C1, C2 denote concentrations of solvent-1 and solvent-2 molecules (numbers of molecul-

es in the actual state per unit volume in the initial state), and v stands for their characteristic

volume. For simplicity, we do not distinguish between the characteristic volumes of solvent-1

and solvent-2 molecules. Eq. (S-1) means that volume deformation of the gel is driven by

changes in concentrations of solvents only.

Volume fractions of the polymer network, φn, solvent-1, φ1, and solvent-2, φ2, in the gel

read

φn =
1

1 + (C1 + C2)v
, φ1 =

C1v

1 + (C1 + C2)v
, φ2 =

C2v

1 + (C1 + C2)v
. (S-2)

These quantities are connected by the relation

φ1 + φ2 + φn = 1. (S-3)

Denote by

C = C1 + C2 (S-4)

concentration of solvent molecules in the actual state per unit volume in the initial state,

and by ϕ1, ϕ2 volume fractions of solvent-1 and solvent-2 in the fluid phase of a gel,

ϕ1 =
φ1

φ1 + φ2

, ϕ2 =
φ2

φ1 + φ2

. (S-5)
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It follows from Eq. (S-5) that

ϕ1 + ϕ2 = 1. (S-6)

Combination of Eqs. (S-3) and (S-5) implies that

φ1 = ϕ1(1− φn), φ2 = ϕ2(1− φn). (S-7)

Degree of swelling is defined as the ratio of the sum of volumes of solvents to the volume of

polymer network

Q = Cv. (S-8)

It follows from Eqs. (S-2)–(S-4), (S-7) and (S-8) that

φn =
1

1 +Q
, φ1 =

ϕ1Q

1 +Q
, φ2 =

ϕ2Q

1 +Q
. (S-9)

S1.2 Polymer network

In a covalently cross-linked TR gel, the polymer network consists of two sub-networks. The

first sub-network (with covalent bonds) is formed under cross-linking polymerization of a

pre-gel solution. The other sub-network (with physical bonds) is developed when the gel

collapses above its VPTT due to aggregation of hydrophobic side groups.

Transformation of the initial state into the reference (stress-free) state of the first (co-

valently cross-linked) network is described by the deformation gradient f1. For an isotropic

polymer network, we set

f1 = f
1
3
1 I, f1 = 1 +Q0. (S-10)

where I is the unit tensor, Q0 = C0v, and C0 denotes concentration of water molecules in

the reference state.

Keeping in mind that all water molecules are expelled from hydrophobic clusters formed

above VPTT, we presume the reference state of the sub-network with physical bonds to

coincide with the initial (dry) state of the gel,

f2 = I. (S-11)

Adopting the affine hypothesis, we suppose that macro-deformation of a gel coincides with

deformations of its sub-networks. According to the multiplicative decomposition formula,

F = F(m)
e · fm, (S-12)
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where F
(m)
e stands for the deformation gradient for elastic deformation of the mth sub-

network and the dot denotes inner product. It follows from Eqs. (S-10)–(S-12) that

F(1)
e = f

− 1
3

1 F, F(2)
e = F. (S-13)

The Cauchy–Green tensors for elastic deformation of the sub-networks are introduced by

the conventional formulas

B(m)
e = F(m)

e · F(m)>
e (m = 1, 2), (S-14)

where > stands for transpose. It follows from Eqs. (S-13) and (S-14) that

B(1)
e = f

− 2
3

1 B, B(2)
e = B, (S-15)

where

B = F · F> (S-16)

is the Cauchy–Green tensor for macro-deformation.

Denote by I
(m)
e1 , I

(m)
e2 , I

(m)
e3 the principal invariants of the tensors B

(m)
e (m = 1, 2) . The

derivatives of these functions with respect to time read

İ
(m)
e1 = 2B(m)

e : D, İ
(m)
e2 = 2

(
I
(m)
e2 I− I(m)

e3 (B(m)
e )−1

)
: D, İ

(m)
e3 = 2I

(m)
e3 I : D, (S-17)

where the superscript dot stands for the derivative, the colon denotes contraction,

D =
1

2
(L + L>) (S-18)

is the rate-of-strain tensor, and

L = Ḟ · F−1 (S-19)

is the velocity gradient.

S1.3 Free energy density

Denote by Ψ the specific Helmholtz free energy (per unit volume in the initial state) of a TR

gel. According to the Flory–Rehner concept, Ψ equals the sum of three components: (i) the

specific free energy Ψ1 of solvent-1 and solvent-2 molecules not interacting with the polymer
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network, (ii) the specific energy Ψ2 of the network not interacting with solvent molecules,

and (iii) the specific energy Ψint of interaction between molecules of solvent-1 and solvent-2

and segments of chains,

Ψ = Ψ1 + Ψ2 + Ψint. (S-20)

The specific free energy of solvents not interacting with each other and with segments of

chains reads

Ψ1 = µ0
1C1 + µ0

2C2, (S-21)

where µ0
1, µ

0
2 are the chemical potentials of molecules of solvent-1 and solvent-2 when inter-

actions between them and polymer chains are disregarded.

The specific energy of the polymer network (consisting of two sub-networks with chemical

and physical bonds) is given by

Ψ2 =
2∑

m=1

Wm(I
(m)
e1 , I

(m)
e2 , I

(m)
e3 ), (S-22)

where the specific mechanical energy Wm stored in chains of the mth sub-network depends

on principal invariants of the corresponding Cauchy–Green tensor for elastic deformation

B
(m)
e .

The following expression is adopted for the specific free energy energy of interaction

between segments of chains and solvent molecules:

Ψint = kBT
[(
C1 lnφ1 + C2 lnφ2

)
+
(
χ13C1φn + χ23C2φn + χ12C1φ2

)]
, (S-23)

where kB is the Boltzmann constant, and χ13, χ23, χ12 stand for the Flory-Huggins (FH)

parameters. The coefficients χij are treated as functions of temperature T only.

Keeping in mind that

C1 = ϕ1C, C2 = ϕ2C, (S-24)

we re-write Eq. (S-21) in the form

Ψ1 = (µ0
1ϕ1 + µ0

2ϕ2)C, (S-25)

It follows from Eqs. (S-8), (S-9), (S-23) and (S-24) that

Ψint = kBTC
[(
ϕ1 ln

ϕ1Cv

1 + Cv
+ ϕ2 ln

ϕ2Cv

1 + Cv

)
+
χ13ϕ1 + χ23ϕ2 + χ12ϕ1ϕ2Cv

1 + Cv

]
.
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This equation together with Eq. (S-6) yields

Ψint = kBTC
[(

ln
Cv

1 + Cv
+ ϕ1 lnϕ1 + ϕ2 lnϕ2

)
+
χ13ϕ1 + χ23ϕ2 + χ12ϕ1ϕ2Cv

1 + Cv

]
. (S-26)

Inserting expressions (S-22), (S-25) and (S-26) into Eq. (S-20), we find that

Ψ = (µ0
1ϕ1 + µ0

2ϕ2)C + kBTC
[(

ln
Cv

1 + Cv
+ ϕ1 lnϕ1 + ϕ2 lnϕ2

)
+
χ13ϕ1 + χ23ϕ2 + χ12ϕ1ϕ2Cv

1 + Cv

]
+

2∑
m=1

Wm(I
(m)
e1 , I

(m)
e2 , I

(m)
e3 ). (S-27)

It follows from Eq. (S-27) that the specific free energy Ψ is a function of three variables

C, ϕ1, ϕ2 (that characterize distribution of solvent-1 and solvent-2 molecules in a gel) and

the principal invariants I
(m)
e1 , I

(m)
e2 , I

(m)
e3 of the Cauchy–Green tensors for elastic deformation

of sub-networks with covalent and physical bonds.

We assume (in accord with experimental data) that partitioning of solvents inside the

gel coincides with that in the surrounding solution (bath)

ϕ1 = φbath
1 , ϕ2 = φbath

2 , (S-28)

where φbath
1 , φbath

2 are volume fractions of solvent-1 and solvent-2 in the bath. Condition

(S-28) allows the analysis of swelling to be simplified substantially by replacing the initial

three-phase system (a polymer network and two solvents with concentrations C1 and C2)

with a two-phase system (the network and an equivalent solvent with concentration C). We

will return to a discussion of this assumption in Sect. S2.

Differentiating Eq. (S-27) with respect to time and keeping in mind that ϕ1 and ϕ2 are

independent of time (in accord with Eq. (S-28)), we find that

Ψ̇ = KĊ +
2∑

m=1

( ∂Wm

∂I
(m)
e1

İ
(m)
e1 +

∂Wm

∂I
(m)
e2

İ
(m)
e2 +

∂Wm

∂I
(m)
e3

İ
(m)
e3

)
, (S-29)

where

K = (µ0
1ϕ1 + µ0

2ϕ2) + kBT (ϕ1 lnϕ1 + ϕ2 lnϕ2 + χ12ϕ1ϕ2)

+kBT
[
ln

Cv

1 + Cv
+

1

1 + Cv
+

χeq

(1 + Cv)2

]
(S-30)

with

χeq = χ13ϕ1 + χ23ϕ2 − χ12ϕ1ϕ2. (S-31)
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The coefficient K in Eq. (S-30) involves three terms. The first describes the free energy of

solvent molecules, the other characterizes the entropy and enthalpy of interaction between

solvent-1 and solvent-2 molecules, and the last determines the energy of interaction between

solvent molecules and segments of chains. Instead of three FH parameters, χij in Eq. (S-27),

this term involves their combination χeq only.

Inserting expressions (S-17) into Eq. (S-29), we arrive at the formula

Ψ̇ = KĊ + 2K : D, (S-32)

where

K =
2∑

m=1

[ ∂Wm

∂I
(m)
e1

B(m)
e − I(m)

e3

∂Wm

∂I
(m)
e2

(B(m)
e )−1 +

(
I
(m)
e2

∂Wm

∂Ie2
+ I

(m)
e3

∂Wm

∂I
(m)
e3

)
I
]
. (S-33)

S1.4 Constitutive equations

To develop constitutive equations for a TR gel in a binary mixture of solvents under isother-

mal deformation at temperature T , we apply the free energy imbalance inequality

Ψ̇− umec − udif ≤ 0, (S-34)

where umec and udif denote works (per unit volume in the initial state and unit time) produced

by stresses and diffusion of solvents.

The specific mechanical work is determined by the conventional formula

umec = JΣ : D, (S-35)

where Σ is the Cauchy stress tensor, and

J = det F. (S-36)

The specific work produced by transport of solvent molecules is given by

udif = µĊ + ūdif , (S-37)

where µ stands for the chemical potential of the equivalent solvent molecules and

ūdif ≥ 0. (S-38)
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Eq. (S-34) is satisfied when the functions C and F are connected by the molecular

incompressibility condition (S-1). To account for this relation, we differentiate Eq. (S-1)

with respect to time, use Eq. (S-4), and find that

Ċv − JI : D = 0. (S-39)

We multiply Eq. (S-39) by an arbitrary function Π (pressure treated as a Lagrange multi-

plier) and add the result to Eq. (S-34). Using Eq. (S-32), we arrive at the formula

(K + Πv − µ)Ċ + [2K− J(Σ + ΠI)] : D− ūdif ≤ 0. (S-40)

Keeping in mind that C and D are arbitrary functions and applying Eq. (S-38), we

conclude that inequality (S-40) is satisfied, provided that the chemical potential of solvent

molecules reads

µ = (µ0
1ϕ1 + µ0

2ϕ2) + kBT (ϕ1 lnϕ1 + ϕ2 lnϕ2 + χ12ϕ1ϕ2)

+kBT
[
ln

Q

1 +Q
+

1

1 +Q
+

χeq

(1 +Q)2

]
+ Πv, (S-41)

and the Cauchy stress tensor Σ is given by

Σ = −Π I +
2

1 +Q

2∑
m=1

[ ∂Wm

∂I
(m)
e1

B(m)
e − I(m)

e3

∂Wm

∂I
(m)
e2

(B(m)
e )−1

+
(
I
(m)
e2

∂Wm

∂Ie2
+ I

(m)
e3

∂Wm

∂I
(m)
e3

)
I
]
, (S-42)

where degree of swelling Q is determined by Eq. (S-8).

For definiteness, the neo–Hookean formulas are accepted for the strain energy densities

of sub-networks with covalent and physical bonds,

Wm =
1

2
Gm

[
(I

(m)
e1 − 3)− ln I

(m)
e3

]
, (m = 1, 2), (S-43)

where G1 and G2 stand for the shear moduli. Combination of Eqs. (S-42) and (S-43) implies

that

Σ = −Π I +
1

1 +Q

[
G1(B

(1)
e − I) +G2(B

(2)
e − I)

]
. (S-44)

Eqs. (S-41) and (S-44) provide constitutive relations for the mechanical response of a

TR gel in a mixture of solvents.
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S1.5 Equilibrium swelling

Under unconstrained equilibrium swelling of a TR gel in a mixture of solvents at a fixed

temperature T , degree of swelling Q depends on temperature T only: Q = Q(T ). Pressure

in the bath is disregarded,

Πbath = 0. (S-45)

The deformation gradient for macro-deformation reads

F = (1 +Q)
1
3 I. (S-46)

Combining Eqs. (S-15), (S-44) and (S-46) and using Eq. (S-10), we find that

Σ = ΣI, Σ = −Π +
1

1 +Q

{
G1

[( 1 +Q

1 +Q0

) 2
3 − 1

]
+G2

[
(1 +Q)

2
3 − 1

]}
. (S-47)

The Cauchy stress tensor Σ obeys the equilibrium equation

∇ ·Σ = 0, (S-48)

where ∇ stands for the gradient in the actual state, and the boundary condition at the

surface of a gel

n ·Σ = 0, (S-49)

where n is the unit normal vector. It follows from Eqs. (S-47) to (S-49) that

Σ = 0.

Insertion of Eq. (S-47) into this equality yields

Π =
1

1 +Q

{
G1

[( 1 +Q

1 +Q0

) 2
3 − 1

]
+G2

[
(1 +Q)

2
3 − 1

]}
. (S-50)

The chemical potential of solvent molecules in a gel is determined by Eq. (S-41). Its

chemical potential in the bath is given by the same equality where all terms describing

interactions between solvent molecules and segments of chains are disregarded.

µ = (µ0
1φ

bath
1 + µ0

2φ
bath
2 ) + kBT (φbath

1 lnφbath
1 + φbath

2 lnφbath
2 + χ12φ

bath
1 φbath

2 ). (S-51)

Substituting expressions (S-41) and (S-51) into the equilibrium condition

µ = µbath, (S-52)
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and using Eqs. (S-28) and (S-50), we arrive at the equation

ln
Q

1 +Q
+

1

1 +Q
+

χeq

(1 +Q)2
+

g1
1 +Q

[( 1 +Q

1 +Q0

) 2
3 − 1

]
+

g2
1 +Q

[
(1 +Q)

2
3 − 1

]
= 0, (S-53)

where

gm =
Gmv

kBT
(m = 1, 2)

are the dimensionless shear moduli.

Eq. (S-53) provides the governing equation for the equilibrium degree of swelling Q of a

TR gel immersed into a mixture of solvent-1 and solvent-2. An advantage of this relation is

that it involves the only parameter χeq that accounts the interaction between segments of

chains and molecules of solvent-1 and solvent-2.

It follows from Eqs. (S-28) and (S-31) that

χeq = χ13φ
bath
1 + χ23φ

bath
2 − χ12φ

bath
1 φbath

2 . (S-54)

At small volume fractions of solvent-2 in the mixture,

φbath
2 � 1, (S-55)

we disregard the nonlinear terms in Eq. (S-54) and find that

χeq = χ13 −Rφbath
2 , (S-56)

where

R = χ13 − χ23 + χ12. (S-57)

S2 Partitioning of solvents

Eq. (S-53) is derived under condition (S-28) that volume fractions of solvent molecules in

the fluid phase coincide inside and outside of a TR gel. To validate this assumption and

to evaluate when Eq. (S-28) is fulfilled, governing equations are developed for equilibrium

swelling of a TR gel with arbitrary volume fractions φ1 and φ2 of solvent-1 and solvent-2

molecules.
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We start with expressions (S-20)–(S-23) for the specific free energy of a TR gel. It follows

from these relations and Eq. (S-2) that

Ψ = µ0
1C1 + µ0

2C2 + kBT
[
C1 ln

C1v

1 + (C1 + C2)v
+ C2 ln

C2v

1 + (C1 + C2)v

+
χ13C1 + χ23C2 + χ12C1C2v

1 + (C1 + C2)v

]
+

2∑
m=1

Wm(I
(m)
e1 , I

(m)
e2 , I

(m)
e3 ). (S-58)

Differentiating Eq. (S-58) with respect to time and using Eq. (S-17), we find that

Ψ̇ = K1Ċ1 +K2Ċ2 + 2K : D, (S-59)

where

K1 = µ0
1 + kBT

[
lnφ1 + φn + χ13φ

2
n + φ2

(
(χ13 − χ23 + χ12)φn + χ12φ2

)]
,

K2 = µ0
2 + kBT

[
lnφ2 + φn + χ23φ

2
n + φ1

(
(χ23 − χ13 + χ12)φn + χ12φ1

)]
, (S-60)

and K is given by Eq. (S-33).

We now substitute Eq. (S-59) into the free energy imbalance inequality (S-34) with umec

given by Eq. (S-35) and udif determined by the analog of Eq. (S-37),

udif = µ1Ċ1 + µ2Ċ2 + ūdif . (S-61)

Repeating the transformations conducted in Sect. S1.4, and adopting the neo-Hookean

expressions (S-43) for the elastic potentials Wm, we arrive at Eq. (S-44) for the Cauchy

stress tensor and the following relations for the chemical potentials of solvent-1 and solvent-

2 molecules:

µ1 = µ0
1 + kBT µ̄1, µ2 = µ0

2 + kBT µ̄2, (S-62)

where

µ̄1 = lnφ1 + φn + χ13φ
2
n + (χ13 − χ23 + χ12)φ2φn + χ12φ

2
2 +

Πv

kBT
,

µ̄2 = lnφ2 + φn + χ23φ
2
n + (χ23 − χ13 + χ12)φ1φn + χ12φ

2
1 +

Πv

kBT
. (S-63)

The chemical potentials of these molecules in the bath are determined by Eqs. (S-62)

and (S-63), where all terms are disregarded that reflect interactions between the solvents

and the polymer network,

µbath
1 = µ0

1 + kBT µ̄
bath
1 , µbath

2 = µ0
2 + kBT µ̄

bath
2 (S-64)
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with

µ̄bath
1 = lnφbath

1 + χ12(φ
bath
2 )2, µ̄bath

2 = lnφbath
2 + χ12(φ

bath
1 )2. (S-65)

Under equilibrium swelling of a TR gel in a mixture with volume fractions of solvents

φbath
1 and φbath

2 , pressure Π is determined by Eq. (S-50). Using Eq. (S-9), we present this

equality in the form

Π = φn

{
G1

[( φn

φn0

)− 2
3 − 1

]
+G2

[
φ
− 2

3
n − 1

]}
, (S-66)

where

φn0 =
1

1 +Q0

.

Volume fractions of solvent-1, solvent-2 and polymer network are found from the equilibrium

conditions

µ1 = µbath
1 , µ2 = µbath

2 (S-67)

and Eq. (S-3).

Substitution of expressions (S-62)–(S-65) into Eqs. (S-67) results in the nonlinear equa-

tions

lnφ1 + φn + χ13φ
2
n + (χ13 − χ23 + χ12)φ2φn + χ12φ

2
2 +

Πv

kBT
= lnφbath

1 + χ12(φ
bath
2 )2,

lnφ2 + φn + χ23φ
2
n + (χ23 − χ13 + χ12)φ1φn + χ12φ

2
1 +

Πv

kBT
= lnφbath

2 + χ12(φ
bath
1 )2. (S-68)

Subtracting the last equality in Eq. (S-68) from the first one and using Eq. (S-3), we find,

after simple algebra, that

ln
φ1

φ2

+ (χ13 − χ23)φn + χ12(φ2 − φ1) = ln
φbath
1

φbath
2

+ χ12(φ
bath
2 − φbath

1 ). (S-69)

Insertion of Eq. (S-9) into Eq. (S-69) implies that

ln
ϕ1

ϕ2

+
χ13 − χ23

1 +Q
+ χ12(ϕ2 − ϕ1)

Q

1 +Q
= ln

φbath
1

φbath
2

+ χ12(φ
bath
2 − φbath

1 ).

Bearing in mind that

ϕ1 = 1− ϕ2, φbath
1 = 1− φbath

2 ,

see Eq. (S-6), we conclude that

ln
1− ϕ2

ϕ2

+
χ13 − χ23

1 +Q
+ χ12(2ϕ2 − 1)

Q

1 +Q
= ln

1− φbath
2

φbath
2

+ χ12(2φ
bath
2 − 1). (S-70)
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Introducing the partitioning coefficient for solvent-2

P =
ϕ2

φbath
2

, (S-71)

we find from Eq. (S-70) that

ln
1− Pφbath

2

P (1− φbath
2 )

+
χ13 − χ23 + χ12

1 +Q
+ 2χ12φ

bath
2

( PQ

1 +Q
− 1
)

= 0. (S-72)

At small volume fractions of solvent-2 in the bath, see Eq. (S-55), Eq. (S-72) is simplified,

lnP =
χ13 − (χ23 − χ12)

1 +Q
.

It follows from this equality and Eq. (S-56) that

P = exp
( R

1 +Q

)
. (S-73)

Eq. (S-73) implies that when a TR gel is in the swollen state, which means that its

degree of swelling Q� 1 and the condition∣∣∣ R

1 +Q

∣∣∣� 1 (S-74)

is fulfilled, the partitioning coefficient P is close to unity. Eq. (S-74) provides an explicit

condition, under which Eqs. (S-28) are satisfied.
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S3 Supplementary tables

Table S1: Material parameters for PNIPAAm gels in water (Fig. 1)

Fig. χ0 χ1 χmax Q0 g1 ḡ2 β Tc
◦C

1A −2.098 0.0791 0.54 8.5 0.039 8.5 0.1 33.4

1B −2.098 0.0791 0.54 11.3 0.082 8.5 0.2 33.4

1C −2.098 0.0791 0.51 0.3 0.012 8.5 0.2 33.0

1D −2.098 0.0791 0.54 2.0 0.116 8.5 0.3 33.4

Table S2: Parameter K for PNIPAAm gel in aqueous solutions of salts (Figs. 2 and 3)

Fig. Salt K

2A, 3A NaCl 34.0

2B, 3B NaBr 17.5

2C, 3C NaI 8.5

Table S3: Material parameters for PNIPAAm gel in aqueous solutions of salts (Fig. 4)

Fig. Salt Q0 g1 K

4A NaCl 11.3 0.082 36.0

4B LiNO3 14.7 0.090 28.0

4C NaNO3 13.6 0.079 26.0

4D NaI 10.9 0.076 12.0

Table S4: Material parameters for PNIPAAm gel in aqueous solutions of additives (Fig. 5)

Fig. Additive K

5A NaCl 34.0

5B NaOH 54.0
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Table S5: Material parameters for PNIPAAm gel in aqueous solutions of salts (Fig. 6)

Fig. Salt K

6A NaCl 40.0

6B Na2SO4 85.0

6C NaSCN 7.5

Table S6: Material parameters for PNIPAAm chains in aqueous solutions of additives (Fig.

7)

Figure Additive χmax K

7A NaCl 0.563 43.6

7A NaNO3 0.563 25.3

7B NaSCN 0.610 1.7

7B NaNO3 0.610 14.6

7B NaCl 0.610 37.6

7B Na2SO4 0.610 94.1

7C KI 0.563 8.3

7C KBr 0.563 17.0

7C KCl 0.563 28.7

7C K2SO4 0.563 46.4

7C KOH 0.563 71.9

7D NaSCN 0.563 6.3

7D NaBr 0.563 22.3

7D Na2SO4 0.563 80.0

Table S7: Material parameters for PNIPAAm gels and chains in aqueous solutions of salts

(Fig. 8)

K0 a

21.794 7.444
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Table S8: Material parameters for PNIPAAm chains in aqueous solutions of additives (Figs.

9 and 10)

Fig. Additive χmax K

9A NaBr 0.45 24.0

9B NaF 0.35 52.9

9C Na2CO3 0.54 97.1

9D KI 0.53 9.6

9D KCl 0.53 24.1

9D KOH 0.53 74.7

10A NaCl 0.45 34.8

10B NaH2PO4 0.45 90.7

10B Na2SO4 0.45 82.8

10B Na3PO4 0.45 74.2
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S4 Supplementary figure
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Figure S1: The ratio of shear moduli R = G(T )/G(T0) with T0 = 10 ◦C versus temperature

T . Circles: experimental data on PNIPAAm gel (Ikehata and Ushiki, 2002) in water (A)

and aqueous solution of LiNO3 with mole fraction c = 1.5 M (B). Solid lines: results of

numerical analysis.
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