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Abstract: Successful synthesis of ZnO-chitosan nanocomposites was conducted for the removal of
methylene blue from an aqueous medium. Remarkable performance of the nanocomposites was
demonstrated for the effective uptake of the dye, thereby achieving 83.77, 93.78 and 97.93 mg g−1

for the chitosan, 5 wt.% ZnO-Chitosan and 10 wt.% ZnO-Chitosan, respectively. The correspond-
ing adsorption efficiency was 88.77, 93.78 and 97.95 for the chitosan, 5 wt.% ZnO-Chitosan and
10 wt.% ZnO-Chitosan, respectively. Upon regeneration, good reusability of the nanocomposites
was manifested for the continuous removal of the dye up to six consecutive cycles. The adsorption
process was kinetically described by a pseudo-first order model, while the isotherms were best fitted
by the Langmuir model.

Keywords: adsorption; chitosan; efficiency; kinetics isotherms; methylene blue; reusability

1. Introduction

Chitosan is a chitin derivative obtained by treating crustacean shells with sodium
hydroxide through the acetylation process [1]. Having the presence of three types of func-
tional groups—amino/acetamido group, primary and secondary hydroxyl groups on its
backbone—chitosan is widely used as modifying agents in polymer composites [2,3]. It has
shown great potential in industrial applications due to its non-toxic nature, biodegradability,
and biocompatibility [4,5]. It has affinity for various organic and inorganic materials due to
its abundant reaction sites. It can adsorb and chelate metal ions [6], and interact with bioac-
tive molecules [7]. Because of its porosity, biocompatibility, biodegradability, non-toxicity,
and robustness, it has versatile application in the preparations of novel chitosan-based ma-
terials for various applications such as pharmaceutical, nutraceutical [8], biomedical [9,10],
fertilizer delivery [11], CO2 capture [5], catalysis [12] and wastewater remediations [13,14].

However, chitosan in its pure form is not as effective as its modified form. It is plagued
by solubility deficiency, especially under acidic environments, which affects its mechanical
properties for water related applications [15,16]. Thus, surface modification has been put
forward to improve its structural properties. To increase the number of exposed active sites,
various chemical or physical modifications have been adopted. Carbone nanotubes (CNTs)
have been employed for the enhancement of the thermal stability of chitosan membranes
and its reinforcement [17,18]. The use of the clay minerals such as smectite and sepiolite
has been shown to improve its mechanical properties and resistance to aqueous media [19].
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Similarly, the composites of chitosan with alginate have shown good chemical, thermal
and moisture resistance [4]. Chitosan/halloysite composite membranes with excellent
physico-chemical and thermal properties were also discovered [20]. Surfactant-modified
chitosan (SMCS) beads have recently been reported for effective adsorption of heavy metals
from the aqueous medium [21].

Recently, surface coating of the chitosan with metal oxide nanoparticles has gained
the recognition of researchers for adsorption, catalysis, degradation, and biomedical
applications [22,23]. A facile and greener synthesis of chitosan-FeO nanocomposite was
reported by Bharathi et al. (2019). The good structural and absorption properties of
the biopolymer material were ascertained, and its potential antibacterial activity was
evaluated [9]. Neeraj et al. (2016) investigated the elimination of arsenic from the aque-
ous solution using a nanocomposite of chitosan coated with iron-oxide. The porosity
of the material was confirmed with a cumulative pore volume of 0.0362 m3/g and pore
diameter of 32.46 nm. Thus, the maximum monolayer adsorption capacity of the ma-
terial was 267.2 mg/g [24]. Synthesis and characterizations of nano hydrogel beads of
chitosan/agar/SiO2 composites were also reported for effective pharmaceutical adsorption
from environmental waters, achieving over 99% adsorption of naproxen within 15 min of
the batch adsorption process [25].

Rapid detection of dyes in various water bodies has been an environmental phe-
nomenon over the years [26,27]. In this research, we aimed at synthesizing water resis-
tant ZnO-chitosan nanocomposites for the efficient adsorption of dyes from the aqueous
medium. Methylene blue was chosen as model dye due to its large consumption by textile,
leather, tannery, paper, and pulp processing industries [28]. Thus, the adsorption param-
eters, kinetics, isotherms, regeneration, and reusability of the adsorbent materials were
evaluated for optimum uptake of the dye from the aqueous medium.

2. Results
2.1. Materials

Chitosan (85% deacetylated, Molecular weight of 400,000 Da) is purchased from
Golden-Shell Biochemical (Yuhuan, Zhejiang, China). The crystal violet (Molecular For-
mula C25N3H30Cl, MW 407.979 g/mol and Density: 1.19 g/cm3) and the zinc oxide nano
powder of particle size 50–100 nm and 98% purity were purchased from Sigma-Aldrich
(St. Louis, MO, USA). Acetic acid and ethanol were purchased from Avantis Laboratory,
Perak, Malaysia. All other chemicals not mentioned here were of high purity and of an-
alytical reagent (AR) grade and were used as received. Double distilled water was used
throughout the study.

2.2. Synthesis of ZnO-Chitosan Nanocomposite

The nanocomposites were synthesized by dissolving 10 mg of ZnO Nano powder in
90 mL ethanol with constant stirring for 15 min. A 50 mg of Chitosan was dispersed in
20 mL of 0.1 M acetic acid and stirred for 15 min. The 10 mL ZnO solution was gradually
added to the dispersed chitosan. The mixture was continuously stirred for 2 h, and the
resulting mixture was centrifuged at 4000 rpm, filtered and washed thoroughly with ethanol
and double distilled water. The obtained residue was dried overnight in an oven at 100 ◦C
and stored in vacuum. It was labeled as 10 wt.% ZnO-chitosan. For the preparation of
5 wt.% ZnO-chitosan, the same method was employed; only 5 mL of the ZnO solution
was used.

2.3. Characterizations

The materials were examined by Scanning Electron Microscopy (SEM) (SU8020,
Hitachi, Tokyo, Japan) for the morphology analysis. The samples were coated with gold
by a Polaran (SC 515) sputter coater to make it electrically conductive. N2 adsorption–
desorption of the samples were determined by a TriStar II (3020) Micromeritics porosity
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analyzer, Norcross, GA, USA. The sample was heated at 60 ◦C, and the analysis was
conducted under a nitrogen stream with adsorption–desorption isotherms at 77 K.

2.4. Preparation of Methylene Blue Solution

The dye stock solution was prepared by dissolving 1000 mg of the methylene blue
in 100 mL distilled water. The solution was transferred to a 1000 mL volumetric flask,
and distilled water was added to the mark, making a concentration of 1000 mg L−1,
which was kept in a refrigerator prior to the adsorption experiments. The solutions of
different concentrations used in various experiments were obtained by a dilution of the
stock solutions.

2.5. Batch Adsorption Experiment

The adsorption behavior of chitosan and the nanocomposites were evaluated for the
methylene blue adsorption. Batch experiments were conducted using 50 mL of 100 mg L−1

of the dye solutions in 100 mL conical flasks with the adsorbent of 6 g/L. The conical flasks
were placed in a thermostatic shaker at 250 rpm and 30 ◦C. The absorbance of the solutions
was analyzed by using a UV–vis spectrophotometer (Varian CARY 50 probe) at 665 nm.

The optimum time can be obtained from the plot of adsorption capacity versus time
using the formula:

qt =
(Co − Ct)V

w
(1)

In addition, the equilibrium time for the adsorption of the dye is obtained using
the formula:

qe =
(Co − Ce)V

w
(2)

and the removal efficiency (%R) is calculated from the formula:

(%R) =
Co − Ce

Co
×100 (3)

where Co and Ce are initial and equilibrium concentrations of the dye (mg L−1), respectively.

2.6. Adsorption Kinetics

The data for the batch adsorption studied were evaluated by pseudo-first order,
pseudo-second order, and intra-particle diffusion described by the Equations (5)–(7), re-
spectively, for the determination of the best kinetic model:

ln(qe − qt) = ln qe − k1t (4)

t/qt = 1/k2q2
e + t/qe (5)

qt = kpt1/2 + C (6)

where qe and qt represent the amounts of dye adsorbed (mg/g) at equilibrium and time t,
respectively. k1 (1/min) and k2 (g mg−1 min−1) are the rate constants of the pseudo
first-order and pseudo second-order adsorption kinetic model, respectively. kp is the
intraparticle diffusion rate constant and C being constant.

2.7. Adsorption Isotherms

To evaluate the isotherms fitting on the adsorption data, the models of Langmuir,
Freundlich, and Temkin were employed as represented by Equations (7)–(9), respectively:

Ce

qe
=

1
KLqm

+
1

qm
Ce (7)

log qe = log KF +
1
n

log Ce (8)
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qe =
RT
bT

ln AT +

(
RT
bT

)
ln Ce (9)

where qm (mg g−1) is the Langmuir adsorption capacity, KL is the Langmuir constant
(L mg−1), KF is the Freundlich constant (L mg−1), 1/n represents the adsorption intensity,
bT (kJ mol−1) represents the Temkin constant which relates to the heat of adsorption, and
AT is the equilibrium binding constant corresponding to the maximum binding energy
(L g−1). T is the absolute temperature (K), and R (8.314 J mol−1 K−1) is the Universal
gas constant.

The favorability of the adsorption process was determined from the Langmuir constant
given by Equation (10):

RL =
1

1 + C0KL
(10)

When the value of RL is less than unity, the adsorption is favorable and when greater
than unity is considered as unfavorable. In addition, when RL is 0, the adsorption is
irreversible and linear when it is unity.

Moreover, these models were statistically analyzed using regression to determine the
coefficient of determination (R2), root mean square error (RMSE), and Akaike information
criterion (AIC) to assess the model performance, using Equations (11)–(13):

R2 = 1
∑
(
qe exp − qe cal

)2

∑
(
qe exp

)2 (11)

RMSE =

√
∑i

n=1

(
qe exp − qe model

)2 (12)

AIC = n ln
(

SSE
n

)
+ 2np +

2np
(
np + 1

)
n
(
np + 1

) (13)

where qe exp and qe model represent experimental and model adsorption capacity, n is the
number of observations, and p denotes the number of parameters. SSE is the sum of the
square errors obtained. Higher R2 value indicates better linearity of the models while
smaller RMSE and AIC indicate better fitting of the model.

2.8. Effect of Adsorbent Dosage

The adsorbents dosage was varied from 1–6 g L−1, and, using the initial dye concen-
tration of 100 mg L−1 and pH at 4, the adsorption experiment was conducted. The removal
efficiency (%R) was plotted against adsorbent dosage

2.9. Effect of pH

Solution pH affects the adsorption process by affecting both aqueous chemistry and
surface binding sites of the adsorbent. In this work, the pH range was studied from 2–12
using an initial dye concentration of 100 mg L−1. The pH was adjusted with 0.1 M HCl or
NaOH and measured with pH-meter model HI 8014, Hanna Instruments (Padua, Italy).

2.10. Adsorbent Regeneration and Reusability Test

For the adsorbent regeneration and reusability, an adsorption experiment was con-
ducted with an initial dye concentration of 100 mg L−1 and adsorbent dosage of 6 g L−1 at
room temperature and stirring rate of 250 rpm. After the adsorption, the adsorbent was
centrifuged, filtered, and washed with 0.1 M NaOH solution and then several times with
distilled water to remove all the traces of the dye [29,30]. The experiments were repeated
several times using the same procedure.
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3. Discussion
3.1. Characterizations

The characteristic absorption band of the pristine chitosan and nanocomposites was
studied using UV-Visible absorption spectroscopy. As shown in Figure 1, the composites
have exhibited strong absorption band at around 350–380 nm, compared to the pristine
chitosan with the corresponding calculated band gap of 3.62 eV. This corresponds to the
band gap of the pristine ZnO nanoparticles having a value of 3.37 eV with an absorption
maximum of 368 nm as previously reported by Rao et al. [31]. Thus, the spectra confirmed
the dispersion of the ZnO nanoparticles on the surface of the chitosan and the good
adsorption properties of the ZnO-chitosan nanocomposites.
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Figure 1. UV-visible absorbance spectra of 5 wt.% ZnO-chitosan and 10 wt.% ZnO-chitosan
nanocomposites.

The morphology of the prepared composites is shown the SEM images as depicted
in Figure 2. It indicated the spherical or elliptical shape of the ZnO nanoparticles on
the surface of the chitosan. Previous studies have indicated that the presence of metal
nanoparticles enhanced the adsorption performance of the pristine chitosan, such as the
work of Rahmi et al. (2019) for the adsorption of Hg (II) and Cd (II) onto highly crystalline
Fe2O3@chitosan nanocomposite [16]. Most recent is the finding of Moradi et al. for the
naproxen adsorption onto Chitosan/agar/SiO2 nano hydrogels [25]. The average particle
size was 3.46 and 3.51 nm for the 5 wt.% and 10 wt.% ZnO-chitosan, respectively, as
depicted in Figure 3.

The porosity of the adsorbent materials is vital for adsorption studies as the pores in
the adsorbents offer more adsorption sites for the guest molecules. Adsorbents having
higher N2 adsorption–desorption isotherms often presented higher adsorption sites for the
host molecules. The specific Brunauer–Emmette–Teller (BET) surface area of the pristine
chitosan was 4.22 m2 g. However, for the nano composites, BET surface area of 45.70 and
49.21 m2 g−1 were recorded for 5 wt.% ZnO-chitosan and 10 wt.% ZnO-chitosan samples,
respectively, as shown in Table 1. The corresponding values for pore volumes and the
average pore diameter according to the Barrett–Joyner–Halenda (BJH) were highlighted in
Table 1. The higher surface area of the nanocomposites revealed their good efficiency for
the uptake of the dye molecules. Previous reports have also indicated that the synergetic
effect of metal-oxide nanoparticles affects the overall surface area of pristine chitosan [23].
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Table 1. N2 adsorption–desorption properties of chitosan and the composites.

Properties Chitosan 5 wt.% ZnO-Chitosan 10 wt.% ZnO-Chitosan

BET surface area (m2 g−1) 4.22 45.70 49.21
Pore volume (m3 g−1) 0.013 0.025 0.025

Pore sizes (nm) 4.15 4.62 4.62

3.2. Effect of Contact Time

Contact time is paramount variable in adsorption processes. Thus, the effect of
contact time on the dye adsorption onto the pristine chitosan and the nanocomposites
were investigated. Figure 4 has shown the increase in adsorption capacity (qt mg g−1)
with the contact time for both chitosan and nanocomposites. This might be attributed
to the diffusion of dye molecules from the surface of the solution onto the surface of the
adsorbents [32]. However, with time, the adsorption capacity becomes moderate, probably
due to the migration of dye molecules to inner pores of the adsorbents. The equilibrium was
achieved at 160 min with equilibrium adsorption capacity of 93.78 mg g−1 and 97.93 mg g−1

for 5 wt.% ZnO-Chitosan and 10 wt.% ZnO-Chitosan, respectively. In comparison, the
pristine chitosan has a qe value of 83.77 mg g−1. These results indicated an improvement
in the adsorption capacity of the nanocomposites when compared with the chitosan. A
similar observation was reported when the chitosan was modified with PVA/TiO2 [33].
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3.3. Adsorbent Dosage

A promising adsorbent material must be able to remove considerable amounts of
adsorbate at low doses. This feature is paramount to reduce operational costs and minimize
the risks of secondary pollution [34,35]. From the plot of Figure 5, the removal efficiency
(%R) against adsorbent dosage (g L−1), it was shown that adsorption capacity increased
with the amount of the adsorbent. This was due to the increase in number of active
sites. Thus, adsorbent dosage of 6 g L−1 is required to remove the dye concentration of
100 mg L−1, achieving the higher adsorption efficiency of 87.54, 96.39, and 99.95% for the
chitosan, 5 wt.% ZnO-chitosan, and 10 wt.% ZnO-chitosan composites, respectively [36,37].
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3.4. Effect of Dye Concentration

The adsorption of the dye onto adsorbents was studied at different initial concentra-
tions. From Figure 6, the adsorption efficiency decreased for all the adsorbents when the
initial concentration was changed from 50 to 250 mg L−1. For the pristine chitosan, the
adsorption efficiency drastically decreased from 96.17 to 42.21%, while, for the nanocom-
posites, the adsorption efficiency decreased from 99.53 to 58. 83% and from 99.95 to 61.51%
for the 5 wt.% ZnO-chitosan and 10 wt.% ZnO-chitosan, respectively. The decrease in the
adsorption efficiency at higher concentration was due to the limited number of the adsorp-
tion sites available for the uptake of the dye. As the adsorption sites became saturated, no
more adsorption occurred. However, the adsorption capacity (qe mg g−1) increased as the
initial concentration of the dye was increased due to the mass driving force that enables the
transfer of the dye molecules to the active sites of the adsorbents.
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3.5. Influence of pH on Adsorption

The adsorption capacity gradually increased at the acidic pH until it reached the peak
at the pH of 8. It then started to decline at the alkaline pH (Figure 7). The increase in
the adsorption capacity observed at the lower pH was resulted from the attraction of the
amino group on the surface of the chitosan for the hydroxonium ion on the surface of the
solution [38]. Also at the basic pH above 7, deprotonation of the active sites of the surface
of the adsorbent occurred, thus repulsed with the OH− on the surface of the [39,40]. The
presence of excess H+ and OH− in the acidic or basic solution competes with the dye for
the adsorption sites, which resulted in lower adsorption capacity.
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3.6. Kinetics of Adsorption

The mechanism and the rate controlling step of the adsorption process was evaluated
by the kinetics models of pseudo-first order and pseudo-second order intra-particle dif-
fusion. Among models, the pseudo-first order has shown the best calculated adsorption
capacities of 85.308, 98.397 and 103.048 mg g−1 for the chitosan, 5 wt.% ZnO-chitosan and
10 wt.% ZnO-chitosan, respectively. This has been in good agreement with the experimental
results. Additionally, the fitting data of the model have shown best R2 values 0.998, 0.995
and 0.959 for the chitosan, 5 wt.% ZnO-chitosan and 10 wt.% ZnO-chitosan, respectively.
Similarly, the statistical values for the linear regression analysis of MSE, RMSE and AIC of
the model were also in good agreement with the finding as highlighted in Table 2. Thus,
the adsorption of the dye onto the pristine chitosan and the nanocomposites best described
the abundant adsorption sites as depicted by the improvement in the BET surface area
upon the dispersion of the ZnO nanoparticle on the surface of the chitosan.

Table 2. Kinetics models for the dye adsorption onto the chitosan and the nanocomposites.

Model Chitosan 5 wt.% ZnO-Chitosan 10 wt.% ZnO-Chitosan

qe (Experimental mg g−1) 88.771 93.780 97.951

Pseudo-first order

qe (Calculated mg g−1) 85.308 98.397 103.048
K1 (min−1) 0.010 0.012 0.013
R2 0.998 0.995 0.959
R2 adj 0.978 0.983 0.943
MSE 0.020 0.027 0.026
RMSE 0.141 0.163 0.160
AIC −33.141 −30.904 −31.197
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Table 2. Cont.

Model Chitosan 5 wt.% ZnO-Chitosan 10 wt.% ZnO-Chitosan

Pseudo-second order

qe (Calculated mg g−1) 16.250 27.651 30.150
K2 (g mg−1 min−1) 0.000 0.000 0.000
R2 0.707 0.772 0.909
R2 adj 0.665 0.739 0.896
MSE 0.172 0.063 0.024
RMSE 0.414 0.251 0.156
AIC −14.119 −23.125 −31.299

Intra-particle diffusion

Kp 0.763 0.702 0.673
C 15.275 29.205 36.997
R2 0.979 0.897 0.842
R2 adj 0.976 0.882 0.820
MSE 22.302 131.873 212.649
RMSE 4.723 11.484 14.493
AIC 29.680 46.067 49.975

3.7. Isotherms of Adsorption

The isotherms studies were used to describe the interaction between the dye and the
adsorbents when the equilibrium is attained. Of the models studied (Table 3), Langmuir
fitting was the most consistent for the adsorption data according to the obtained R2 values
and the statistical regression analysis as highlighted in Table 4. The Langmuir adsorption
capacity (qm) was 68.077, 87.471 and 90.976 mg/g for the chitosan, 5 wt.% ZnO-Chitosan
and 10 wt.% ZnO-chitosan, respectively, indicating the monolayer formation and the good
adsorption capacity of the adsorbents [27]. Similarly, the corresponding RL values were
0.043, 0.224 and 0.019 for the chitosan, 5 wt.% ZnO-Chitosan and 10 wt.% ZnO-chitosan,
respectively, signifying the favorability of the adsorption. Thus, the overall adsorption
process is said to occur via monolayer formation. Previously, Zhang et al. have reported
similar observations for the adsorption of cesium chitosan-vermiculite composite [41].

Table 3. Isotherms studies for the dye adsorption onto chitosan and composites.

Chitosan 5 wt.% ZnO-Chitosan 10 wt.% ZnO-Chitosan

Langmuir

Qm (mg g−1) 68.077 87.471 90.976
KL (L mg−1) 0.222 0.437 0.524
RL 0.043 0.224 0.019
R2 0.976 0.982 0.983
R2 adj 0.969 0.977 0.977
MSE 0.005 0.002 0.001
RMSE 0.075 0.045 0.039
AIC −24.881 −29.558 −31.091

Freundlich

KF (L g−1) 13.426 12.368 12.075
nF 4.132 9.699 17.241
R2 0.868 0.749 0.667
R2 adj 0.824 0.661 0.556
MSE 0.014 0.017 0.017
RMSE 0.117 0.129 0.132
AIC −20.049 −19.807 −18.799
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Table 3. Cont.

Chitosan 5 wt.% ZnO-Chitosan 10 wt.% ZnO-Chitosan

Temkin

bT (kJ mol−1) 216.024 205.905 195.334
AT (L g−1) 7.745 5.039 5.419
R2 0.911 0.795 0.718
R2 adj 0.882 0.726 0.624
MSE 43.845 76.863 88.748
RMSE 6.617 8.767 9.421
AIC 20.349 23.156 23.875

Table 4. Comparison of adsorption of various dyes onto chitosan and modified chitosan.

Adsorbent Dye Conc (mg L−1) qe (mg g−1) Equilibrium Time Ref

Chitosan Reactive yellow
Reactive black 300 -

- 800 min [42]

Chitosan Methylene blue 10 - 4 h [43]
Chitosan Methylene blue 10 9.88 30 min [44]

Chitosan

Acid dye
Basic dye
Direct dye
Reactive dye

100

58.50
7.30
52.30
50.40

5 h [45]

Chitosan-cyclodextrin Direct blue 78 300 10.80 350 min [46]
NCCA
NCCF Red 60 100 5.86

3.40 240 min [47]

Chitosan@Fe3O4 Congo red 100 56.66 600 min [48]
Chitosan/Al2O3/magnetite Methyl orange 20 47.60 40 min [49]

Sr3.8Fe25.7O70.4-chitosan Crystal violet
Basic red 50 29.46

32.16 30 min [50]

Chitosan Methylene blue 100 88.77 160 min This work
5 wt.% ZnO-Chitosan Methylene blue 1 93.78 160 min This work
10 wt.% ZnO-Chitosan Methylene blue 100 97.93 160 min This work

Chitosan-4-nitroacetophenone/CuO-CeO2-Al2O3 (NCCA); Chitosan-4-nitroacetophenon/CuO-CeO2-Fe2O3 (NCCF).

3.8. Adsorbent Regeneration and Reusability

Results from regeneration and reusability studies indicated that both chitosan and the
nanocomposites can withstand the dye adsorption for number of repeated usages with
good efficiency. From Figure 8, the adsorption efficiency of the chitosan dropped from
84.54% to 50.93%, whereas it dropped from 93.39% to 54.04% and 99.95% to 59.05% for the
5 wt.% ZnO-chitosan and 10 wt.% ZnO-chitosan, for the 1st and 6th cycles, respectively.
This reaffirmed that both chitosan and composites are good adsorbents for the dye removal
over a repeated number of adsorption cycles.

Literature studies have also restated the good performance of the nanocomposites in
comparison to other chitosan and composites reported. The efficiency of the ZnO-chitosan
nanocomposites could be deduced from the higher adsorption capacities of the materials
and the shorter equilibration time than most of the adsorbents previously employed. Thus,
the relevance of this work in the field of pollutants’ remediation from environmental waters.
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4. Conclusions

ZnO nanoparticles were successfully dispersed on chitosan, forming 5 wt.% ZnO-
Chitosan and 10 wt./% ZnO-Chitosan nanocomposites. The UV-visible analysis has shown
the good adsorption of the composites, while the SEM analysis described the surface
morphology of the nanocomposites with the spherical or elliptical shape of the ZnO
nanoparticles, indicating the formation of the ZnO-chitosan nanocomposites. The N2
adsorption–desorption analysis revealed the good porosities of the composites for the
uptake of the guest molecules. The adsorption studies for the removal of methylene blue
from the aqueous medium demonstrated efficiency of the nanocomposites and its higher
adsorption capacity compared to the pristine chitosan with the equilibrium attained within
160 min. The adsorption capacities were 83.77, 93.78 and 97.93 mg g−1 for the chitosan,
5 wt.% ZnO-Chitosan and 10 wt.% ZnO-Chitosan, respectively. The good adsorbent proper-
ties of the materials were demonstrated for the efficient adsorption of the methylene blue up
to six cycles, achieving remarkable adsorption efficiency. The kinetics and isotherms were
governed by pseudo-first order and Langmuir model, respectively. Thus, the nanocompos-
ites can be employed as good adsorbents for pollutants removal from the environmental
waters. However, for real sample application, the multi-component adsorption system
should be employed using column technology and a suitable experimental design model.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/molecules27154746/s1, Figure S1: Pseudo-first order model plot
for methylene blue adsorption onto chitosan and the nanocomposites; Figure S2: Pseudo-second
order model plot for methylene blue adsorption onto chitosan and the nanocomposites; Figure S3:
Intraparticle adsorption model plot for methylene blue adsorption onto chitosan and the nanocom-
posites; Figure S4: Langmuir isotherm model plot for methylene blue adsorption onto chitosan
and the nanocomposites; Figure S5: Freundlich isotherm model plot for methylene blue adsorption
onto chitosan and the nanocomposites; Figure S6: Temkin isotherm model plot for methylene blue
adsorption onto chitosan and the nanocomposites.
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