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Figure S1. Molecular structures of further sesquiterpene lactones identified as in silico hits during
the pharmacophore-based in silico screening but not tested.
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Figure S2. Complex-based pharmacophore hypothesis based on the TbPTR1 binding pocket
(ID: ,,2X9G*). Carbon atoms of the co-crystallized co-substrate NADP in yellow, carbon atoms of
the co-crystallized inhibitor pemetrexed in white. The molecular surface is coloured according to
lipophilicity with lipophilic areas in green and hydrophilic areas in purple. Potential interactions of
the inhibitor are represented by feature spheres: H-bond donors in purple, H-bond acceptors in
cyan, aromatic centers in orange. Exclusion spheres are not depicted.

Figure S3. Target-based pharmacophore hypothesis based on the TbPTR1 binding pocket
(ID: ,,2X9G*). Carbon atoms of the co-crystallized co-substrate NADP in yellow, the molecular
surface is coloured according to lipophilicity with lipophilic areas in green and hydrophilic areas in
purple. Potential interactions of amino acids with an inhibitor are represented by projecting feature
spheres: H-bond donors in purple, H-bond acceptors in cyan, ionic interactions in beige, aromatic
centers in orange, hydrophobic structures in green. Exclusion spheres are not depicted.
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Figure S4. Complex-based pharmacophore hypothesis based on the TbPTR1 binding pocket
(ID: ,,3MCV*). Carbon atoms of the co-crystallized co-substrate NADP in yellow, carbon atoms of
the co-crystallized inhibitor PY848 in white. The molecular surface is coloured according to
lipophilicity with lipophilic areas in green and hydrophilic areas in purple. Potential interactions of
the inhibitor are represented by feature spheres: H-bond donors in purple, H-bond acceptors in
cyan, aromatic centers in orange. Exclusion spheres are not depicted.

Figure S5. Target-based pharmacophore hypothesis based on the TbPTR1 binding pocket
(ID: ,,3MCV*). Carbon atoms of the co-crystallized co-substrate NADP in yellow, the molecular
surface is coloured according to lipophilicity with lipophilic areas in green and hydrophilic areas in
purple. Potential interactions of amino acids with an inhibitor are represented by projecting feature
spheres: H-bond donors in purple, H-bond acceptors in cyan, ionic interactions in beige, aromatic
centers in orange, hydrophobic structures in green. Exclusion spheres are not depicted.
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Figure S6. Complex-based pharmacophore hypothesis based on the TbPTR1 binding pocket
(ID: ,4CM]J“). Carbon atoms of the co-crystallized co-substrate NADP in yellow, carbon atoms of
the co-crystallized inhibitor 6 (4 bromophenyl) 5 phenyl 7H-pyrrolo[2,3 d]pyrimidine-2,4-diamine
in white. The molecular surface is coloured according to lipophilicity with lipophilic areas in green
and hydrophilic areas in purple. Potential interactions of the inhibitor are represented by feature
spheres: H-bond donors in purple, cationic interactions in blue, aromatic centres in orange.
Exclusion spheres are not depicted.

Figure S7. Target-based pharmacophore hypothesis based on the TbPTR1 binding pocket
(ID: ,,4CM]J“). Carbon atoms of the co-crystallized co-substrate NADP in yellow, the molecular
surface is coloured according to lipophilicity with lipophilic areas in green and hydrophilic areas in
purple. Potential interactions of amino acids with an inhibitor are represented by projecting feature
spheres: H-bond donors in purple, H-bond acceptors in cyan, ionic interactions in beige, aromatic
centres in orange, hydrophobic structures in green. Exclusion spheres are not depicted.
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Figure S8. Complex-based pharmacophore hypothesis based on the TbPTR1 binding pocket
(ID: ,,4CMK"). Carbon atoms of the co-crystallized co-substrate NADP in yellow, carbon atoms of
the co-crystallized inhibitor 2-amino-5-phenethyl-6-phenyl-3H-pyrrolo[2,3-d]pyrimidine-4(7H)-
one in white. The molecular surface is coloured according to lipophilicity with lipophilic areas in
green and hydrophilic areas in purple. Potential interactions of the inhibitor are represented by
feature spheres: H-bond donors in purple, H-bond acceptors in cyan, aromatic centres in orange.
Exclusion spheres are not depicted.

Figure S9. Target-based pharmacophore hypothesis based on the TbPTR1 binding pocket
(ID: ,,4CMK"). Carbon atoms of the co-crystallized co-substrate NADP in yellow, the molecular
surface is coloured according to lipophilicity with lipophilic areas in green and hydrophilic areas in
purple. Potential interactions of amino acids with an inhibitor are represented by projecting feature
spheres: H-bond donors in purple, H-bond acceptors in cyan, ionic interactions in beige, aromatic
centres in orange, hydrophobic structures in green. Exclusion spheres are not depicted.
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Figure 510. Complex-based pharmacophore hypothesis based on the ToPTR1 binding pocket
(ID: ,,5JDI”). Carbon atoms of the co-crystallized co-substrate NADP in yellow, carbon atoms of the
co-crystallized inhibitor 3,6-dihydroxyl-2-(3-hydroxyphenyl)-4H-1-benzopyrane-4-one in white.
The molecular surface is coloured according to lipophilicity with lipophilic areas in green and
hydrophilic areas in purple. Potential interactions of the inhibitor are represented by feature
spheres: H-bond donors in purple, aromatic centres in orange. Exclusion spheres are not depicted.

Figure S11. Target-based pharmacophore hypothesis based on the TbPTR1 binding pocket
(ID: ,,5]DI”). Carbon atoms of the co-crystallized co-substrate NADP in yellow, the molecular
surface is coloured according to lipophilicity with lipophilic areas in green and hydrophilic areas in
purple. Potential interactions of amino acids with an inhibitor are represented by projecting feature
spheres: H-bond donors in purple, H-bond acceptors in cyan, ionic interactions in beige, aromatic
centres in orange, hydrophobic structures in green. Exclusion spheres are not depicted.
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Figure S12. Complex-based pharmacophore hypothesis based on the TbDHFR binding pocket
(ID: ,3QFX*). Carbon atoms of the co-crystallized co-substrate NADPH in yellow, carbon atoms of
the co-crystallized inhibitor pyrimethamine in white. The molecular surface is coloured according
to lipophilicity with lipophilic areas in green and hydrophilic areas in purple. Potential interactions
of the inhibitor are represented by feature spheres: H-bond donors in purple, aromatic centres in
orange, hydrophobic structures in green. Exclusion spheres are not depicted.

Figure S13. Target-based pharmacophore hypothesis based on the TbDHFR binding pocket
(ID: ,,3QFX*”). Carbon atoms of the co-crystallized co-substrate NADPH in yellow, the molecular
surface is coloured according to lipophilicity with lipophilic areas in green and hydrophilic areas in
purple. Potential interactions of amino acids with an inhibitor are represented by projecting feature
spheres: H-bond donors in purple, H-bond acceptors in cyan, ionic interactions in beige, aromatic
centres in orange, hydrophobic structures in green. Exclusion spheres are not depicted.
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Figure S14. Complex-based pharmacophore hypothesis based on the ThDHFR binding pocket
(ID: ,3RGY9*). Carbon atoms of the co-crystallized co-substrate NADPH in yellow, carbon atoms of
the co-crystallized inhibitor WR99210 in white. The molecular surface is coloured according to
lipophilicity with lipophilic areas in green and hydrophilic areas in purple. Potential interactions of
the inhibitor are represented by feature spheres: H-bond donors in purple, hydrophobic structures
in green. Exclusion spheres are not depicted.

Figure S15. Target-based pharmacophore hypothesis based on the TbDHFR binding pocket
(ID: ,,3RG9”). Carbon atoms of the co-crystallized co-substrate NADPH in yellow, the molecular
surface is coloured according to lipophilicity with lipophilic areas in green and hydrophilic areas in
purple. Potential interactions of amino acids with an inhibitor are represented by projecting feature
spheres: H-bond donors in purple, H-bond acceptors in cyan, ionic interactions in beige, aromatic
centres in orange, hydrophobic structures in green. Exclusion spheres are not depicted.
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Figure S16. Experimental determination of the saturating conditions of folic acid and NADPH
for TbPTR1. (A) Constant concentration of the co-substrate NADPH (200 uM) while varying the
concentrations of the substrate folic acid (3 uM —50 pM). In the concentration range above the
saturation (8-10 uM), substrate inhibition was observed. (B) Constant concentration of the substrate
folic acid (8 uM) while varying the concentrations of the co-substrate NADPH (10 uM - 200 uM).
The determination was carried out according to 4.5., using buffer A (50 mM Tris/HCl (pH 7.6), 250
mM NacCl) at 340 nm and a constant temperature of 30 °C.
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Figure S17. Experimental determination of the saturating conditions of dihydrofolate (DHF) and
NADPH for ThDHFR. (A) Constant concentration of the co-substrate NADPH (200 pM) while
varying the concentrations of the substrate DHF (5 uM - 150 uM). In the concentration range above
saturation (>40 uM), substrate inhibition was observed. (B) Constant concentration of the substrate
DHEF (50 uM) while varying the concentrations of the co-substrate NADPH (10 uM - 200 uM). The
determination was carried out according to 4.6., using buffer B (50 mM Tris/HCl (pH 7.6), 250 mM
NaCl, 10 mM BME) at 340 nm and a constant temperature of 30 °C.
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Table S1. Top hits (compound numbers according to Figure 2 and Figure S1) obtained after
complex- and target-based pharmacophore search and docking based on protein structure model
2X9G and its co-crystallized inhibitor pemetrexed. Hits are ranked by their docking scores after

induced fit docking.

pemetrexed (2X9G)
-9.79 kcal/mol
complex-based target-based
compound S compound S
8 -8.16 kcal/mol 10 -8.90 kcal/mol
10 -8.05 kcal/mol 9 -8.21 kcal/mol
9 -7.85 kcal/mol 14 -7.65 kcal/mol
14 -7.55 kcal/mol 13 -7.48 kcal/mol
12 -7.37 keal/mol 15 -7.27 kcal/mol

Table S2. Top hits (compound numbers according to Figure 2 and Figure S1) obtained after
complex- and target-based pharmacophore search and docking based on protein structure model
3MCYV and its co-crystallized inhibitor PY848. Hits are ranked by their docking scores after induced
fit docking.

Y N S
P,
NH,
0——CH,
(o}
|
CH,
PY848 (3MCV)
-10.37 kcal/mol
complex-based target-based
compound S compound S
5 -8.59 kcal/mol 27 -7.84 kcal/mol
4 -8.03 kcal/mol 14 -7.76 kcal/mol
16 -7.91 kcal/mol 1 -7.15 kcal/mol
10 -7.78 kcal/mol 17 -7.14 kcal/mol
14 -7.76 kcal/mol 31 -7.05 kcal/mol
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Table S3. Top hits (compound numbers according to Figure 2 and Figure S1) obtained after
complex- and target-based pharmacophore search and docking based on protein structure model
4CM] and its co-crystallized inhibitor 6-(4-bromophenyl)-5-phenyl-7H-pyrrolo[2,3 d]pyrimidine-
2,4-diamine. Hits are ranked by their docking scores after induced fit docking.

6-(4 bromophenyl)-5-phenyl-7H-pyrrolo[2,3 d]pyrimidine-2,4-diamine (4CM])
-9.51 kcal/mol

complex-based target-based
compound S compound S
10 -8.90 kcal/mol 9 -9.09 kcal/mol
31 -8.88 kcal/mol 1 -8.81 kcal/mol
19 -8.49 kcal/mol 31 -8.52 kcal/mol
7 -8.31 kcal/mol 19 -8.31 kcal/mol
3 -8.27 kcal/mol 20 -8.23 kcal/mol

Table S4. Top hits (compound numbers according to Figure 2 and Figure S1) obtained after
complex- and target-based pharmacophore search and docking based on protein structure model
4CMK and its co-crystallized inhibitor 2-amino-5-phenethyl-6-phenyl-3H-pyrrolo[2,3-
d]pyrimidine-4(7H)-one. Hits are ranked by their docking scores after induced fit docking.

=7 N\
.

2-amino-5-phenethyl-6-phenyl-3H-pyrrolo[2,3 d]pyrimidine-4(7H)-one (4CMK)

-8.77 kcal/mol
complex-based target-based
compound S compound S
10 -9.12 kcal/mol 11 -8.63 kcal/mol
9 -9.01 kcal/mol 5 -8.55 kcal/mol
21 -8.83 kcal/mol 21 -8.48 kcal/mol
19 -8.75 kcal/mol 7 -8.32 kcal/mol
5 -8.65 kcal/mol 22 -8.32 kcal/mol
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Table S5. Top hits (compound numbers according to Figure 2 and Figure S1) obtained after
complex- and target-based pharmacophore search and docking based on protein structure model
5]DI and its co-crystallized inhibitor 3,6-dihydroxy-2-(3-hydroxyphenyl)-4H-1-benzopyran-4-one.
Hits are ranked by their docking scores after induced fit docking.

OH

HO OH

0]

3,6-dihydroxy-2-(3-hydroxyphenyl)-4H-1-benzopyran-4-one (5]DI)

-7.65 kcal/mol
complex-based target-based
compound S compound S
3 -8.95 kcal/mol 7 -9.39 kcal/mol
23 -8.73 kcal/mol 11 -8.99 kcal/mol
19 -8.65 kcal/mol 25 -8.56 kcal/mol
26 -8.60 kcal/mol 16 -8.53 kcal/mol
22 -8.50 kcal/mol 31 -8.33 kcal/mol

Table S6. Top hits (compound numbers according to Figure 2 and Figure S1) obtained after
complex- and target-based pharmacophore search and docking based on protein structure model
3QFX and its co-crystallized inhibitor pyrimethamine. Hits are ranked by their docking scores after
induced fit docking.

CH,
/N\(NHZ
N |N
NH,
cl
pyrimethamine (3QFX)
-8.26 kcal/mol
complex-based target-based
compound S compound S
5 -8.81 kcal/mol 4 -8.44 kcal/mol
8 -8.42 kcal/mol 24 -8.07 kcal/mol
4 -8.32 kcal/mol 27 -7.83 kcal/mol
10 -8.32 kcal/mol 28 -7.81 kcal/mol
24 -8.09 kcal/mol 29 -7.79 kcal/mol
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Table S7. Top hits (compound numbers according to Figure 2 and Figure S1) obtained after
complex- and target-based pharmacophore search and docking based on protein structure model
3RGY and its co-crystallized inhibitor WR99210. Hits are ranked by their docking scores after

induced fit docking.
Cl
H,C
cl N\ NH,
N N
O/\/\O/ \(
cl NH,
WR99210 (3RGY)
-8.66 kcal/mol
complex-based target-based
compound S compound S
9 -9.63 kcal/mol 18 -8.46 kcal/mol
10 -8.81 kcal/mol 31 -8.18 kcal/mol
21 -8.72 kcal/mol 30 -8.11 kcal/mol
8 -8.55 kcal/mol 6 -8.09 kcal/mol
31 -8.21 kcal/mol 27 -8.00 kcal/mol
Best-fit values
Bottom =0.000
Top =62.8%
LogECS0 1327
HillSlope 1.721
ECS0 2124
Span =62.99
95% CI (profile likelihood)
LogEC50 127310 1.378
Hilslope 1.474 10 2.020
809 ECS0 18.76 to 23.90
'53 Goodness of Fit
: 60— . Degrees of Freedom 13
£ R squared 0.9716
;-é _ Sum of Squares 1275
| 40 . Syx 3132
E 20 Constraints
T Bottom Bottom =0
E Top Top =62.986
=
0 T 1 T 1 1
0.0 0.5 1.0 1.5 2.0 25 Number of points
log(c(compound 1)) [uM] #of X values 1
#Y values analyzed 15

Figure S18. Determination of the ECso value of compound 1 against TbPTR1. The ECso value was
determined by nonlinear regression analysis using the software GraphPad Prism 8 (Table 1).
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Figure S19. Determination of the ICs0 value of compound 2 against TbPTR1. The ICso value was
determined by nonlinear regression analysis using the software

(Table 1).
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Figure S20. Determination of the ICso value of compound 3 for TbPTR1
determined by nonlinear regression analysis using the software

(Table 1).

GraphPad Prism 8
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Figure S21. Determination of the ICso value of compound 4 for TbPTR1
determined by nonlinear regression analysis using the software GraphPad Prism 8

(Table 1).
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Figure S22. Determination of the ECso value of compound 5 for TWPTR1. The ECso value was
determined by nonlinear regression analysis using the software GraphPad Prism 8

(Table 1).
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Figure S23. Determination of the ICso value of compound 2 for ThDHFR. The ICso value was
determined by nonlinear regression analysis using the software

(Table 1).
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Figure S24. Determination of the ICso value of compound 3 for ThDHFR. The ICso value was
determined by nonlinear regression analysis using the software
(Table 1).
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