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Abstract: A sunlight-promoted sulfenylation of quinoxalin-2(1H)-ones using recyclable graphitic
carbon nitride (g-C3N4) as a heterogeneous photocatalyst was developed. Using the method, various
3-sulfenylated quinoxalin-2(1H)-ones were obtained in good to excellent yields under an ambient
air atmosphere. Moreover, the heterogeneous catalyst can be recycled at least six times without
significant loss of activity.
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1. Introduction

Quinoxalin-2(1H)-one is a privileged structural moiety, which exhibits various bio-
logical activities and pharmacological properties [1,2]. Consequently, a large number of
3-substituted quinoxalinones are prepared via direct C3–H functionalization of quinoxalin-
2(1H)-ones in recent years, mainly including alkylation [3–16], arylation [17–25], acyla-
tion [26–31], alkoxylation [32–35], sulfenylation [36–38], amination [39–44], phosphona-
tion [45–49] and trifluoromethylation [50–53]. Among them, photoredox catalysis has
gained widespread concerns due to the unique advantages of energy-saving, high effi-
ciency and handling simplicity [54–57]. However, most of the reported photocatalytic
functionalization reactions are dominated by homogeneous photocatalysts, such as Ru(II)
or Ir(III) based transition metal complexes or organic dyes, for example, Eosin Y, Rho-
damine 6G, 4CzIPN and acridinium salts, whose photo properties are highlighted in
the literature [58–61]. Although these homogenous photocatalysts show excellent pho-
tocatalytic activity in diverse reactions, they all encounter some common imperfections,
including high economic and environmental cost, easy degradation/decomposition during
the reaction, and poor reusability from the reaction system, which limit their large-scale
and long-term use in pharmaceutical production. To address these issues, developing
recyclable heterogeneous photocatalyzed transformation is an attractive and practical strat-
egy. However, to date, only very limited examples of heterogeneous photocatalysis for the
functionalization of quinoxalin-2(1H)-ones were reported. In 2019, Yang et al. developed
visible-light-mediated arylation/alkylation reactions of quinoxalin-2(1H)-ones with hy-
drazines using a covalent organic framework (2D-COF-1) as a heterogeneous photocatalyst
(Scheme 1a) [10]. Later, they further reported decarboxylative alkylation of quinoxalin-
2(1H)-ones catalyzed by 2D-COF-2 under visible light irradiation (Scheme 1b) [62]. Despite
these achievements, the utilization of heterogeneous photocatalyst for C-H functionaliza-
tion of quinoxalin-2(1H)-ones is currently far from desired and of great significance.

As an abundant, clean and renewable energy source, sunlight has been wildly applied
in various organic transformations. Many elegant sunlight-induced organic reactions are
reported by Jiao [63], Wang [64], Pan [65], Zhu [66], Hashmi [67] and others [68–71]. With
the increasing demand for green synthesis, the utilization of sunlight represents a hot topic
of great interest. On the other hand, graphitic carbon nitride (g-C3N4) is an environmentally
friendly, recyclable and inexpensive heterogeneous photocatalyst, which has emerged as
a promising candidate to homogeneous photoredox catalysts [72]. Various novel g-C3N4
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catalyzed photocatalytic reactions have been more deeply explored, such as controlled oxi-
dation reactions [73–75], coupling reactions [76–81] and heterocyclizations [82–84]. To our
knowledge, only Yu and co-workers demonstrated a visible light-induced g-C3N4-catalyzed
decarboxylative reaction of quinoxalin-2(1H)-ones with N-aryl glycines (Scheme 1c) [84].
Therefore, developing more g-C3N4 catalyzed C3-H functionalization of quinoxalin-2(1H)-
ones is in urgent demand.
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Scheme 1. Heterogeneous photocatalyzed functionalization of quinoxalin-2(1H)-ones (a) 2D-COF-
1 catalyzed alkylation/arylation of quinoxalin-2(1H)-ones; (b) 2D-COF-2 catalyzed alkylation of
quinoxalin-2(1H)-ones; (c) g-C3N4 catalyzed hydroaminomethylation of quinoxalin-2(1H)-ones;
(d) g-C3N4 catalyzed sulfenylation of quinoxalin-2(1H)-ones.

As a part of our continuing interest in functionalized quinoxalines [30,37,85,86], herein,
we wish to report sunlight induced and g-C3N4 catalyzed sulfenylation of quinoxalin-2(1H)-
ones under air conditions (Scheme 1d). The current reaction provides a highly attractive
and practical approach to selectively access various 3-sulfenylated quinoxalin-2(1H)-ones
in good to excellent yields. Furthermore, the heterogeneous catalyst can be easily recycled
up to six times, while maintaining its high catalytic activity.

2. Results and Discussion

In our initial investigation, a template reaction of 1-methylquinoxalin-2(1H)-one (1a)
and propane-2-thiol (2a) was performed to screen the reaction conditions (Table 1). Treat-
ment of 1a and 2a with g-C3N4 (10 mg) in THF under 6w blue LED irradiation (450–455nm)
in air for 12 h afforded 3aa in 72% yield (entry 1). Screening of common organic solvents
(entries 2–7) revealed that EtOAc was more efficient for the sulfenylation reaction (entry 4)
and no reaction, occurred in water (entry 7), the light sources were also investigated (entries
8–11), to our delight, compared to blue, green, purple and white light sources, sunlight led
to a better yield of 3aa (entry 8). Besides, increasing the loading of g-C3N4 from 10 mg to
15 mg (entry 8 vs. entry 12), no better result was achieved, while decreasing the loading
of g-C3N4 to 5 mg gave a lower yield of 3aa (entry 8 vs. entry 13). When the reaction was
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conducted under N2 atmosphere or dark conditions (entries 14, 15), no reaction occurred.
Furthermore, in the absence of a photocatalyst, 3aa was also not observed (entry 16).

Table 1. Optimization of reaction conditions a.
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After identifying the optimized reaction conditions (Table 1, entry 8), the substrate
scope was firstly explored by employing different quinoxalin-2(1H)-ones (1a–1t) with
propane-2-thiol (2a). As revealed in Scheme 2, N-substituted quinoxalinones bearing
various alkyl or phenyl group reacted smoothly with propane-2-thiol (2a), affording the
corresponding products (3aa–3ia) with excellent yields. Furthermore, quinoxalin-2(1H)-
ones containing diverse substituents on the phenyl ring could efficiently generate the
desired products (3ja–3ra). Some important functional-groups, such as F (3ka and 3pa),
Cl (3ja and 3la), Br (3ma), CF3 (3na and 3qa), benzoyl (3oa) and ester (3ra) groups at
different positions of aromatic rings were well compatible, providing a handle for post-
transformations. Besides, N-unprotected quinoxalinone also reacted well to afford 3sa in
78% isolated yield. Furthermore, 1-methylbenzo[g]quinoxalin-2(1H)-one also reacted well
to give 3ta in 82% yield.

Next, we investigated the substrate generality with respect to thiols as evaluated in
Scheme 3, various thiols (2b–2m) charged with different aliphatic chains and steric branched
chains reacted smoothly to deliver products 3ab–3af in excellent yields. Other linear thiols
bearing a phenyl ring or a furan group also proceeded well to provide 3ag–3ai in good
yields. In addition, diverse cyclic substituted thiols were all compatible with the reaction,
respectively, giving 3aj–3al in good yields. Unfortunately, thiophenol (2m) failed to give
the desired product (3am) and a remarkable dimerization product 1,2-diphenyldisulfane
was detected in the reaction mixture.
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To illustrate the synthetic application, a gram-scale experiment between 1a and 2a was
carried out (Scheme 4). As anticipated, when the reaction was scaled up to 6 mmol, 3aa
was obtained in 84% isolated yield, suggesting the current reaction is a practical method
for the synthesis of 3-thioquinoxalinones.

Recycling studies were performed for the reaction between 1a and 2a under the
standard conditions. After the reaction was complete, the g-C3N4 catalyst was recycled
from the reaction mixture by simple filtration and rinsing with reaction solvent. The
recovered photocatalyst was dried and then directly reused in the next round. As shown in
Figure 1, the reaction was repeated up to six times, and no obvious losses in its catalytic
activity were observed.
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Figure 1. Catalyst recycling experiments.

To better understand the mechanism, some control experiments were performed
(Scheme 5). The reaction was completely suppressed by addition of two equiv. of TEMPO
or BHT (Scheme 5a), suggesting that radical intermediates might be involved in this trans-
formation. Conducting the reaction using phenylmethanethiol 2g as a substrate under
the standard conditions, 3ag was isolated in 81% yield and the 1,2- dibenzyldisulfane 5a
was detected by GC-MS (Scheme 5b). In addition, in the absence of 1-methylquinoxalin-
2(1H)-one 1a, phenylmethanethiol 2g underwent a quick dimerization to generate 5a in
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78% yield (Scheme 5c). To confirm whether disulfides participate in the sulfenylation
process, the reaction between 1a and 5a was performed, and no product 3ag was de-
tected (Scheme 5d), indicating that disulfides should not be the effective intermediates
for the sulfenylation. Moreover, performing the template reaction under N2 atmosphere
(Scheme 5e), no product 3aa was observed, which demonstrates that dioxygen was crucial
for the present transformation.
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Based on the above control experiment and related precedents in the literature [36–38],
a possible reaction mechanism is proposed (Scheme 6). Initially, under the irradiation of
visible light, g-C3N4 is excited and generates holes in the valence band (VB) and electrons in
the conduction band (CB). Then, the holes obtain an electron from thiol 2 to generate thiyl
radical cation 5 via a single electron transfer (SET) process. Simultaneously, the electrons in
the CB were transferred to O2 (air) to generate O2

•−. Next, O2
•− abstracted hydrogen from

thiyl radical cation 5 to form HO2• species and thiyl radical 6, which would add to C=N
of 1a giving nitrogen radical intermediate 7. Intermediate 7 undergoes a further oxidative
process by HO2• or O2 giving the intermediate 8. Finally, the deprotonation of nitrogen
cation intermediate 7 affords product 3.
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3. Experimental Section
3.1. General Information

Unless otherwise noted, all reagents and solvents were used as received from commer-
cial suppliers. The 1H, 13C and 19F NMR spectra were recorded at 400, 100 and 376 MHz
by using a German Bruker Avance spectrometer. Chemical shifts were calibrated using
residual undeuterated CDCl3 as an internal reference (1H NMR is calibrated at 7.26 ppm
and 13C NMR at 77.0 ppm). Mass spectra were performed on a spectrometer operating on
ESI-TOF. The catalyst g-C3N4 was purchased from JiangSu XFNANO Materials Tech Co.,
Ltd. (JiangSu, China).

3.2. General Procedure for the Preparation of 3-Thioquinoxalinones

A glass tube equipped with a magnetic stirrer bar was charged with quinoxalin-2(1H)-
ones 1 (0.3 mmol), thiols 2 (0.9 mmol), g-C3N4 (10 mg) and EtOAc (1.5 mL). The reaction
mixture was open to the air and stirred at room temperature under the irradiation of
sunlight (sunny or cloudy weather) for about 8 h. After completion of the reaction, g-C3N4
was filtered out of the mixture. Then filtrate was extracted three times with ethyl acetate
(5 mL × 3). The combined organic layers were dried over anhydrous Na2SO4. After
filtration, the solvent was evaporated in vacuo. The crude product was purified by silica gel
chromatography (petroleum ether/ethyl acetate = 10/1–6/1) to give the desired products 3.

3.3. Gram-Scale Synthesis of 3aa

A glass tube equipped with a magnetic stirrer bar was charged with quinoxalin-
2(1H)-ones 1a (0.96 g, 6 mmol), pane-2-thiol 2a (1.37 g, 18 mmol), g-C3N4 (200 mg) and
EtOAc (30 mL). The reaction mixture was open to the air and stirred at room temperature
under the irradiation of sunlight for about 8h. After completion of the reaction, g-C3N4
was filtered out of the mixture. Then filtrate was extracted three times with ethyl acetate
(30 mL× 2). The combined organic layers were dried over anhydrous Na2SO4. After
filtration, the solvent was evaporated in vacuo. The crude product was purified by silica
gel chromatography (petroleum ether/ethyl acetate = 8/1) to give 1.18 g of 3aa, yield 84%.

3.4. Recycling Experiments

A glass tube equipped with a magnetic stirrer bar was charged with quinoxalin-2(1H)-
ones 1a (0.048 g, 0.3 mmol), pane-2-thiol 2a (0.068 g, 0.9 mmol), g-C3N4 (10 mg) and
EtOAc (1.5 mL). The reaction mixture was open to the air and stirred at room temperature
under the irradiation of sunlight for about 8h. After completion of the reaction, the g-C3N4
previously used was simply filtered and washed with EtOAc (2 mL), and then the recyclable
g-C3N4 was dried under vacuum and directly reused for the next reaction cycle without
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any further purification. The yield of product 3aa could be measured by 1H NMR using
diethyl phthalate as an internal standard. (See Supplementary Materials)

3.5. Characterization Data of Products 3aa–3ta and 3ab–3al

3-(isopropylthio)-1-methylquinoxalin-2(1H)-one (3aa):
White solid; mp 115–117 ◦C; 61.1 mg (isolated yield 87%); 1H NMR (400 MHz, Chloroform-

d) δ 7.74 (d, J = 8.0 Hz, 1H), 7.48–7.41 (m, 1H), 7.34–7.26 (m, 2H), 4.03–3.96 (m, 1H), 3.69 (s, 3H),
1.45 (d, J = 6.9 Hz, 6H); 13C NMR (100 MHz, Chloroform-d) δ 160.0, 153.3, 133.5, 131.2,
128.2, 128.0, 123.7, 113.7, 34.4, 29.2, 22.5; HRMS (ESI): m/z [M×H]+ calcd for C12H15N2OS:
235.0900; found: 235.0902. The compound spectra data is in agreement with the report [87].

ethyl-3-(isopropylthio)quinoxalin-2(1H)-one (3ba):
Colorless liquid; 65.5 mg (isolated yield 88%); 1H NMR (400 MHz, Chloroform-d) δ

7.75 (d, J = 7.7 Hz, 1H), 7.44 (t, J = 7.8 Hz, 1H), 7.30 (d, J = 7.8 Hz, 2H), 4.31 (q, J = 7.2 Hz,
2H), 4.03–3.96 (m, 1H), 1.45 (d, J = 6.9 Hz, 6H), 1.37 (t, J = 7.2 Hz, 3H); 13C NMR (100 MHz,
Chloroform-d) δ 160.0, 152.7, 133.9, 130.1, 128.5, 128.0, 123.5, 113.5, 37.4, 34.4, 22.5, 12.3;
HRMS (ESI): m/z [M+H]+ calcd for C13H17N2OS: 249.1056; found: 249.1063.

3-(isopropylthio)-1-pentylquinoxalin-2(1H)-one (3ca):
Colorless liquid; 79.2 mg (isolated yield 91%); 1H NMR (400 MHz, Chloroform-d)

δ 7.75 (d, J = 8.0 Hz, 1H), 7.48–7.39 (m, 1H), 7.29 (t, J = 8.1 Hz, 2H), 4.30–4.18 (m, 2H),
4.04–3.93 (m, 1H), 1.80–1.71 (m, 2H), 1.46 (d, J = 6.9 Hz, 6H), 1.44–1.32 (m, 4H), 0.91 (t,
J = 7.0 Hz, 3H); 13C NMR (100 MHz, Chloroform-d) δ 160.0, 153.0, 133.8, 130.4, 128.5,
127.9, 123.5, 113.7, 42.5, 34.4, 29.0, 26.8, 22.5, 22.3, 13.9; HRMS (ESI): m/z [M+H]+ calcd for
C16H23N2OS: 291.1526; found: 291.1529.

benzyl-3-(isopropylthio)quinoxalin-2(1H)-one (3da):
White solid; mp 123–125 ◦C; 86.5 mg (isolated yield 93%); 1H NMR (400 MHz, Chloroform-

d) δ 7.76 (dd, J = 7.7, 1.7 Hz, 1H), 7.35–7.22 (m, 8H), 5.49 (s, 2H), 4.07–4.00 (m, 1H), 1.49 (d,
J = 6.9 Hz, 6H); 13C NMR (100 MHz, Chloroform-d) δ 160.1, 153.4, 135.1, 133.8, 130.5, 128.8,
128.3, 128.0, 127.7, 127.0, 123.8, 114.5, 46.1, 34.6, 22.6; HRMS (ESI): m/z [M+H]+ calcd for
C18H19N2OS: 311.1213; found: 311.1218.

allyl-3-(isopropylthio)quinoxalin-2(1H)-one (3ea):
Colorless liquid; 67.1 mg (isolated yield 86%); 1H NMR (400 MHz, Chloroform-d) δ

7.76 (d, J = 7.8 Hz, 1H), 7.41 (t, J = 7.4 Hz, 1H), 7.34–7.25 (m, 2H), 5.92 (ddt, J = 15.8, 10.4,
5.2 Hz, 1H), 5.23 (dd, J = 28.4, 13.8 Hz, 2H), 4.90 (d, J = 5.1 Hz, 2H), 4.04–3.97 (m, 1H),
1.47 (d, J = 6.9 Hz, 6H); 13C NMR (100 MHz, Chloroform-d) δ 160.0, 152.9, 133.7, 130.5,
130.4, 128.3, 128.0, 123.7, 118.3, 114.3, 44.7, 34.5, 22.5; HRMS (ESI): m/z [M+H]+ calcd for
C14H17N2OS: 261.1056; found: 261.1052.

3-(isopropylthio)-1-(prop-2-yn-1-yl)quinolin-2(1H)-one (3fa):
White solid; mp 172–174 ◦C; 65.0 mg (isolated yield 84%); 1H NMR (400 MHz,

Chloroform-d) δ 7.76 (d, J = 8.7 Hz, 1H), 7.52–7.41 (m, 2H), 7.37–7.30 (m, 1H), 5.04 (d,
J = 2.5 Hz, 2H), 4.03–3.96 (m, 1H), 2.28 (t, J = 2.5 Hz, 1H), 1.46 (d, J = 6.9 Hz, 6H); 13C NMR
(100 MHz, Chloroform-d) δ 159.8, 152.3, 133.7, 129.7, 128.3, 128.1, 124.1, 114.2, 76.6, 73.3,
34.6, 31.6, 22.5; HRMS (ESI): m/z [M+H]+ calcd for C14H15N2OS: 259.0900; found: 259.0908.

ethyl 2-(3-(isopropylthio)-2-oxoquinoxalin-1(2H)-yl)acetate (3ga):
Colorless liquid; 67.0 mg (isolated yield 73%); 1H NMR (400 MHz, Chloroform-d)

δ 7.82–7.71 (m, 1H), 7.47–7.36 (m, 1H), 7.31 (t, J = 7.5 Hz, 1H), 7.04 (d, J = 8.2 Hz, 1H),
5.01 (s, 2H), 4.23 (q, J = 7.1 Hz, 2H), 4.05–3.98 (m, 1H), 1.47 (d, J = 6.9 Hz, 6H), 1.26 (t,
J = 7.1 Hz, 3H); 13C NMR (100 MHz, Chloroform-d) δ 166.9, 159.7, 152.9, 133.6, 130.4,
128.5, 128.2, 124.0, 113.2, 62.0, 43.6, 34.6, 22.5, 14.1; HRMS (ESI): m/z [M+H]+ calcd for
C15H19N2O3S: 307.1111; found: 307.1107.

3-(isopropylthio)-1-(2-oxo-2-phenylethyl)quinoxalin-2(1H)-one (3ha):
White solid; mp 184–186 ◦C; 79.1 mg (isolated yield 78%); 1H NMR (400 MHz,

Chloroform-d) δ 8.05 (d, J = 7.5 Hz, 2H), 7.77 (dd, J = 7.5, 1.8 Hz, 1H), 7.65 (t, J = 7.4 Hz,
1H), 7.53 (t, J = 8.0 Hz, 2H), 7.36–7.22 (m, 2H), 6.92 (d, J = 9.1 Hz, 1H), 5.72 (s, 2H),
4.06–3.99 (m, 1H), 1.47 (d, J = 6.9 Hz, 6H); 13C NMR (100 MHz, Chloroform-d) δ 190.9, 159.5,
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153.1, 134.5, 134.2, 133.7, 130.6, 129.0, 128.5, 128.1, 128.1, 123.8, 113.6, 48.5, 34.5, 22.5; HRMS
(ESI): m/z [M+H]+ calcd for C19H19N2O2S: 339.1162; found: 339.1164.

3-(isopropylthio)-1-phenylquinoxalin-2(1H)-one (3ia):
White solid; mp 153–155 ◦C; 71.9 mg (isolated yield 81%); 1H NMR (400 MHz,

Chloroform-d) δ 7.79 (d, J = 7.8 Hz, 1H), 7.68–7.50 (m, 3H), 7.32–7.26 (m, 3H), 7.23 (t,
J = 7.0 Hz, 1H), 6.65 (d, J = 8.1 Hz, 1H), 4.12–3.97 (m, 1H), 1.50 (d, J = 6.9 Hz, 6H);
13C NMR (100 MHz, Chloroform-d) δ 160.7, 152.9, 135.6, 133.4, 132.2, 130.2, 129.4, 128.3,
127.9, 127.7, 123.9, 115.6, 34.6, 22.6; HRMS (ESI): m/z [M+H]+ calcd for C17H17N2OS:
297.1056; found: 297.1051.

5-chloro-3-(isopropylthio)-1-methylquinoxalin-2(1H)-one (3ja):
White solid; mp 126–128 ◦C; 68.3 mg (isolated yield 85%); 1H NMR (400 MHz,

Chloroform-d) δ 7.44–7.39 (m, 1H), 7.34 (t, J = 8.1 Hz, 1H), 7.20 (d, J = 8.3 Hz, 1H),
4.09–4.02 (m, 1H), 3.69 (s, 3H), 1.50 (d, J = 6.8 Hz, 6H); 13C NMR (100 MHz, Chloroform-d) δ
161.0, 153.0, 133.0, 132.7, 130.1, 127.8, 124.6, 112.5, 35.4, 29.7, 22.2; HRMS (ESI): m/z [M+H]+

calcd for C12H14ClN2OS: 269.0510; found: 269.0513.
6-fluoro-3-(isopropylthio)-1-methylquinoxalin-2(1H)-one (3ka):
White solid; mp 174–176 ◦C; 62.0 mg (isolated yield 82%); 1H NMR (400 MHz,

Chloroform-d) δ 7.42 (dd, J = 8.9, 2.8 Hz, 1H), 7.25–7.14 (m, 2H), 3.99–3.92 (m, 1H),
3.68 (s, 3H), 1.44 (d, J = 6.9 Hz, 6H); 13C NMR (100 MHz, Chloroform-d) δ 161.9, 158.9
(d, JC-F = 244.4 Hz), 152.9, 134.1 (d, JC-F = 12.1 Hz), 127.9 (d, JC-F = 2.0 Hz), 115.5 (d,
JC-F = 24.2 Hz), 114.7 (d, JC-F = 9.1 Hz), 113.7 (d, JC-F = 22.2 Hz), 34.6, 29.5, 22.4; 19F NMR
(376 MHz, Chloroform-d) δ −119.1; HRMS (ESI): m/z [M+H]+ calcd for C12H14FN2OS:
253.0805; found: 253.0804.

6-chloro-3-(isopropylthio)-1-methylquinolin-2(1H)-one (3la):
White solid; mp 127–129 ◦C; 65.1 mg (isolated yield 81%); 1H NMR (400 MHz,

Chloroform-d) δ 7.73 (d, J = 2.4 Hz, 1H), 7.39 (dd, J = 8.9, 2.4 Hz, 1H), 7.20 (d, J = 8.9 Hz, 1H),
3.99–3.92 (m, 1H), 3.67 (s, 3H), 1.45 (d, J = 6.9 Hz, 6H); 13C NMR (100 MHz, Chloroform-d) δ
161.8, 153.0, 134.0, 130.0, 129.1, 127.9, 127.6, 114.8, 34.7, 29.4, 22.4; HRMS (ESI): m/z [M+H]+

calcd for C12H14ClN2OS: 269.0510; found: 269.0514.
6-bromo-3-(isopropylthio)-1-methylquinolin-2(1H)-one (3ma):
White solid; mp 144–146 ◦C; 73.9 mg (isolated yield 79%); 1H NMR (400 MHz, Chloroform-

d) δ 7.89 (s, 1H), 7.52 (d, J = 11.0 Hz, 1H), 7.15 (d, J = 8.8 Hz, 1H), 3.99–3.92 (m, 1H), 3.67 (s, 3H),
1.44 (d, J = 6.9 Hz, 6H); 13C NMR (100 MHz, Chloroform-d) δ 161.7, 152.9, 134.3, 130.6,
130.6, 130.4, 116.4, 115.1, 34.7, 29.4, 22.4; HRMS (ESI): m/z [M+H]+ calcd for C12H14BrN2OS:
313.0005; found: 313.0003.

3-(isopropylthio)-1-methyl-6-(trifluoromethyl)quinolin-2(1H)-one (3na):
White solid; mp 115–117 ◦C; 74.3 mg (isolated yield 82%); 1H NMR (400 MHz,

Chloroform-d) δ 8.01 (s, 1H), 7.66 (dd, J = 8.7, 1.6 Hz, 1H), 7.38 (d, J = 8.7 Hz, 1H),
4.03–3.96 (m, 1H), 3.72 (s, 3H), 1.46 (d, J = 6.9 Hz, 6H); 13C NMR (100 MHz, Chloroform-
d) δ 162.1, 153.2, 133.6, 132.9, 126.3 (q, JC-F = 33.3 Hz), 125.5 (q, JC-F = 4.0 Hz), 124.3
(q, JC-F = 4.0 Hz), 123.8 (q, JC-F = 273.7 Hz), 114.3, 34.9, 29.5, 22.5; 19F NMR (376 MHz,
Chloroform-d) δ -61.9; HRMS (ESI): m/z [M+H]+ calcd for C13H14F3N2OS: 303.0773;
found: 303.0762.

6-benzoyl-3-(isopropylthio)-1-methylquinoxalin-2(1H)-one (3oa):
White solid; mp 172–174 ◦C; 88.2 mg (isolated yield 87%); 1H NMR (400 MHz,

Chloroform-d) δ 8.17 (d, J = 1.9 Hz, 1H), 7.95 (dd, J = 8.6, 1.9 Hz, 1H), 7.82 (d, J = 7.3 Hz, 2H),
7.63 (t, J = 7.4 Hz, 1H), 7.52 (t, J = 7.6 Hz, 2H), 7.39 (d, J = 8.7 Hz, 1H), 4.01–3.95 (m, 1H),
3.74 (s, 3H), 1.44 (d, J = 6.9 Hz, 6H); 13C NMR (100 MHz, Chloroform-d) δ 195.2, 161.4, 153.2,
137.5, 134.4, 132.9, 132.7, 132.5, 130.5, 129.9, 129.4, 128.4, 113.9, 34.7, 29.6, 22.5; HRMS (ESI):
m/z [M+H]+ calcd for C19H19N2OS: 339.1162; found: 339.1157.

7-fluoro-3-(isopropylthio)-1-methylquinolin-2(1H)-one (3pa):
White solid; mp 164–166 ◦C; 62.0 mg (isolated yield 82%); 1H NMR (400 MHz,

Chloroform-d) δ 7.69 (dd, J = 8.8, 5.9 Hz, 1H), 7.10–6.84 (m, 2H), 3.98–3.91 (m, 1H),
3.64 (s, 3H), 1.44 (d, J = 6.9 Hz, 6H); 13C NMR (100 MHz, Chloroform-d) δ 161.8 (d,
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JC-F = 248.5 Hz), 158.9, 153.1, 132.5 (d, JC-F = 12.1 Hz), 130.3 (d, JC-F = 2.0 Hz), 129.8 (d,
JC-F = 10.1 Hz), 111.2 (d, JC-F = 23.2 Hz), 100.87 (d, JC-F = 28.3 Hz), 34.5, 29.5, 22.5; 19F NMR
(376 MHz, Chloroform-d) δ −110.3; HRMS (ESI): m/z [M+H]+ calcd for C12H14FN2OS:
253.0805; found: 253.0807.

3-(isopropylthio)-1-methyl-7-(trifluoromethyl)quinolin-2(1H)-one (3qa):
White solid; mp 121–123 ◦C; 75.2 mg (isolated yield 83%); 1H NMR (400 MHz,

Chloroform-d) δ 7.83 (d, J = 8.3 Hz, 1H), 7.60–7.48 (m, 2H), 4.03–3.97 (m, 1H), 3.73 (s, 3H),
1.46 (d, J = 6.9 Hz, 6H); 13C NMR (100 MHz, Chloroform-d) δ 163.1, 153.0, 135.1 (q,
JC-F = 1.0 Hz), 131.3, 129.5 (q, JC-F = 33.3 Hz), 128.7, 123.8 (q, JC-F = 273.7 Hz), 120.3 (q,
JC-F = 4.0 Hz), 111.2 (q, JC-F = 4.0 Hz), 34.8, 29.4, 22.4; 19F NMR (376 MHz, Chloroform-d) δ
−62.0; HRMS (ESI): m/z [M+H]+ calcd for C13H14F3N2OS: 303.0773; found: 303.0782.

methyl 2-(isopropylthio)-4-methyl-3-oxo-3,4-dihydroquinoxaline-6-carboxylate (3ra):
White solid; mp 172–174 ◦C; 75.4 mg (isolated yield 86%); 1H NMR (400 MHz,

Chloroform-d) δ 8.04–7.94 (m, 2H), 7.77 (d, J = 8.3 Hz, 1H), 4.06–3.99 (m, 1H), 3.97 (s, 3H),
3.75 (s, 3H), 1.46 (d, J = 6.9 Hz, 6H); 13C NMR (100 MHz, Chloroform-d) δ 166.3, 163.1, 153.1,
136.2, 131.1, 129.0, 128.1, 124.7, 115.6, 52.5, 34.8, 29.5, 22.4; HRMS (ESI): m/z [M+H]+ calcd
for C14H17N2O3S: 293.0954; found: 293.0958.

3-(isopropylthio)quinoxalin-2(1H)-one (3sa):
White solid; mp 255–257 ◦C; 51.5 mg (isolated yield 78%); 1H NMR (400 MHz,

Chloroform-d) δ 12.18 (s, 1H), 7.75 (d, J = 7.9 Hz, 1H), 7.45–7.36 (m, 2H), 7.35–7.28 (m, 1H),
4.10–4.03 (m, 1H), 1.49 (d, J = 6.8 Hz, 6H); 13C NMR (100 MHz, Chloroform-d) δ 159.7,
154.9, 133.6, 128.9, 128.2, 127.3, 124.4, 116.1, 34.5, 22.6; HRMS (ESI): m/z [M+H]+ calcd for
C11H13N2OS: 221.0743; found: 221.0738.

3-(isopropylthio)-1-methylbenzo[g]quinoxalin-2(1H)-one (3ta):
White solid; mp 216–218 ◦C; 69.9 mg (isolated yield 82%); 1H NMR (400 MHz,

Chloroform-d) δ 8.22 (s, 1H), 7.94 (d, J = 8.1 Hz, 1H), 7.89 (d, J = 8.2 Hz, 1H), 7.58 (s, 1H),
7.50 (dt, J = 23.6, 7.0 Hz, 2H), 4.08–4.01 (m, 1H), 3.76 (s, 3H), 1.50 (d, J = 6.9 Hz, 6H);
13C NMR (100 MHz, Chloroform-d) δ 160.5, 153.2, 132.7, 132.4, 130.5, 130.0, 128.0, 127.2,
127.0, 126.5, 125.3, 110.2, 34.7, 29.3, 22.6; HRMS (ESI): m/z [M+H]+ calcd for C16H17N2OS:
285.1056; found: 285.1059.

3-(butylthio)-1-methylquinoxalin-2(1H)-one (3ab):
White solid; mp 112–114 ◦C; 65.5 mg (isolated yield 88%); 1H NMR (400 MHz,

Chloroform-d) δ 7.75 (d, J = 7.9 Hz, 1H), 7.45 (t, J = 7.7 Hz, 1H), 7.36–7.26 (m, 2H), 3.71 (s, 3H),
3.18 (t, J = 7.3 Hz, 2H), 1.78–1.70 (m, 2H), 1.56–1.47 (m, 2H), 0.97 (t, J = 7.3 Hz, 3H); 13C
NMR (100 MHz, Chloroform-d) δ 160.1, 153.4, 133.5, 131.3, 128.2, 128.1, 123.8, 113.7, 30.6,
29.2, 22.1, 13.7; HRMS (ESI): m/z [M+H]+ calcd for C13H17N2OS: 249.1056; found: 249.1052.
The compound spectra data is in agreement with the report [37].

1-methyl-3-(octylthio)quinoxalin-2(1H)-one (3ac):
White solid; mp 124–126 ◦C; 83.0 mg (isolated yield 91%); 1H NMR (400 MHz,

Chloroform-d) δ 7.79–7.70 (m, 1H), 7.49–7.39 (m, 1H), 7.35–7.24 (m, 2H), 3.69 (s, 3H),
3.16 (t, J = 7.4 Hz, 2H), 1.78–1.71 (m, 2H), 1.54–1.44 (m, 2H), 1.37–1.28 (m, 8H), 0.88 (t,
J = 6.7 Hz, 3H); 13C NMR (100 MHz, Chloroform-d) δ 160.1, 153.3, 133.4, 131.3, 128.1, 128.0,
123.7, 113.6, 31.8, 29.5, 29.2, 29.1, 29.1, 29.0, 28.5, 22.6, 14.0; HRMS (ESI): m/z [M+H]+ calcd
for C17H25N2OS: 305.1682; found: 305.1681. The compound spectra data is in agreement
with the report [37].

3-(isobutylthio)-1-methylquinoxalin-2(1H)-one (3ad):
White solid; mp 117–119 ◦C; 67.0 mg (isolated yield 90%); 1H NMR (400 MHz,

Chloroform-d) δ 7.73 (d, J = 8.0 Hz, 1H), 7.47–7.40 (m, 1H), 7.34–7.25 (m, 2H), 3.69 (s, 3H),
3.09 (d, J = 6.7 Hz, 2H), 2.06–1.99 (m, 1H), 1.07 (d, J = 6.7 Hz, 6H); 13C NMR (100 MHz,
Chloroform-d) δ 160.1, 153.4, 133.4, 131.3, 128.2, 128.0, 123.7, 113.7, 38.0, 29.2, 28.1, 22.1;
HRMS (ESI): m/z [M+H]+ calcd for C13H17N2OS: 249.1056; found: 249.1052. The compound
spectra data is in agreement with the report [87].

3-(tert-butylthio)-1-methylquinoxalin-2(1H)-one (3ae):
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White solid; mp 106–108 ◦C; 68.5 mg (isolated yield 92%); 1H NMR (400 MHz,
Chloroform-d) δ 7.74 (dd, J = 7.9, 1.3 Hz, 1H), 7.46–7.40 (m, 1H), 7.33–7.24 (m, 2H),
3.67 (s, 3H), 1.67 (s, 9H); 13C NMR (100 MHz, Chloroform-d) δ 160.5, 153.2, 133.1, 131.1,
128.2, 128.0, 123.6, 113.6, 47.1, 29.5, 29.2; HRMS (ESI): m/z [M+H]+ calcd for C13H17N2OS:
249.1056; found: 249.1058. The compound spectra data is in agreement with the report [87].

1-methyl-3-((3-methylbutan-2-yl)thio)quinoxalin-2(1H)-one (3af):
White solid; mp 114–116 ◦C; 67.6 mg (isolated yield 86%); 1H NMR (400 MHz,

Chloroform-d) δ 7.71 (d, J = 8.6 Hz, 1H), 7.41 (t, J = 7.8 Hz, 1H), 7.31–7.24 (m, 2H),
4.00–3.92 (m, 1H), 3.67 (s, 3H), 2.11–2.00 (m, 1H), 1.37 (d, J = 7.0 Hz, 3H), 1.06 (d, J = 8.0, 3H),
1.03 (d, J = 8.0, 3H); 13C NMR (100 MHz, Chloroform-d) δ 159.9, 153.3, 133.4, 131.2,
128.0, 127.9, 123.6, 113.6, 45.2, 32.6, 19.7, 19.2, 17.2; HRMS (ESI): m/z [M+H]+ calcd for
C14H19N2OS: 263.1213; found: 263.1217. The compound spectra data is in agreement with
the report [37].

3-(benzylthio)-1-methylquinoxalin-2(1H)-one (3ag):
White solid; mp 137–139 ◦C; 68.6 mg (isolated yield 81%); 1H NMR (400 MHz,

Chloroform-d) δ 7.79 (d, J = 7.7 Hz, 1H), 7.45 (t, J = 6.9 Hz, 3H), 7.37–7.20 (m, 5H),
4.41 (s, 2H), 3.68 (s, 3H); 13C NMR (100 MHz, Chloroform-d) δ 159.3, 153.2, 137.3, 133.4,
131.5, 129.3, 128.4, 128.3, 128.2, 127.1, 123.9, 113.8, 34.0, 29.2; HRMS (ESI): m/z [M+H]+ calcd
for C16H15N2OS: 283.0900; found: 283.0897. The compound spectra data is in agreement
with the report [37].

3-((4-chlorobenzyl)thio)-1-methylquinoxalin-2(1H)-one (3ah):
White solid; mp 148–150 ◦C; 66.4 mg (isolated yield 70%); 1H NMR (400 MHz,

Chloroform-d) δ 7.78 (dd, J = 7.9, 1.2 Hz, 1H), 7.51–7.44 (m, 1H), 7.40 (d, J = 8.4 Hz,
2H), 7.37–7.28 (m, 2H), 7.26–7.22 (m, 2H), 4.36 (s, 2H), 3.70 (s, 3H); 13C NMR (100 MHz,
Chloroform-d) δ 159.0, 153.2, 136.0, 133.3, 132.9, 131.5, 130.6, 128.5, 128.2, 124.0, 113.8, 33.2,
29.3; HRMS (ESI): m/z [M+H]+ calcd for C16H14ClN2OS: 317.0510; found: 317.0516. The
compound spectra data is in agreement with the report [37].

3-((furan-2-ylmethyl)thio)-1-methylquinoxalin-2(1H)-one (3ai):
White solid; mp 124–126 ◦C; 54.7 mg (isolated yield 67%); 1H NMR (400 MHz,

Chloroform-d) δ 7.81 (d, J = 7.9 Hz, 1H), 7.48 (t, J = 7.8 Hz, 1H), 7.39–7.27 (m, 3H),
6.35–6.26 (m, 2H), 4.46 (s, 2H), 3.70 (s, 3H); 13C NMR (100 MHz, Chloroform-d) δ 158.8,
153.2, 150.5, 142.0, 133.3, 131.5, 128.5, 128.3, 123.9, 113.8, 110.5, 108.1, 29.2, 26.4; HRMS (ESI):
m/z [M+H]+ calcd for C14H13N2O2S: 273.0692; found: 273.0688. The compound spectra
data is in agreement with the report [37].

3-(cyclopentylthio)-1-methylquinoxalin-2(1H)-one (3aj):
White solid; mp 113–115 ◦C; 71.0 mg (isolated yield 91%); 1H NMR (400 MHz,

Chloroform-d) δ 7.81–7.70 (m, 1H), 7.47–7.40 (m, 1H), 7.31 (d, J = 8.0, 1H), 7.27 (d, J = 8.0, 1H),
4.08–4.01 (m, 1H), 3.69 (s, 3H), 2.28 (q, J = 9.1, 7.1 Hz, 2H), 1.81–1.63 (m, 6H); 13C NMR
(100 MHz, Chloroform-d) δ 160.8, 153.3, 133.6, 131.3, 128.3, 128.0, 123.7, 113.7, 42.5, 33.0,
29.2, 25.0; HRMS (ESI): m/z [M+H]+ calcd for C14H17N2OS: 261.1056; found: 261.1055. The
compound spectra data is in agreement with the report [37].

3-(cyclohexylthio)-1-methylquinoxalin-2(1H)-one (3ak):
White solid; mp 116–118 ◦C; 75.7 mg (isolated yield 92%); 1H NMR (400 MHz,

Chloroform-d) δ 7.73 (dd, J = 7.9, 1.2 Hz, 1H), 7.46–7.40 (m, 1H), 7.31 (d, J = 8.0, 1H),
7.27 (d, J = 8.0, 1H), 3.88 (td, J = 9.9, 3.9 Hz, 1H), 3.69 (s, 3H), 2.12 (dd, J = 9.5, 4.0 Hz,
2H), 1.79 (dt, J = 8.0, 3.7 Hz, 2H), 1.70–1.32 (m, 6H); 13C NMR (100 MHz, Chloroform-d) δ
159.7, 153.3, 133.5, 131.2, 128.2, 128.0, 123.7, 113.6, 42.1, 32.5, 29.2, 25.9; HRMS (ESI): m/z
[M+H]+ calcd for C15H19N2OS: 275.1213; found: 275.1216. The compound spectra data is
in agreement with the report [87].

1-methyl-3-((2-methyltetrahydrofuran-3-yl)thio)quinoxalin-2(1H)-one (3al):
White solid; mp 121–123 ◦C; 62.1 mg (isolated yield 75%); 1H NMR (400 MHz,

Chloroform-d) δ 7.67 (d, J = 7.5 Hz, 1H), 7.41 (t, J = 7.8 Hz, 1H), 7.31–7.22 (m, 2H),
4.44–4.30 (m, 2H), 3.98 (td, J = 8.3, 5.4 Hz, 1H), 3.81–3.72 (m, 1H), 3.65 (s, 3H), 2.51 (td,
J = 13.0, 7.5 Hz, 1H), 2.04 (dt, J = 13.0, 6.1 Hz, 1H), 1.21 (d, J = 5.9 Hz, 3H); 13C NMR
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(100 MHz, Chloroform-d) δ 159.6, 153.2, 133.4, 131.4, 128.4, 128.3, 123.9, 113.8, 76.6, 66.0,
45.8, 32.9, 29.3, 17.1; HRMS (ESI): m/z [M+H]+ calcd for C14H17N2O2S: 277.1005; found:
277.1012. The compound spectra data is in agreement with the report [37].

4. Conclusions

In summary, we have developed a visible-light induced sulfenylation of quinoxalin-
2(1H)-ones employing g-C3N4 as a heterogeneous photocatalyst and ambient air as the
sole oxidant. The process was chemo-, regioselective and provided direct access to a
series of 3-sulfenylated quinoxalin-2(1H)-ones in good to excellent yields. Importantly,
the photocatalyst can be easily recycled up to six times by simple filtration without the
significant loss of its reaction efficiency. The environmentally friendly oxidant, recyclable
photocatalyst and operation simplicity make this protocol highly attractive in organic
synthesis and pharmaceutical chemistry.

Supplementary Materials: The following supporting information can be downloaded at: https:
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