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Abstract: An efficient method for the synthesis of functionalized peptidomimetics via multicompo-
nent Ugi reaction has been developed. The application of trifluoroethanol (TFE) as a reaction medium
provided desired products with good yields. Further, using the developed cyclisation reaction, the
obtained peptidomimetics were transformed into the cyclic analogues (diketopiperazines, DKPs).
The goal of the performed studies was to revised and compare whether the structure of the obtained
structurally flexible acyclic peptidomimetics and their rigid cycling analogue DKPs affect antimi-
crobial activity. We studied the potential of synthesized peptidomimetics, both cyclic and acyclic,
as antimicrobial drugs on model E. coli bacteria strains (k12, R2–R4). The biological assays reveal
that DKPs hold more potential as antimicrobial drugs compared to open chain Ugi peptidomimetics.
We believe that it can be due to the rigid cyclic structure of DKPs which promotes the membrane
penetration in the cell of studied pathogens. The obtained data clearly indicate the high antibiotic
potential of synthesized diketopiperazine derivatives over tested antibiotics.

Keywords: cyclic peptide; ugi multicomponent reaction; diketopiperazines; antimicrobial activity;
minimal inhibitory concentration

1. Introduction

Ugi reaction is a one pot multicomponent reaction for peptidomimetics synthesis. This
transformation was already successfully engaged as a crucial step for diketopiperazines
(DKPs) synthesis [1,2]. Diketopiperazine derivatives are known for their well-recognized
biological activities. These small, cycling and conformationally rigid molecules have
multiple functional groups which can interact with receptors and so show a broad spectrum
of biological actions [3]. There are plentiful reports on bioactive compounds containing
DKP moiety. This scaffold is quite important due to its interesting medicinal properties such
as PDE5 inhibitors [4], oxytocin antagonists [5], cancer inhibitors [6], metalloproteinase
inhibitors [7], antivirals [8], antibiotics [9], antibacterial [10], neuroprotective reagents [11],
anxiolytic agents [12], anti-inflammatory inhibitors [13], bio herbicides [14] and natural
products [15] (Figure 1).
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Figure 1. Biologically active DKPs. 

This work is a continuation of earlier work reported by us, in which we paid atten-
tion to the structure–activity relationship of a library of peptidomimetics synthesized via 
Ugi reaction to check their antimicrobial potential against E. coli strains [16]. However, 
here, we are more interested in assessing the effect of cyclisation with respect to the open 
chain Ugi peptidomimetics. In order to study the influence of structure, particularly its 
rigidity, it is necessary to develop the method for the synthesis of these two groups of 
compounds. We have exploited the diversity of Ugi reaction using several aldehydes, 
isocyanides, amines and acrylic acid to make a library of compounds. Reported pep-
tidomimetics are a class of alkylating agents which should aid its antimicrobial activity 
but our research has shown otherwise, which may be related to cell membrane permea-
bility in pathogens. 2-chloropropionic acid derivatives are also proven to be biologically 
active. For example, piracetam derivatives are known as cognitive enhancers [17] and 
3CL pro inhibitors [18]. Due to antimicrobial resistance, there is a need to find new potent 
antimicrobial drugs. There are very few reports on the antimicrobial activities of DKPs 
against E. coli [19]. The goal of the presented studies is to design a method for the syn-
thesis of DKPs and to substantiate their antimicrobial potential against model E. coli 
strains. 

2. Materials and Methods 
2.1. Microorganisms and Media 

E. coli K-12, R1–R4 strains were received from Prof. Jolanta Łukasiewicz at the 
Ludwik Hirszfeld Institute of Immunology and Experimental Therapy (Polish Academy 
of Sciences, Warsaw, Poland). Bacteria were cultivated in a tryptic soy broth (TSB; Sig-
ma-Aldrich, Saint Louis, MI, USA) liquid medium and on agar plates containing TSB 
medium. N,N-Dimethylformamide (DMF) was purchased from Sigma Aldrich (CAS No. 
68-12-2, Poznań, Poland), Lanes 1kb-ladder, and Quick Extend DNA ladder (New Eng-
land Biolabs, Ipswich, MA, USA), with MIC and MBC tests as described in detail in the 
previous work [16–22] and analyzed by the Tukey test indicated by (p < 0.05): * p < 0.05, ** 
p < 0.1, *** p < 0.01. 

2.2. Chemicals 
Starting materials and all other reagents were purchased from Sigma-Aldrich. All 

solvents were of analytical grade and were used without prior distillation. Merck silica 
gel plates 60 F254 were used for TLC (thin layer chromatography) analysis. Crude reac-
tion mixtures were purified using column chromatography on Merck silica gel 
60/230–400 mesh, with an appropriate mixture of hexane and ethyl acetate as a solvent. 
THF was dried according to standard procedure. Nuclear magnetic resonance spectra 
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This work is a continuation of earlier work reported by us, in which we paid attention
to the structure–activity relationship of a library of peptidomimetics synthesized via Ugi
reaction to check their antimicrobial potential against E. coli strains [16]. However, here,
we are more interested in assessing the effect of cyclisation with respect to the open chain
Ugi peptidomimetics. In order to study the influence of structure, particularly its rigidity, it
is necessary to develop the method for the synthesis of these two groups of compounds.
We have exploited the diversity of Ugi reaction using several aldehydes, isocyanides,
amines and acrylic acid to make a library of compounds. Reported peptidomimetics are
a class of alkylating agents which should aid its antimicrobial activity but our research
has shown otherwise, which may be related to cell membrane permeability in pathogens.
2-chloropropionic acid derivatives are also proven to be biologically active. For example,
piracetam derivatives are known as cognitive enhancers [17] and 3CL pro inhibitors [18].
Due to antimicrobial resistance, there is a need to find new potent antimicrobial drugs.
There are very few reports on the antimicrobial activities of DKPs against E. coli [19]. The
goal of the presented studies is to design a method for the synthesis of DKPs and to
substantiate their antimicrobial potential against model E. coli strains.

2. Materials and Methods
2.1. Microorganisms and Media

E. coli K-12, R1–R4 strains were received from Prof. Jolanta Łukasiewicz at the Ludwik
Hirszfeld Institute of Immunology and Experimental Therapy (Polish Academy of Sciences,
Warsaw, Poland). Bacteria were cultivated in a tryptic soy broth (TSB; Sigma-Aldrich,
Saint Louis, MI, USA) liquid medium and on agar plates containing TSB medium. N,N-
Dimethylformamide (DMF) was purchased from Sigma Aldrich (CAS No. 68-12-2, Poznań,
Poland), Lanes 1kb-ladder, and Quick Extend DNA ladder (New England Biolabs, Ipswich,
MA, USA), with MIC and MBC tests as described in detail in the previous work [16–22]
and analyzed by the Tukey test indicated by (p < 0.05): * p < 0.05, ** p < 0.1, *** p < 0.01.

2.2. Chemicals

Starting materials and all other reagents were purchased from Sigma-Aldrich. All
solvents were of analytical grade and were used without prior distillation. Merck silica gel
plates 60 F254 were used for TLC (thin layer chromatography) analysis. Crude reaction
mixtures were purified using column chromatography on Merck silica gel 60/230–400 mesh,
with an appropriate mixture of hexane and ethyl acetate as a solvent. THF was dried accord-
ing to standard procedure. Nuclear magnetic resonance spectra (NMR) were performed
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on a Bruker Avance 400 and Varian 500MHz instrument. Chemical shifts are expressed in
ppm and coupling constant (J) in Hz using TMS as an internal standard. High-resolution
mass spectra were acquired on a Maldi SYNAPT G2-S HDMS (Waters) apparatus with a
QqTOF analyser.

The bacterial tests used, and MIC and MBC were accurately described in detail in the
previous work [20–26]. An MTT test to assess the metabolic activity of cells was performed
on the basis of [27–30], with THLE-5b as the control and the caco-2 cell line derived from
human adenocarcinoma.

2.3. General Procedure for Synthesis of Compounds Va-Vh

To the mixture of benzyl amine (0.25 mmol) in 2,2,2-trifluoroethanol (1 mL, 0.25 mmol)
corresponding aldehyde was added and the reaction mixture was stirred for 20 min at room
temperature followed by the addition of 2-chloropropionic acid (0.25 mmol). After 20 min,
isocyanide (0.25 mmol) was added to the reaction mixture and was stirred continuously for
18 h at 50 ◦C. Then, the solvent was evaporated and the crude products were purified by
column chromatography on silica gel using hexane/AcOEt as the eluent.

2.3.1. N-benzyl-2-chloro-N-(2-((4-methoxybenzyl)amino)-2-oxo-1-phenylethyl)
Propanamide (Va)

Colorless oil; (dr: 1:1); 1H NMR (400 MHz, CDCl3) δ 7.38 (dd, J = 6.5, 2.8 Hz, 2H),
7.29–7.15 (m, 8H), 7.05 (d, J = 7.3 Hz, 2H), 6.84–6.76 (m, 2H), 6.13 (s, 1H), 5.76 (s, 1H), 4.99 (d,
J = 18.0 Hz, 1H), 4.61 (d, J = 18.0 Hz, 1H), 4.44–4.32 (m, 2H), 3.75 (s, 3H), 1.57 (d, J = 6.5 Hz,
3H); 13C NMR (100 MHz, CDCl3) δ 170.6, 168.7, 158.9, 136.9, 134.3, 130.0, 129.8, 129.0, 128.9,
128.8, 128.6, 127.3, 126.0, 125.8, 114.0, 64.1, 55.2, 50.2, 50.1, 43.2, 20.7. HR-MS (ESI): m/z
calculated for C26H27ClN2O3 [M+Na]+ 449.1629, found 449.1632.

2.3.2. N-benzyl-2-chloro-N-(2-((4-methoxybenzyl)amino)-1-(4-methoxyphenyl)-2-oxoethyl)
Propanamide (Vb)

Pale yellow oil; (dr: 3:1); 1H NMR (400 MHz, CDCl3) δ 7.34–7.26 (m, 2H), 7.25–7.18
(m, 3H), 7.18–7.14 (m, 2H), 7.06 (d, J = 7.3 Hz, 2H), 6.83–6.79 (m, 2H), 6.78–6.74 (m, 2H),
6.03–5.91 (m, 1H), 5.62 (s, 1H), 5.56 (d, J = 14.6 Hz, 1H, minor), 5.07 (t, J = 3.6 Hz, 2H, minor),
4.96 (d, J = 18.0 Hz, 1H, major), 4.56 (d, J = 18.0 Hz, 1H, major), 4.40 (t, J = 5.1 Hz, 2H, major),
3.77 (s, 3H), 3.73 (s, 3H), 3.57 (d, J = 14.6 Hz, 1H, minor), 1.64 (d, J = 7.2 Hz, 1H, minor), 1.59
(d, J = 6.4 Hz, 3H, major); 13C NMR (100 MHz, CDCl3) δ 168.9, 159.9, 159.80, 136.9, 131.1,
128.9, 128.7, 128.6, 128.1, 127.3, 125.8, 114.8, 114.3, 114.1, 63.7, 55.2, 50.2, 49.9, 43.2, 20.7.
HR-MS (ESI): m/z calculated for C27H29ClN2O4 [M+Na]+ 503.1709, found 503.1714.

2.3.3. N-benzyl-2-chloro-N-(2-(cyclohexylamino)-2-oxo-1-phenylethyl) Propanamide (Vc)

Colorless oil; (dr: 3:2); 1H NMR (500 MHz, CDCl3) δ 7.39–7.30 (m, 3H), 7.30–7.23 (m,
6H), 7.22–7.18 (m, 2H), 7.12 (d, J = 7.5 Hz, 2H), 7.03 (d, J = 7.5 Hz, 1H), 6.04 (s, 1H, major),
5.79 (d, J = 8.0 Hz, 1H, major), 5.70 (s, 1H, minor), 5.57 (d, J = 7.9 Hz, 1H, minor), 4.98 (d,
J = 18.0 Hz, 1H, minor), 4.66 (q, J = 17.6 Hz, 2H), 4.56 (d, J = 18.1 Hz, 1H, minor), 4.47 (q,
J = 6.6 Hz, 1H, major), 4.38 (q, J = 6.6 Hz, 1H, major), 3.80 (ddtt, J = 22.7, 11.2, 7.8, 4.0 Hz, 2H),
1.89 (dd, J = 11.5, 5.5 Hz, 3H), 1.75–1.60 (m, 5H), 1.59 (dd, J = 6.5, 2.3 Hz, 5H), 1.38–1.23 (m,
4H), 1.15–1.02 (m, 4H); 13C NMR (126 MHz, CDCl3) δ 171.5, 170.5, 167.8, 167.7, 137.4, 136.9,
134.8, 134.4, 129.7, 129.1, 128.8, 128.7, 128.6, 128.6, 128.5, 127.9, 127.3, 127.2, 126.0, 125.9,
125.7, 64.1, 62.7, 50.8, 50.2, 50.0, 49.6, 48.5, 34.6, 32.8, 32.7, 32.7, 32.6, 31.5, 29.0, 25.4, 25.4,
25.2, 24.7, 24.6, 21.0, 20.7, 20.6. HR-MS (ESI): m/z calculated for C24H29ClN2O2 [M+Na]+

435.1812, found 435.1815.

2.3.4. N-benzyl-2-chloro-N-(2-((4-methoxybenzyl)amino)-2-oxo-1-(p-tolyl)ethyl)
Propanamide (Vd)

White semi-solid; (dr: 3:2); 1H NMR (400 MHz, CDCl3) δ 7.28–7.17 (m, 9H), 7.13 (dt,
J = 8.3, 4.6 Hz, 5H), 7.10–6.97 (m, 6H), 6.86–6.77 (m, 4H), 6.32 (d, J = 7.1 Hz, 1H, major), 6.03
(s, 1H, minor), 5.99 (d, J = 5.9 Hz, 1H, minor), 5.61 (s, 1H, major), 4.97 (d, J = 18.0 Hz, 1H),



Molecules 2022, 27, 3633 4 of 15

4.64 (d, J = 11.7 Hz, 1H), 4.55 (d, J = 18.1 Hz, 1H), 4.38 (ddd, J = 13.2, 7.3, 4.0 Hz, 4H), 3.77
(d, J = 2.1 Hz, 6H), 2.29 (s, 3H, minor), 2.26 (s, 3H, major), 1.57 (dd, J = 9.0, 6.5 Hz, 5H); 13C
NMR (100 MHz, CDCl3) δ 170.5, 168.8, 158.9, 138.5, 136.9, 129.1, 128.9, 128.6, 127.2, 125.8,
114.0, 114.1, 64.2, 62.8, 55.2, 50.8, 50.2, 50.1, 43.2, 21.1, 20.7. HR-MS (ESI): m/z calculated for
C27H29ClN2O3 [M+Na]+ 487.1771, found 487.1764.

2.3.5. N-benzyl-2-chloro-N-(2-(cyclohexylamino)-2-oxo-1-(p-tolyl)ethyl) Propanamide (Ve)

Colorless oil; (dr: 3:2); 1H NMR (400 MHz, CDCl3) δ 7.32–7.09 (m, 10H), 7.05 (q,
J = 8.3 Hz, 5H), 6.02 (s, 1H, minor), 5.95 (d, J = 8.1 Hz, 1H, minor), 5.64 (d, J = 8.4 Hz, 2H,
major), 4.94 (d, J = 18.0 Hz, 1H, major), 4.68 (d, J = 17.7 Hz, 2H, minor), 4.54 (d, J = 17.7 Hz,
1H, major), 4.44 (q, J = 6.4 Hz, 1H, minor), 4.36 (q, J = 6.5 Hz, 1H, major), 3.88–3.68 (m,
2H), 2.29 (s, 3H, minor), 2.26 (s, 3H, major), 1.96–1.81 (m, 3H), 1.69–1.59 (m, 5H), 1.55 (d,
J = 6.5 Hz, 6H), 1.38–1.22 (m, 5H), 1.09 (dqd, J = 17.1, 11.7, 11.1, 4.1 Hz, 5H); 13C NMR
(100 MHz, CDCl3) δ 175.6, 174.9, 169.8, 169.5, 168.1, 137.7, 129.4, 128.6, 128.5, 128.1, 127.2,
127.1, 126.1, 126.0, 56.3, 48.3, 48.0, 43.1, 42.7, 37.1, 32.8, 32.7, 32.6, 32.5, 29.4, 25.9, 25.5, 25.1,
24.7, 24.6, 24.6, 22.7, 22.6, 22.4, 22.4, 22.3. HR-MS (ESI): m/z calculated for C25H31ClN2O2
[M+Na]+ 449.1970, found 449.1972.

2.3.6. N-benzyl-2-chloro-N-(2-(cyclohexylamino)-1-(2,4-dinitrophenyl)-2-oxoethyl)
Propanamide (If)

Yellow oil; (dr: 3:2); 1H NMR (400 MHz, CDCl3) δ 8.79 (d, J = 2.4 Hz, 1H, major),
8.67–8.60 (m, 1H, minor), 8.43 (dd, J = 8.6, 2.4 Hz, 1H, major), 8.35–8.28 (m, 1H, minor), 7.79
(d, J = 8.7 Hz, 1H, minor), 7.70 (d, J = 8.7 Hz, 1H, major), 7.30 (dd, J = 14.5, 6.9 Hz, 4H),
7.24 (s, 2H), 7.16 (d, J = 7.4 Hz, 3H), 7.09 (d, J = 6.7 Hz, 2H), 6.63 (s, 1H, major), 6.37 (s, 1H,
minor), 6.28 (d, J = 7.9 Hz, 1H, major), 5.87 (d, J = 8.0 Hz, 1H, minor), 5.07 (d, J = 17.0 Hz,
2H, major), 4.86 (d, J = 17.7 Hz, 1H, minor), 4.61 (dt, J = 10.9, 5.5 Hz, 2H), 3.74–3.51 (m, 1H,
minor), 3.31–3.17 (m, 1H, major), 1.72 (d, J = 6.5 Hz, 4H), 1.66 (d, J = 6.4 Hz, 4H), 1.62–1.55 (m,
4H), 1.54–1.44 (m, 4H), 1.29–1.16 (m, 5H), 1.12–0.93 (m, 7H); 13C NMR (126 MHz, CDCl3)
δ 170.7, 170.2, 164.5, 149.7, 149.2, 147.2, 138.6, 136.0, 135.2, 131.7, 129.7, 129.3, 129.1, 128.4,
128.1, 127.2, 126.8, 126.5, 125.9, 120.4, 120.2, 60.7, 60.0, 51.5, 50.0, 49.8, 49.2, 48.9, 32.5, 31.7,
25.3, 25.3, 24.4, 20.7, 20.3. HR-MS (ESI): m/z calculated for C24H27ClN4O6 [M-H]+ 501.1537,
found 501.1541.

2.3.7. N-benzyl-2-chloro-N-(2-(cyclohexylamino)-1-(4-(dimethylamino)phenyl)-2-oxoethyl)
Propanamide (Vg)

Pale yellow oil; (dr: 3:2); 1H NMR (400 MHz, CDCl3) δ 7.31 (q, J = 2.5, 1.6 Hz, 1H),
7.19 (dt, J = 18.3, 7.1 Hz, 12H), 7.08 (d, J = 7.5 Hz, 2H), 6.59 (dd, J = 8.5, 4.0 Hz, 4H), 5.92
(s, 1H), 5.67 (d, J = 8.1 Hz, 1H), 5.54 (d, J = 8.4 Hz, 2H), 4.92 (d, J = 18.0 Hz, 1H), 4.66–4.48
(m, 3H), 4.44 (d, J = 6.5 Hz, 1H), 4.34 (q, J = 6.4 Hz, 1H), 3.78 (ddtd, J = 20.1, 16.5, 8.6, 8.2,
4.3 Hz, 2H), 2.90 (d, J = 4.6 Hz, 12H), 1.99–1.82 (m, 5H), 1.56 (t, J = 6.6 Hz, 7H), 1.38–1.24
(m, 7H), 1.15–1.00 (m, 7H); 13C NMR (100 MHz, CDCl3) δ 170.4, 168.4, 150.5, 137.5, 130.7,
130.4, 129.6, 128.6, 128.5, 128.3, 127.1, 127.1, 126.2, 125.8, 112.3, 112.3, 64.0, 62.8, 51.1, 50.3,
49.7, 49.2, 48.5, 40.2, 32.7, 26.9, 25.5, 24.8, 24.7, 21.1, 20.7. HR-MS (ESI): m/z calculated for
C26H34ClN3O2 [M+Na]+ 478.2239, found 478.2237.

2.3.8. N-benzyl-2-chloro-N-(2-(cyclohexylamino)-1-(4-nitrophenyl)-2-oxoethyl)
Propanamide (Vh)

Colorless oil; (dr: 3:2); 1H NMR (400 MHz, CDCl3) δ 8.24–8.19 (m, 1H, minor), 8.11–8.07
(m, 1H, major), 8.02 (d, J = 8.7 Hz, 2H), 7.50 (dd, J = 16.3, 8.7 Hz, 4H), 7.31–7.29 (m, 2H),
7.16 (h, J = 4.4, 3.6 Hz, 4H), 7.10 (d, J = 7.4 Hz, 2H), 6.95–6.90 (m, 2H), 6.40 (d, J = 7.9 Hz,
1H, major), 6.06 (s, 1H, minor), 6.01 (d, J = 8.1 Hz, 1H, minor), 5.88 (s, 1H, major), 5.40 (d,
J = 14.7 Hz, 1H, minor), 5.00 (d, J = 17.8 Hz, 1H, major), 4.60 (d, J = 17.8 Hz, 1H, major), 4.50
(q, J = 5.6, 4.7 Hz, 1H, minor), 4.45 (dd, J = 8.3, 4.7 Hz, 1H, major), 3.93 (d, J = 14.7 Hz, 1H,
minor), 3.84–3.64 (m, 2H), 1.92–1.82 (m, 2H), 1.67–1.54 (m, 14H), 1.34–1.25 (m, 4H), 1.12 (q,
J = 12.0, 10.1 Hz, 6H); 13C NMR (126 MHz, CDCl3) δ 171.1, 170.7, 166.6, 164.5, 148.4, 147.7,
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142.3, 141.5, 138.8, 135.9, 130.5, 129.4, 129.2, 128.9, 128.8, 128.7, 128.6, 128.4, 127.9, 127.8,
127.1, 126.0, 125.7, 124.6, 124.5, 123.7, 123.6, 63.1, 61.9, 61.5, 60.3, 50.5, 50.3, 50.1, 48.7, 48.6,
32.7, 32.6, 31.1, 25.3, 24.6, 24.0, 21.0, 20.6, 20.5, 16.6, 14.2. HR-MS (ESI): m/z calculated for
C24H28ClN3O4 [M+Na]+ 480.1668, found 480.1666.

2.4. General Procedure for Synthesis of Compounds VIa-VIh

Compound V (0.25 mmol) obtained in step 1 was dissolved in THF (3 mL) and cooled
to 0 ◦C in an ice bath. After 5 min, sodium hydride (NaH 3 eq.) was added to it portion
wise and the reaction mixture was refluxed for 3 hrs. The solvent was evaporated and the
crude mixture was purified by column chromatography on silica gel using hexane/AcOEt
as the eluent.

2.4.1. 1-benzyl-4-(4-methoxybenzyl)-3-methyl-6-phenylpiperazine-2,5-dione (VIa)

Colorless oil; (dr: 99.9:0.1); 1H NMR (500 MHz, CDCl3) δ 7.42 (d, J = 3.8 Hz, 5H),
7.22–7.14 (m, 5H), 6.92 (d, J = 8.5 Hz, 2H), 6.81 (d, J = 8.6 Hz, 2H), 5.85 (s, 1H), 4.67 (d,
J = 15.4 Hz, 1H), 4.25 (dd, J = 14.3, 6.1 Hz, 1H), 4.03 (dd, J = 14.3, 6.1 Hz, 1H), 3.83 (s,
3H), 3.79 (dd, J = 8.4, 6.5 Hz, 1H), 3.64 (d, J = 15.4 Hz, 1H), 1.33 (d, J = 7.5 Hz, 3H); 13C
NMR (126 MHz, CDCl3) δ 172.1, 168.4, 159.1, 136.3, 135.9, 129.3, 129.1, 129.0, 128.7, 128.5,
128.1, 127.4, 114.0, 57.5, 55.3, 45.0, 42.9, 30.3, 29.7, 11.1. HR-MS (ESI): m/z calculated for
C26H26N2O3 [M+Na]+ 437.1792, found 437.1796.

2.4.2. 1-benzyl-4-(4-methoxybenzyl)-6-(4-methoxyphenyl)-3-methylpiperazine-2,5-dione (VIb)

Pale yellow oil; (dr: 95:5); 1H NMR (500 MHz, CDCl3) δ 7.32–7.29 (m, 2H), 7.20–7.12
(m, 5H), 6.92–6.88 (m, 4H), 6.81–6.76 (m, 2H), 5.83 (s, 1H), 4.64 (d, J = 15.3 Hz, 1H), 4.21
(dd, J = 14.2, 6.1 Hz, 1H), 4.00 (dd, J = 14.3, 6.1 Hz, 1H), 3.73 (q, J = 7.5 Hz, 1H), 3.61 (d,
J = 15.3 Hz, 1H), 1.29 (d, J = 7.5 Hz, 3H); 13C NMR (126 MHz, CDCl3) δ 172.2, 168.7, 159.7,
159.1, 136.4, 129.5, 129.3, 129.1, 128.8, 128.5, 128.1, 127.7, 114.3, 113.9, 71.3, 57.4, 55.4, 55.3,
44.8, 42.9, 11.1. HR-MS (ESI): m/z calculated for C27H28N2O4 [M+Na]+ 467.1946, found
467.1947.

2.4.3. 1-benzyl-4-cyclohexyl-3-methyl-6-phenylpiperazine-2,5-dione (VIc)

Colorless Oil; (dr: 85:15); 1H NMR (500 MHz, CDCl3) δ 7.44 (d, J = 4.2 Hz, 4H),
7.42–7.31 (m, 6H), 7.27 (dd, J = 8.4, 2.2 Hz, 3H), 5.56 (d, J = 8.3 Hz, 1H, major), 5.29 (d,
J = 8.3 Hz, 1H, minor), 4.86 (d, J = 15.8 Hz, 1H, minor), 4.74 (d, J = 15.4 Hz, 1H, major), 4.15
(d, J = 15.8 Hz, 1H, minor), 4.11–4.02 (m, 1H, minor), 3.81 (q, J = 7.5 Hz, 1H), 3.67 (dtd,
J = 11.3, 7.7, 4.0 Hz, 1H, major), 3.51 (d, J = 15.4 Hz, 1H, major), 1.73–1.63 (m, 1H), 1.56 (dd,
J = 10.9, 6.7 Hz, 5H), 1.37 (d, J = 7.5 Hz, 3H, major), 1.31–1.19 (m, 4H), 0.96 (ddd, J = 17.6,
13.5, 10.5 Hz, 1H), 0.85 (d, J = 7.6 Hz, 3H, minor), 0.62 (qd, J = 12.2, 3.5 Hz, 1H), 0.49–0.39
(m, 1H); 13C NMR (126 MHz, CDCl3) δ 172.5, 167.6, 136.8, 136.3, 136.1, 134.3, 129.4, 128.9,
128.8, 128.8, 128.7, 128.6, 128.5, 128.3, 128.2, 127.9, 127.7, 127.5, 125.9, 71.7, 71.5, 57.4, 54.8,
48.5, 48.0, 45.1, 44.8, 32.6, 32.5, 32.4, 32.1, 29.6, 25.3, 25.2, 24.7, 24.6, 11.1, 10.2. HR-MS (ESI):
m/z calculated for C24H28N2O2 [M+Na]+ 399.2048, found 399.2073.

2.4.4. 1-benzyl-4-(4-methoxybenzyl)-3-methyl-6-(p-tolyl)piperazine-2,5-dione (VId)

White sticky compound; (dr: 3:2); 1H NMR (500 MHz, CDCl3) δ 7.27 (dd, J = 4.8,
2.6 Hz, 6H), 7.25–7.19 (m, 4H), 7.20–7.15 (m, 6H), 7.14 (dd, J = 6.6, 3.2 Hz, 2H), 7.12–7.09
(m, 1H), 6.92–6.87 (m, 4H), 6.81–6.75 (m, 4H), 5.82 (d, J = 6.3 Hz, 1H, major), 5.61 (s, 1H,
minor), 4.80 (d, J = 15.7 Hz, 1H, minor), 4.64 (d, J = 15.4 Hz, 1H, major), 4.23 (d, J = 6.1 Hz,
1H, minor), 4.20 (d, J = 6.1 Hz, 1H, minor), 4.17–4.14 (m, 1H, major), 4.13 (d, J = 5.2 Hz, 1H),
4.04–4.01 (m, 1H, minor), 4.01–3.99 (m, 1H), 3.81 (s, 3H, major), 3.78 (s, 3H, minor), 3.75 (d,
J = 7.5 Hz, 1H), 3.63 (d, J = 15.4 Hz, 1H, major), 2.36 (s, 3H, major), 2.35 (s, 3H, minor), 1.30
(d, J = 7.4 Hz, 3H, major), 1.21 (d, J = 6.2 Hz, 3H, minor); 13C NMR (126 MHz, CDCl3) δ
172.3, 172.2, 169.8, 168.6, 159.0, 138.6, 138.5, 136.4, 136.0, 132.8, 131.1, 129.6, 129.5, 129.5,
129.3, 129.1, 128.8, 128.5, 128.1, 128.0, 127.8, 127.5, 127.3, 114.0, 113.9, 71.52, 71.4, 64.3, 57.3,
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55.3, 55.2, 54.3, 45.1, 44.9, 43.3, 42.9, 25.3, 21.0, 11.1, 10.3. HR-MS (ESI): m/z calculated for
C27H28N2O3 [M+Na]+ 451.1997, found 451.1998.

2.4.5. 1-benzyl-4-cyclohexyl-3-methyl-6-(p-tolyl)piperazine-2,5-dione (VIe)

Colorless Oil; (dr: 85:15); 1H NMR (500 MHz, CDCl3) δ 7.34 (q, J = 7.8, 7.0 Hz, 3H), 7.31–
7.23 (m, 4H), 7.20 (d, J = 8.0 Hz, 2H), 5.52 (d, J = 8.3 Hz, 1H, major), 5.28 (d, J = 7.9 Hz, 1H,
minor), 4.80 (d, J = 15.7 Hz, 1H, minor), 4.69 (d, J = 15.4 Hz, 1H, major), 4.11 (d, J = 15.8 Hz,
1H, minor), 4.05 (q, J = 7.6 Hz, 1H, minor), 3.75 (q, J = 7.5 Hz, 1H, major), 3.64 (dtd, J = 11.7,
8.0, 4.0 Hz, 1H), 3.49 (d, J = 15.4 Hz, 1H, major), 2.36 (s, 3H), 1.68–1.58 (m, 1H), 1.52 (d,
J = 14.2 Hz, 4H), 1.33 (d, J = 7.5 Hz, 3H), 1.29–1.15 (m, 5H); 13C NMR (126 MHz, CDCl3) δ
172.58, 169.13, 167.74, 138.57, 138.37, 136.89, 136.43, 132.88, 131.12, 129.63, 129.43, 129.33,
128.94, 128.86, 128.25, 128.17, 127.87, 127.64, 127.38, 71.37, 57.21, 54.61, 48.52, 48.01, 47.89,
45.02, 44.71, 32.63, 32.59, 32.49, 32.11, 31.52, 29.63, 26.87, 25.24, 24.76, 24.74, 24.64, 21.01,
20.99, 14.04, 11.11, 10.19. HR-MS (ESI): m/z calculated for C25H30N2O2 [M-H]+ 389.2225,
found 389.2229.

2.4.6. 1-benzyl-4-cyclohexyl-6-(2,4-dinitrophenyl)-3-methylpiperazine-2,5-dione (VIf)

Yellow oil; (dr: 85:15); 1H NMR (500 MHz, CDCl3) δ 8.91 (d, J = 2.4 Hz, 1H), 8.21 (dd,
J = 8.5, 2.4 Hz, 1H), 7.37 (d, J = 8.6 Hz, 1H), 7.33 (q, J = 2.9 Hz, 5H), 5.54 (d, J = 7.6 Hz, 1H),
4.55 (d, J = 15.1 Hz, 1H), 4.26 (d, J = 15.1 Hz, 1H), 4.10–4.07 (m, 1H), 3.51 (dtdt, J = 14.3,
10.4, 6.4, 3.4 Hz, 1H), 1.71–1.50 (m, 10H), 1.45–1.41 (m, 1H), 1.40–1.19 (m, 7H), 0.91 (d,
J = 7.4 Hz, 3H); 13C NMR (126 MHz, CDCl3) δ 171.0, 165.5, 149.0, 147.7, 138.6, 135.3, 131.28,
129.3, 129.2, 129.0, 128.8, 128.3, 126.9, 120.6, 72.7, 64.3, 56.5, 49.6, 49.2, 46.3, 33.9, 32.8, 32.4,
30.6, 29.7, 25.6, 25.3, 24.9, 24.8, 24.7, 17.6, 14.1, 13.6, 11.2. HR-MS (ESI): m/z calculated for
C24H26N4O6 [M+Na]+ 489.1793, found 489.1795.

2.4.7. 1-benzyl-4-cyclohexyl-6-(4-(dimethylamino)phenyl)-3-methylpiperazine-2,5-dione (VIg)

Yellow oil; (dr: 85:15); 1H NMR (500 MHz, CDCl3) δ 7.38–7.33 (m, 3H), 7.30–7.25 (m,
5H), 6.75–6.72 (m, 2H), 5.54 (d, J = 8.4 Hz, 1H), 4.69 (d, J = 15.3 Hz, 1H), 3.75 (q, J = 7.5 Hz,
1H), 3.67 (tdq, J = 11.6, 7.9, 3.8 Hz, 1H), 3.56 (d, J = 15.3 Hz, 1H), 3.00 (s, 5H), 1.61–1.49 (m,
5H), 1.35 (d, J = 7.5 Hz, 3H), 1.28–1.18 (m, 3H), 1.00–0.92 (m, 1H), 0.90–0.85 (m, 1H); 13C
NMR (126 MHz, CDCl3) δ 172.9, 172.8, 169.6, 168.1, 150.4, 150.1, 137.1, 136.6, 129.2, 128.8,
128.7, 128.4, 128.2, 128.1, 127.7, 122.6, 120.5, 112.3, 112.0, 76.7, 71.5, 71.4, 60.3, 56.8, 54.5, 48.4,
47.9, 47.8, 44.8, 44.6, 40.2, 40.2, 32.6, 32.6, 32.5, 32.1, 25.3, 25.2, 24.7, 24.7, 24.6, 20.9, 14.1, 11.1,
10.2. HR-MS (ESI): m/z calculated for C24H33N3O2 [M+H]+ 442.2474 found 442.2470.

2.4.8. 1-benzyl-4-cyclohexyl-3-methyl-6-(4-nitrophenyl)piperazine-2,5-dione (VIh)

Colorless oil; (dr: 1:1); 1H NMR (500 MHz, CDCl3) δ 8.28–8.22 (m, 4H), 7.69–7.65 (m,
2H), 7.58–7.54 (m, 2H), 7.42–7.33 (m, 9H), 7.28–7.26 (m, 2H), 5.62 (d, J = 8.3 Hz, 1H), 5.36 (d,
J = 7.9 Hz, 1H), 4.90 (d, J = 15.6 Hz, 1H), 4.83 (d, J = 15.4 Hz, 1H), 4.16–4.10 (m, 1H), 4.02 (q,
J = 7.6 Hz, 1H), 3.74 (q, J = 7.5 Hz, 1H), 3.63 (ddtd, J = 26.1, 11.3, 7.8, 3.9 Hz, 2H), 3.47 (d,
J = 15.3 Hz, 1H), 1.74–1.64 (m, 3H), 1.64–1.50 (m, 9H), 1.38 (d, J = 7.5 Hz, 3H), 1.31–1.20 (m,
6H), 1.04–0.91 (m, 2H), 0.87 (d, J = 7.6 Hz, 3H); 13C NMR (126 MHz, CDCl3) δ 171.6, 171.5,
167.9, 166.5, 147.8, 143.5, 141.7, 136.2, 135.9, 129.6, 129.3, 128.9, 128.8, 128.7, 128.6, 128.5,
128.4, 123.9, 123.6, 76.7, 71.3, 70.7, 60.3, 59.1, 56.3, 48.7, 48.3, 45.4, 45.1, 32.6, 32.4, 32.1, 25.1,
24.7, 24.7, 24.6, 20.9, 14.1, 11.1, 10.2. HR-MS (ESI): m/z calculated for C24H27N3O4 [M+H]+

444.1904 found 444.1899.

3. Results & Discussion
3.1. Chemistry

Diketopiperazines possess a variety of biological activities. They are found in nu-
merous natural products and are also obtained from the degradation of polypeptides
in foodstuff. Their small, conformationally strained structure makes them more attrac-
tive along with the possibility of instigating several substituents at six different positions.
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Due to their rigid backbone, they are quite popular in drug discovery as an important
pharmacophore. Post-Ugi transformation for the synthesis of diketopiperazines has been
reported [31,32] but these transformations were using reagents such as PPh3 which make
the purification process hard. In this study, we synthesized a library of differently sub-
stituted diketopiperazines varying the substrates for the Ugi multicomponent reaction.
To see the effect of substituents on cyclic and acyclic peptidomimetics we used different
isocyanides (p-methoxybenzylisocyanide and isocyanocyclohexane) and eight different
aldehydes. Diketopiperazines were synthesized in a two-step process. First, target pep-
tidomimetics were obtained via Ugi multicomponent reaction (Scheme 1). A model Ugi
reaction was carried out using 2-chloropropionic acid, benzyl amine, benzaldehyde and
p-methoxybenzylisocyanide as substrates (Scheme 2) in methanol at room temperature
following the same procedure reported by us [33], which resulted in product Va with 30%
yield. To check the effect of temperature on reaction yield we performed the reaction with
methanol at 30 ◦C and obtained product Va with 32% yield. A further increase in tempera-
ture to 50 ◦C led to a gradual increase in yield but when the temperature was increased to
60 ◦C, the reaction yield remained the same which indicates 50 ◦C as an optimal tempera-
ture for this reaction. Since we know that solvent can also affect the progress of the reaction
and hence the yield, so we screened various polar protic solvents known for the Ugi reaction
and we found Trifluoroethanol to be an efficient solvent for this transformation (Table 1,
entry 8). Then we further increased the temperature to 60 ◦C (entry 9) and yield dropped
down to 42%. The mechanistic reason is unclear but it can be that the non-nucleophilic
nature of TFE is suppressing the side reactions [34] and increasing the overall yield of
product. So, we took the best conditions found in optimization (Table 1, entry 8) for the
synthesis of compounds Va–Vh with good yield (Figure 2). This Ugi reaction led to the
formation of a diastereomeric mixture of peptidomimetics.
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Table 1. Influence of solvent on model Ugi reaction.

Entry Solvent Temperature (◦C) Yield (%)

1 Methanol 25 30
2 Methanol 30 32
3 Methanol 40 33
4 Methanol 50 39
5 Methanol 60 39
6 Ethanol 50 33
7 Isopropanol 50 37
8 TFE 50 53
9 TFE 60 42
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Figure 2. Structures of investigated peptidomimetics and DKPs with isolated yield and diastereomeric
ratio in brackets.

Naliapara et. al. reported the cyclisation of Ugi peptidomimetic using a transition
metal catalyst [35]. We modified the conditions for our reaction to eliminate the usage of a
metal catalyst (Table 2, Scheme 3, Entry 1). This reaction yielded 25% product. Then, the
same reaction was performed at a lower temperature (90 ◦C; Table 2, entry 2) as well as a
high temperature (110 ◦C; Table 2, entry 3) but yield remained the same. Since the solvent is
known to be a crucial parameter in terms of modulating the yield, several different organic
solvents were applied (Table 2, entry 4). Further model reaction was conducted at different
temperatures (Table 2, entries 4–6); however, it was observed that at high temperatures, the
yield decreases (Table 2, entry 6), which may be due to product decomposition. It indicates
65 ◦C as the optimal temperature for the studied cyclisation reaction. The application
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of various solvents (Table 2, entry 9–11) resulted in maximum yield (49%) with THF.
Having optimized the solvent and temperature for the model reaction, we screened various
organic and inorganic bases (Table 2, entry 12–16) and observed that NaH in THF at
65 ◦C gives product VIa with a good yield of 70%. These conditions were further used
to obtain DKPs VIa–VIh with the yields ranging from 44% to 70%. Upon cyclisation, we
observed the change in diastereomeric ratios varying with the attached substituents in the
peptidomimetic scaffold.

Table 2. Optimization for model cyclisation reaction.

Entry Base Solvent Temperature Yield (%)

1 K2CO3 DMF 100 25
2 K2CO3 DMF 90 27
3 K2CO3 DMF 110 26
4 K2CO3 Ethanol 50 30
5 K2CO3 Ethanol 65 39
6 K2CO3 Ethanol 75 28
7 K2CO3 THF 65 49
8 K2CO3 DMF 65 30
9 K2CO3 DMSO 65 32

10 K2CO3 Toluene 65 29
11 K2CO3 Methanol 65 34
12 CsF THF 65 33
13 NaHCO3 THF 65 36
14 KOtBu THF 65 27
15 KOH THF 65 19
16 NaH THF 65 70
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3.2. Cytotoxic Studies of the Synthesized Compounds

The obtained results indicate that all tested Diketopiperazines show cytotoxic activity
in all analyzed E.coli strains differing in LPS length. Different inhibitory activity was found
depending on the nature of the R1 and R2 substituents attached to the chlorine atom of the
tested compounds. Among all tested compounds, the compounds from VIa–VIh showed
a stronger antibacterial effect than Va–Vh. It is worth noting that the introduction of the
chlorine atom into the structure of the tested compounds had a significant impact on their
activity and cytotoxicity and high selectivity against selected E. coli model strains in the
MIC and MBC tests, which is often observed in various types of compounds showing
strong microbiological activity on cells [12]. These compounds showed higher activity
against strains R2, R3 and R4 than commonly used antibiotics (Figures 3–7). The values of
the MIC and MBC tests for each model of E. coli R2–R4 and K12 strains were visible on all
analyzed growth microplates after the addition of resazurin.
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Figure 3. Minimum inhibitory concentration (MIC) of the phosphonate derivatives in model bacterial
strains. The x-axis features compounds 1–16 used sequentially. The y-axis shows the MIC value in
µg/mL−1 Investigated strains of E. coli K12 as control (blue), R2 strains (orange), R3 strain (grey), and
R4 strain (yellow). The y-axis shows the MBC value in µg/mL−1. The order in which the compounds
were applied to the plate is shown in Supplementary Materials Figure S1.

Molecules 2022, 27, x FOR PEER REVIEW 11 of 16 
 

 

 
Figure 4. Minimum bactericidal concentration (MBC) of the phosphonate derivatives. The x-axis 
features compounds Va–Vh and VIa–VIh used sequentially. The y-axis shows the MIC value in 
μg/mL−1. Investigated strains of E. coli K12 as control (blue), R2 strains (orange), R3 strain (grey), 
and R4 strain (yellow). The y-axis shows the MBC value in μg/mL−1. The order in which the com-
pounds were applied to the plate is shown in Supplementary Materials Figure S1. 

 
Figure 5. The ratio of MBC/MIC of the phosphonate derivatives. The x-axis features compounds 
Va–Vh and VIa–VIh used sequentially. The y-axis shows the MIC value. Investigated strains of E. 
coli K12 as control (blue), R2 strains (orange), R3 strain (grey), and R4 strain (yellow). The y-axis 
shows the MBC value in μg/mL−1. The order in which the compounds were applied to the plate is 
shown in Supplementary Materials Figure S1. 

Figure 4. Minimum bactericidal concentration (MBC) of the phosphonate derivatives. The x-axis
features compounds Va–Vh and VIa–VIh used sequentially. The y-axis shows the MIC value in
µg/mL−1. Investigated strains of E. coli K12 as control (blue), R2 strains (orange), R3 strain (grey), and
R4 strain (yellow). The y-axis shows the MBC value in µg/mL−1. The order in which the compounds
were applied to the plate is shown in Supplementary Materials Figure S1.

The analyzed bacterial strains used in the experiments were used in 48-well plates;
which were treated with the analyzed compounds in the MIC and MBC assays. On the
basis of their analysis, color changes were observed for all tested compounds, but at
different levels and at different dilutions. The most sensitive to the effects of the analyzed
compounds were the bacterial strains R3 and R4 due to the increasing length of their LPS
(visible dilutions 10−2 corresponding to a concentration of 0.0015 µM); more than strains
K12 and R2 (visible dilutions of 10−6 corresponding to a concentration of 0.0015 µM). Strain
R4 was the most sensitive, possibly due to the longest length of lipopolysaccharide (LPS) in
the bacterial membrane. In all analyzed cases, the MBC test values were approximately
75 times higher than the MIC test values in eight analyzed compounds including Cl
(Figures 3–5 and Table 3).
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Figure 5. The ratio of MBC/MIC of the phosphonate derivatives. The x-axis features compounds
Va–Vh and VIa–VIh used sequentially. The y-axis shows the MIC value. Investigated strains of E.
coli K12 as control (blue), R2 strains (orange), R3 strain (grey), and R4 strain (yellow). The y-axis
shows the MBC value in µg/mL−1. The order in which the compounds were applied to the plate is
shown in Supplementary Materials Figure S1.
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Figure 6. Percentage of plasmid DNA recognized by Fpg enzyme (y-axis) with model bacterial, K12,
and R2–R4 strains (x-axis). All analyzed compounds numbered were statistically significant at <0.05 *
(see Table 2 and Supplementary Materials Figure S2 panel A and B).

3.3. Analysis of R2–R4 E. coli Strains Modified with Tested Compounds diketopiperazines

The obtained MIC values, as well as our previous studies with various types of the
analyzed compounds [20–30], indicate that derivatives of diketopiperazines also show a
strong toxic effect of the analyzed model strains of bacteria. The three compounds analyzed
were selected for further analysis by modifying their DNA. Modified bacterial DNA was
digested with Fpg as previously described [36–41]. All selected analyzed derivatives
of diketopiperazines including various types of alkoxy groups, substituents located at
aromatic rings and the length of the alkyl chain can strongly change the bacterial DNA
topology. After Fpg digestion, approximately 3.5% of the oxidative damage was identified,
which, similar to previous observations, indicates very strong oxidative damage in bacterial
DNA [7–9]. Different types of alkoxy groups, substituents located on the aromatic ring
and the length of the alkyl chain, may determine the toxicity of the analyzed E. coli strains,
including in particular R4, as evidenced by the obtained MIC, MBC and MTT values. The
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obtained results for individual compounds were statistically significant at the level of
p < 0.05 (Figures 6–8).
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Table 3. Statistical analysis of all analyzed compounds by MIC, MBC, and MBC/MIC; <0.05 *,
<0.01 **, <0.001 ***.

No. of
Samples Va Vb Vc Vd Ve Vf Vg Vh Type of

Test

K12 ** ** ** ** * * * ** MIC
R2 ** ** ** ** * * * ** MIC
R3 ** ** ** ** * * * ** MIC
R4 ** ** ** ** * * * ** MIC

K12 * * ** * ** * * ** MBC
R2 * * ** * ** * * ** MBC
R3 * * ** * ** * * ** MBC
R4 * * ** * ** * * ** MBC

K12 ** * * * * * * *** MBC/MIC
R2 ** * * * * * ** *** MBC/MIC
R3 ** * * * * * ** *** MBC/MIC
R4 ** * * * * * ** *** MBC/MIC
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3.4. R2–R4 E. coli Strains with Tested Peptidomimetics

The performed studies support the concept that the synthesized compounds can be
considered drug candidates for further studies (Supplementary Materials Figure S3).

4. Conclusions

An efficient method for the synthesis of peptidomimetics was developed using the Ugi
reaction; these were then used to synthesis diketopiperazines. The established protocol was
used to synthesize a series of target products containing differently substituted aldehydes
and isocyanides. This protocol ensures the efficient, gentle and metal-free synthesis of the
target products with good yields (49%–70%). The cytotoxic effect of the obtained cyclic
and acyclic peptidomimetics was assessed on model E. coli strain and its mutants. The
analyzed diketopiperazines derivatives are able to modify all model strains of E. coli (R2–
R4) and their bacterial DNA, changing the spatial structure of LPS contained in their cell
membranes. Compared to the derivatives, the most active among the tested derivatives
turned out to be those with cyclic structures VI–VIh. We have found that the stiffening
of the peptidomimetic structure is responsible for increase in their antimicrobial activity.
Figure 3 reveals that compounds VIa, VIb, VIc and VIg have the highest potential as anti-
bacterial drug candidates among the tested DKPs. Our studies also show that synthesized
DKPs have a lower MIC value compared to well-known antibiotics, which allows us to
say that DKPs hold more potential as antibiotic drug candidates due to high anti-bacterial
activity for all the tested mutants. The results of the presented research are important for
understanding the biological properties of the studied derivative diketopiperazines as a
function of potential new antibiotics and their toxic effects on gram-negative bacteria and
cancer cell lines in the face of the growing drug resistance pandemic. Referring to our
previous work related to the characteristics of the E. coli K12 and R2–R4 models it is worth
continuing this research on the separation of diastereomers of the analyzed compounds
and their studies on E. coli strains and on human cell lines in various types of cancer.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/molecules27113633/s1, Figure S1. Examples of MIC and MBC on
microplates with different concentration of studied compounds (mg L−1). Figure S2. An example
of an agarose gel electrophoresis separation of isolated plasmids DNA on R4 strains modified with
selected compounds (Panel A) from 8 selected compounds, as shown in Figure 3, and digested with
repair Fpg protein (Panel B). M = marker. Figure S3. Example of an agarose gel electrophoresis
separation of isolated plasmids DNA from R2–R4 strains modified with antibiotics: bleomycin,
ciprofloxacin, and cloxacillin digested with repair enzymes Fpg. M = marker. Figure S4: Structure of
antibiotics. Figure S5: NMR spectra of synthesized compounds Va–Vh & VIa–VIh.
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Abbreviations

MIC minimum inhibitory concentration
MBC minimum bactericidal concentration
Oc open circle
Ccc covalently closed circle
BER base excision repair
Fpg DNA-formamidopyrimidine glycosylase
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