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Abstract: A method is proposed for the preparation of stable sols of nanocrystalline cerium dioxide
in nonpolar solvents, based on surface modification of CeO2 nanoparticles obtained by thermal
hydrolysis of concentrated aqueous solutions of ammonium cerium(IV) nitrate with residues of
2-ethylhexanoic and octanoic acids. The synthesis was carried out at temperatures below 100 ◦C and
did not require the use of expensive and toxic reagents. An assessment of the radical-scavenging
properties of the obtained sols using the superoxide anion-radical neutralization model revealed
that they demonstrate notable antioxidant activity. The results obtained indicate the potential of
the nanoscale cerium dioxide sols in nonpolar solvents to be used for creating nanobiomaterials
possessing antioxidant properties.
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1. Introduction

Nanoscale cerium dioxide has a number of specific properties, including the ability
to participate in reversible redox processes at physiological temperatures, extremely low
solubility (pKsp ~ 59), the ability to mimic the functions of many natural enzymes, and
low toxicity [1–5]. In this regard, it is the material of choice for a number of modern
biomedical applications [6–9]. The biological activity of nanoscale CeO2 is governed by the
high reactivity of its surface and the ability to interact with various organic compounds [10],
as well as the high mobility of its oxygen sublattice [11–13]. It is notable that the question
of the oxygen nonstoichiometry of nanocrystalline CeO2, which could explain its unique
functional characteristics, is currently being actively discussed [14,15].

The broad range of possible biomedical applications of nanoscale CeO2 requires
the development of synthetic approaches that ensure the production of cerium dioxide
primarily as colloid solutions [1,15]. Because the therapeutic effect of CeO2 is achieved
at sufficiently low concentrations (10−5–10−7 M) [16], the application of stable CeO2 sols
ensures the required dosing accuracy.

Many methods have already been developed for the production of aqueous CeO2
sols, including sols stabilized by carboxylic acids, polysaccharides, etc. [17–22]. Normal
and reverse precipitations, ion exchange, hydrothermal and hydrothermal–microwave
treatment methods have been proposed to obtain such sols [17–22].

In contrast, almost no methods for the preparation of CeO2 sols in non-aqueous
media (aprotic and nonpolar solvents) have been reported. In view of the high antioxidant
and antibacterial activity demonstrated by nanoscale cerium dioxide, colloid solutions of
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CeO2 in aprotic organic solvents (primarily dimethyl sulfoxide) might be promising as
preparations for the treatment of skin diseases, including skin cancer. It should be noted that
the selective toxicity of nanodispersed CeO2 towards transformed cells has been reported in
a number of reports [23]. Oil-dispersible ceria nanoparticles are also promising components
of sunscreen compositions. The possibility of using cerium dioxide as a harmless alternative
to traditional inorganic UV filters—titanium and zinc oxides—is currently being actively
discussed [24–26]. Importantly, hydrophobic ceria nanoparticles are expected to be less
prone to chemical interactions with organophosphates (e.g., phospholipids), which can
block the redox cycling between Ce+3/Ce+4 in nanoceria [27], thus nullifying its positive
antioxidant effect on the organic components of sunscreen formulations. Oil-dispersible
ceria nanoparticles can also be used for the production of liposomal conjugates for advanced
drug delivery systems and MRI contrast agents [28–31].

Taking into account the high catalytic activity of nanocrystalline CeO2 [32], non-
aqueous colloid solutions of CeO2 are of particular interest for the production of diesel
fuel additives. The purpose of such additives is to both reduce environmental pollution by
inhibiting the emission of aerosols of ultrafine particulate matter in internal combustion
engines (PM10) and increase fuel economy by reducing ignition delay and high flame
sustenance [33–38]. A corresponding analysis has also been carried out for coarse-grained
CeO2, but it is difficult to achieve a uniform distribution over the fuel volume for this
material, due to the rapid sedimentation of ceria particles [36,38]. Based on cerium dioxide
with a particle size of 7–15 nm, a commercially available catalyst for the afterburning of
motor fuels, EnviroxTM (Oxonica, Aylesbury, UK), has been created [33,39–41], which has
both high functional characteristics and rather low cytotoxicity and mutagenicity [42].

To the best of the authors’ knowledge, there have been reports of only two successful
attempts to obtain stable sols of nanoscale cerium dioxide in nonpolar solvents based on the
hydrothermal or solvothermal treatment of cerium(III) salts and fatty acids (2-ethylhexanoic
and octanoic acids) [43,44]. Both methods are characterized by low scalability and require
the use of high temperatures (up to 290 ◦C) and rather expensive starting compounds.

In this regard, the development of new facile methods for the preparation of cerium
dioxide sols in nonpolar solvents is a relevant objective. To solve this problem, an approach
is proposed that is based on modifying the surface of CeO2 nanoparticles obtained by the
thermal hydrolysis of concentrated aqueous solutions of ammonium cerium(IV) nitrate [21]
with residues of 2-ethylhexanoic and octanoic acids. The proposed synthetic sequence
proceeds at temperatures below 100 ◦C and does not require the use of expensive and
toxic reagents.

2. Experimental
2.1. Materials

The following reagents were used in the study: ammonium cerium(IV) nitrate (98.5%,
Sigma-Aldrich (St. Louis, MO, USA) #22249), 2-ethylhexanoic acid (EHA, 99%, Sigma-
Aldrich #E29141), octanoic acid (OA, 99%, Sigma-Aldrich #O3907), heptane (99%, Chimmed
(Moscow, Russia)), ammonium bicarbonate (99%, Chimmed), isopropyl alcohol (IPA, 99.9%,
Chimmed), xanthine (≥99.5%, Sigma-Aldrich #X0626), lucigenin (95%, J&K Scientific
(San Jose, CA, USA), #393824), xanthine oxidase (≥0.4 units/mg protein, Sigma-Aldrich
#X1875), potassium dihydrogen phosphate (Sigma-Aldrich, #P0662), potassium hydrogen
phosphate (Sigma-Aldrich #P5655).

2.2. Synthesis of CeO2 Nanoparticles

For the synthesis of an aqueous cerium dioxide sol, a 0.18 M solution of (NH4)2[Ce(NO3)6]
(2.30 g, 4.2 mmol) in distilled water (23 mL) was placed in a 100 mL Synthware™ auto-
clave and heated at 95 ◦C for 24 h. The resulting yellow precipitate was separated by
centrifugation, washed three times with an excess of isopropyl alcohol and centrifuged
again (20,000× g). The resulting paste was re-dispersed in 25 mL of distilled water and
boiled for 2 h to remove the excess isopropanol. The concentration of CeO2 in the resulting
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sol was determined gravimetrically, after which it was diluted with distilled water to a
concentration of 0.10 M CeO2. The parameters of the obtained aqueous CeO2 sols have
been described by the authors in a previous report [21].

2.3. Surface Modification of CeO2 Nanoparticles

First, 0.75 g (0.84 mL, 5 mmol) of 2-ethylhexanoic acid or octanoic acid was mixed
with 10 mL of heptane, followed by the addition of 0.4 g (5 mmol) of NH4HCO3 dissolved
in 5 mL of distilled water under vigorous stirring. Then, 10 mL of aqueous ceria sol was
added to the obtained mixture, followed by stirring at 40 ◦C in an open glass vessel until the
complete evaporation of heptane. 10 mL of heptane was again added to the resulting sol,
after which the mixture was vigorously shaken to extract CeO2 into the oil phase and the
aqueous phase was removed on a separating funnel. As a result, a transparent yellow-green
sol in heptane was obtained, which demonstrated a pronounced Tyndall effect. According
to gravimetric estimates, the concentration of CeO2 in the resulting sols was 11–13 g/L.

2.4. Characterization Methods

Optical absorption spectra were recorded using quartz cuvettes (10.0 mm optical
path length) in a 200–700 nm range at 0.2 nm steps on an OceanOptics (Orlando, FL,
USA) QE-65000 spectrometer with deuterium-halogen (OceanOptics DH-2000) and xenon
(OceanOptics HPX-2000) light sources.

X-ray powder diffraction patterns analysis (XRD) of sols previously dried at 40 ◦C
was performed using a Bruker (Billerica, MA, USA) D8 Advance diffractometer (CuKα

radiation), in the angle range of 20–70◦2θ, with a step of 0.03◦2θ and a signal acquisition
time of 0.7 s per step. Full-profile analysis of diffraction patterns was performed using
TOPAS 4.2 software (Billerica, MA, USA) and diffraction maxima were approximated by
Voigt pseudo-functions.

Dynamic light scattering (DLS) measurements were carried out using a Photocor
(Tallinn, Estonia) Compact analyzer, which was equipped with a He-Ne laser (wavelength
632.8 nm) and enabled measurement of ζ-potential.

Transmission electron microscopy (TEM) and selected area electron diffraction (SAED)
of the samples were conducted on a Carl Zeiss (Oberkochen, Germany) Leo912 AB Omega
electron microscope operating at an accelerating voltage of 100 kV. Scanning transmission
electron microscopy of the samples was performed using a Tescan (Brno, Česko) Amber
GMH microscope at an accelerating voltage of 20 kV.

IR spectroscopic studies of the samples were performed in diffuse reflection geometry
using an Infralum FT-08 spectrometer in the range of 400–4000 cm−1, with a resolution of
4 cm−1. The samples for the analysis were pressed into KBr pellets.

The radical-scavenging properties of the obtained materials were assessed using
the chemiluminescent method with a model system generating superoxide anion radical
(•O2

−) using a DISoft (Moscow, Russia) Lum-100 single-channel chemiluminometer. The
chemiluminescent signal was recorded in a phosphate buffer solution (100 mM, pH 7.4,
K2HPO4) at 37 ◦C. Lucigenin was used as a chemiluminescent probe, xanthine oxidase was
used as an initiator of free radical oxidation and xanthine was used as a chemiluminescent
substrate. Background luminescence was recorded for 30–60 s after mixing solutions
of xanthine (10 µM), lucigenin (50 µM) and the analyzed sample. Then, an aliquot of
xanthine oxidase was added (0.11 units/mL, where 1 unit of activity corresponded to the
conversion of 1.0 µmol of xanthine to uric acid for 1 min at 25 ◦C) and a chemiluminescent
signal was recorded for 5 min. Light sums were calculated by numerical integration of
chemiluminescent curves using PowerGraph software 3.3.11 (Moscow, Russia).

The analysis of the composition, structure and properties of the obtained materials
was carried out using the equipment of the JRC PMR IGIC RAS.
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3. Results and Discussion

During the hydrolysis of ammonium cerium(IV) nitrate at elevated temperatures,
the formation of cerium dioxide nanoparticles takes place, which can form aqueous sols
that are stable for at least several months after a decrease in the ionic strength of the
medium [21]. The stability of such sols is due to the high value of the ζ-potential of the
nanoparticle surface (+40 mV). Similar results indicating the high stability of aqueous CeO2
sols obtained by the hydrolysis of (NH4)2[Ce(NO3)6] in acidic media were reported by
Pettinger et al. [45].

The high positive surface charge of CeO2 nanoparticles allows their modification
with carboxylic acids, for example, fatty acids. Before carrying out the modification,
2-ethylhexanoic or octanoic acids were neutralized with ammonium bicarbonate.

The XRD patterns of the unmodified and modified CeO2 sols dried at a low tempera-
ture (40 ◦C) are shown in Figure 1.

Molecules 2022, 27, x FOR PEER REVIEW 4 of 13 
 

 

thine oxidase was added (0.11 units/mL, where 1 unit of activity corresponded to the con-
version of 1.0 μmol of xanthine to uric acid for 1 min at 25 °C) and a chemiluminescent 
signal was recorded for 5 min. Light sums were calculated by numerical integration of 
chemiluminescent curves using PowerGraph software 3.3.11 (Moscow, Russia). 

The analysis of the composition, structure and properties of the obtained materials 
was carried out using the equipment of the JRC PMR IGIC RAS. 

3. Results and Discussion 
During the hydrolysis of ammonium cerium(IV) nitrate at elevated temperatures, the 

formation of cerium dioxide nanoparticles takes place, which can form aqueous sols that 
are stable for at least several months after a decrease in the ionic strength of the medium 
[21]. The stability of such sols is due to the high value of the ζ-potential of the nanoparticle 
surface (+40 mV). Similar results indicating the high stability of aqueous CeO2 sols ob-
tained by the hydrolysis of (NH4)2[Ce(NO3)6] in acidic media were reported by Pettinger 
et al. [45]. 

The high positive surface charge of CeO2 nanoparticles allows their modification with 
carboxylic acids, for example, fatty acids. Before carrying out the modification, 2-ethylhex-
anoic or octanoic acids were neutralized with ammonium bicarbonate. 

The XRD patterns of the unmodified and modified CeO2 sols dried at a low temper-
ature (40 °C) are shown in Figure 1. 

 
Figure 1. XRD patterns of the powders prepared upon the drying of (1) starting aqueous ceria sol 
and ceria sols in hexane stabilized by (2) 2-ethylhexanoic acid or (3) octanoic acid. Arrows indicate 
the positions of diffraction peaks corresponding to crystalline cerium dioxide (sp. gr. F𝑚3𝑚, PDF2 
#00-034-0394). 

The data obtained indicated that all the obtained sols contained nanocrystalline ce-
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size was established from the XRD data using the Scherrer formula, and was 3.0–3.5 nm. 
Transmission electron microscopy data confirmed the results of XRD, indicating the for-
mation of nanoparticles with a high degree of crystallinity and a relatively low degree of 
aggregation during the synthesis (Figure 2). 

Figure 1. XRD patterns of the powders prepared upon the drying of (1) starting aqueous ceria sol
and ceria sols in hexane stabilized by (2) 2-ethylhexanoic acid or (3) octanoic acid. Arrows indicate
the positions of diffraction peaks corresponding to crystalline cerium dioxide (sp. gr. Fm3m, PDF2
#00-034-0394).

The data obtained indicated that all the obtained sols contained nanocrystalline cerium
dioxide with a fluorite structure (sp. gr. Fm3m, PDF2 #00-034-0394). The crystallite size
was established from the XRD data using the Scherrer formula, and was 3.0–3.5 nm. Trans-
mission electron microscopy data confirmed the results of XRD, indicating the formation of
nanoparticles with a high degree of crystallinity and a relatively low degree of aggregation
during the synthesis (Figure 2).
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Figure 2. TEM images and SAED patterns of the (a) starting aqueous ceria sol and ceria sols in hexane
stabilized by (b) 2-ethylhexanoic acid or (c) octanoic acid.
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The DLS analysis of the sols (Figure 3) also confirmed the XRD and TEM data. CeO2
sols in heptane stabilized with 2-ethylhexanoic and octanoic acids contained weakly aggre-
gated nanoparticles with an average hydrodynamic diameter of 15.6 and 9.2 nm, respec-
tively. The average hydrodynamic diameter of particles in the initial aqueous CeO2 sol was
16 nm. The marginally larger particle size recorded using the DLS method, compared with
the size determined using XRD and TEM, was obviously associated with the presence of
an electrical double layer, as well as the presence of adsorbed molecules and ions on the
surface of CeO2 nanoparticles.
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Figure 3. (1) Hydrodynamic diameter distributions, as measured using DLS, for ceria nanoparticles
in hexane stabilized by (a) 2-ethylhexanoic acid, (b) octanoic acid, and (c) the initial aqueous ceria
sol as a reference. (2) Dynamic light scattering results for the same sols after drying, followed by
re-dispersion in heptane.

It is notable that the size of the 2-ethylhexanoate anion was ~0.8–0.9 nm [46,47] and
the size of the octanoate anion was 1.1–1.2 nm [48–50], but the hydrodynamic diameter
of CeO2 nanoparticles obtained using 2-ethylhexanoic acid was approximately 1.5 times
larger than the diameter of nanoparticles obtained using octanoic acid. This size difference
is most likely the result of linear octanoate anions forming a denser layer on the surface
of nanoparticles, thus preventing their aggregation more effectively. Less aggregation of
CeO2 nanoparticles stabilized with octanoic acid, compared with those stabilized with
2-ethylhexanoic acid, was indirectly confirmed by the range of the hydrodynamic diameters’
distributions at half maximum; these were 2.2 and 4.0 nm, respectively.

Scanning transmission electron microscopy data confirmed slightly more nanoparticle
aggregation in sols stabilized with 2-ethylhexanoic acid (Figure 4). For such sols, aggregates
about 10 nm in size were observed to consist of smaller nanoparticles.

The ability of nanoparticles to be re-dispersed after complete removal of the liquid
is an important characteristic of colloid solutions, which is of great importance for their
practical application. Dry nanoparticles are much more convenient in transportation and
storage, and less stringent packaging requirements are imposed on them. In particular,
the transportation of organic solvents is associated with significant risks due to their high
flammability and low flash points. Thus, n-heptane is a highly flammable liquid, with
a flash point of −4 ◦C and an auto-ignition temperature of 204 ◦C. As a result, cerium
dioxide sols in heptane were dried at a temperature of 40 ◦C to a constant weight, after
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which heptane was added to them in a volume that was equal to the initial volume. CeO2
nanoparticles stabilized with both 2-ethylhexanoic and octanoic acids were completely
transferred into the liquid phase, forming transparent sols, as confirmed by the results of
DLS analysis (Figure 3). The average hydrodynamic diameter of the nanoparticles actually
did not change after the re-dispersion of the sols, being 15.4 nm for the sols stabilized with
2-ethylhexanoic acid and 9.5 nm for the sols stabilized with octanoic acid.
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Thus, the proposed synthetic method also enables the production of cerium dioxide
powders modified with fatty acids that can be completely re-dispersed in nonpolar solvents.

The IR spectroscopy data (Figure 5) confirmed the chemical immobilization of oc-
tanoic and 2-ethylhexanoic acid residues on the surface of CeO2 nanoparticles. In the
IR spectra of CeO2 nanoparticles, as well as octanoic and 2-ethylhexanoic acids, intense
bands were present at 1716 cm−1 and 1708 cm−1, respectively, corresponding to anti-
symmetric stretching vibrations of the carboxyl group; bands were also observed in the
range of 1420–1460 cm−1, corresponding to symmetric stretching vibrations of the carboxyl
group. At the same time, the IR spectra of CeO2 nanoparticles included a broad band
at ~1540 cm−1, which was absent in the spectra of carboxylic acids and can be attributed
to antisymmetric stretching vibrations of the carboxyl group coordinated with a metal
cation [51,52]. A comparison of the mutual arrangement of bands in the IR spectra of
CeO2 nanoparticles related to symmetric and antisymmetric vibrations of the carboxyl
group indicated the chelate nature of the coordination of COO-groups with respect to the
cerium cation where both oxygen atoms coordinate a single metal ion [53]. The inten-
sity of the bands in the range of bending vibrations of the carboxyl group (530–550 and
630–670 cm−1), for both modified CeO2 sols, was significantly lower than for pure acids,
which was probably due to the hindered rotation of the carboxyl group coordinated with
the bulk CeO2 nanoparticle.

The optical absorption spectra of nanocrystalline CeO2 sols stabilized with 2-ethylhexanoic
or octanoic acid in heptane (Figure 6) are typical of cerium dioxide sols; they demonstrate
their ability to absorb radiation with a wavelength of less than ~400 nm, which corresponds
to the 3.0 eV band gap of cerium dioxide [54]. The optical absorption spectra of CeO2 sols
in heptane did not show a noticeable increase in optical density in the range of 250–300 nm
compared with the aqueous CeO2 sol, which indirectly confirmed the absence of significant
amounts of free 2-ethylhexanoate or octanoate anions.

The ability of cerium dioxide to absorb UV radiation makes this material highly
promising for application as UV filters in sunscreens [24–26,55–57]. An additional ad-
vantage of cerium dioxide is its significant ability to inactivate reactive oxygen species,
including hydrogen peroxide, radical anion superoxide, singlet oxygen, and hydroxyl
radicals [58–60]. Aqueous sols of nanocrystalline cerium dioxide stabilized with organic
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acids, polysaccharides, etc., also demonstrate high antioxidant activity [58–60]. At the
same time, equivalent studies of CeO2 nanoparticles stabilized by amphiphilic ligands are
currently absent, although they are of key importance for the design of new biologically
active oil-soluble preparations that protect the skin from various damaging factors and that
can be used for the treatment of skin diseases.
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To analyze the antioxidant properties of cerium dioxide sols in heptane, a model
system based on xanthine, xanthine oxidase, and lucigenin was chosen that ensured the
generation of superoxide anion radicals in an aqueous medium. The selection of the
volumetric ratios of the components made it possible to create fairly stable thin emulsions,
which, in turn, provided a reproducible analytical signal during the analysis of the samples.

Figure 7 presents chemiluminograms, whose integration indicates the amount of
superoxide anion radical formed in the test system after adding xanthine oxidase.
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Figure 7. Chemiluminograms obtained by introducing xanthine oxidase into a system contain-
ing xanthine, lucigenin, and (a) control samples, and CeO2 sols stabilized with (b) octanoic and
(c) 2-ethylhexanoic acids. The reference samples used: (1) a phosphate buffer solution; (2) a solution
of octanoic acid in heptane (4.0 mM); (3) a solution of 2-ethylhexanoic acid in heptane (4.0 mM);
(4) heptane. CeO2 sols in heptane with concentrations (5) 0.1 mM, (6) 0.2 mM, (7) 0.4 mM and
(8) 0.8 mM were used for the experiments. In all the panels, the same y-axes ranges are used.

The data presented in Figure 7 indicate that cerium dioxide sols significantly suppress
chemiluminescence resulting from the generation of the superoxide anion radical which
is formed during the oxidation of xanthine catalyzed by xanthine oxidase in the presence
of oxygen. It is notable that octanoic acid by itself also slightly reduced the concentration
of the superoxide anion radical, while the addition of 2-ethylhexanoic acid led to a small
increase in total chemiluminescence intensity. The absence of pronounced antioxidant
properties in saturated fatty acids with a hydrocarbon chain length <10 corresponds to
previously published data [61]. The experimental results obtained suggest that the observed
antioxidant effect was caused precisely by the presence of nanoscale cerium dioxide in the
sols investigated.

A calculation of the relative degree of chemiluminescence suppression as a function of
sol concentration was performed to compare the antioxidant activity of CeO2 colloid solu-
tions stabilized with 2-ethylhexanoic and octanoic acids ( C0−C

C ·100%, where C0 and C are
the total chemiluminescence intensities for the control and analyzed samples, respectively).

The data presented in Figure 8 indicate that CeO2 sols stabilized with 2-ethylhexanoic
acid demonstrated greater antioxidant activity than CeO2 sols stabilized with octanoic acid
over the entire range of concentrations studied. This result also supports the conclusion
that the antioxidant activity of the sols was determined precisely by the cerium dioxide
nanoparticles, and not by their ligand environment. It is likely that the different activities
of the sols are associated with different orientations of the ligands relative to the surface of
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the nanoparticles. A less dense layer of 2-ethylhexanoic acid residues encourages a higher
level of chemical activity on the surface of nanoparticles, despite their higher degree of
aggregation.
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4. Conclusions

A simple low-temperature method for the preparation of re-dispersible sols of nanocrys-
talline cerium dioxide in nonpolar solvents (using heptane as an example) has been pro-
posed. 2-ethylhexanoic and octanoic acids have been used as stabilizers for colloid CeO2
particles. The size of CeO2 crystallites in the obtained sols was ~3 nm, with an average
hydrodynamic diameter of ~10–15 nm. The radical-scavenging properties of the materials
obtained, with respect to the superoxide anion radical, have been evaluated using the
xanthine–lucigenin–xanthine oxidase test system. It has been shown that CeO2 nanoparti-
cles stabilized with 2-ethylhexanoic and octanoic acids significantly suppress chemilumi-
nescence in this system, which indicates their pronounced antioxidant activity. The results
obtained suggest the potential of the obtained nanomaterials for application in advanced
UV filters that have a pronounced antioxidant effect. Oil-dispersible ceria nanoparticles can
be considered as an alternative to traditional inorganic UV filters (titanium and zinc oxides).
They can also be considered for the production of liposomal conjugates for advanced drug
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