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Abstract: Melatonin is a pleotropic molecule with numerous biological activities. Epidemiological
and experimental studies have documented that melatonin could inhibit different types of cancer
in vitro and in vivo. Results showed the involvement of melatonin in different anticancer mecha-
nisms including apoptosis induction, cell proliferation inhibition, reduction in tumor growth and
metastases, reduction in the side effects associated with chemotherapy and radiotherapy, decreas-
ing drug resistance in cancer therapy, and augmentation of the therapeutic effects of conventional
anticancer therapies. Clinical trials revealed that melatonin is an effective adjuvant drug to all
conventional therapies. This review summarized melatonin biosynthesis, availability from natural
sources, metabolism, bioavailability, anticancer mechanisms of melatonin, its use in clinical trials,
and pharmaceutical formulation. Studies discussed in this review will provide a solid foundation
for researchers and physicians to design and develop new therapies to treat and prevent cancer
using melatonin.
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1. Introduction

Melatonin (N-acetyl-5-methoxytryptamine) is an indole amine produced in the human
body by multiple sources. It is mainly produced by the pineal gland in response to darkness.
Other organs that synthesize melatonin include skin, bone marrow, lymphocytes, retina,
and gastrointestinal tract [1]

Suprachiasmatic nucleus (SCN) of the hypothalamus is the biological clock that regu-
lates melatonin synthesis and secretion over 24 h [2]. At night, melatonin levels increase,
then start to decrease in the early morning and throughout the day. Elevated levels of mela-
tonin at night stimulate target organs to enter into suitable homeostatic metabolic rhythms
which help to protect the body from the development of different diseases [3]. Therefore,
exposing the body to light at night may result in disruption of melatonin production and
the circadian rhythm.

Cancer is a growing health problem that needs an urgent response to control it. A
prediction from the World Health Organization’s International Agency for Research on
Cancer Global Cancer Observatory (GLOBOCAN) expected 27.5 million cancer cases every
year by 2040. These values represent a 61.7% increase compared with current statistics [4].
Nowadays, cancer patients depend mainly on conventional anticancer therapies includ-
ing surgery, radiotherapy, and chemotherapy. Additionally, many plant-derived natural
products were reported to have a direct role in cancer prevention and therapy [5].

During the last decades, evidences were accumulating to support the diverse roles of
melatonin in human physiology and pathology. Currently, melatonin is considered as a
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cell protector and not only a hormone. Studies reported essential effects of melatonin in
many pathways, including oxidative stress, immune modulation, and hematopoiesis [6,7].
Additionally, a large number of studies confirmed the anticancer and oncostatic effects
of melatonin mediated by different mechanisms of action [8,9]. Moreover, melatonin was
used in combination anticancer therapies to augment conventional therapies and reduce
side effects [8–10].

This review summarizes recent findings on the anticancer properties of melatonin
and its mechanisms of action. Melatonin biosynthesis, bioavailability, natural sources,
cancer preventive properties, pharmaceutical formulation, and its use in clinical trials were
discussed in this review.

2. Melatonin Biosynthesis and Metabolism in Human Body

Melatonin was isolated in 1958, by the dermatologist Aaron Lerner, from bovine
pineal gland. Although it is mainly secreted from the pineal gland, there are many other
secondary sources including; retina, gut, skin, platelets and bone marrow, and probably
other structures, but their systemic contribution is insignificant [11].

The starting material of melatonin biosynthesis in humans is tryptophan, an essential
amino acid. Through the action of tryptophan hydroxylase (TP5H) and aromatic acid
decarboxylase (AADC), enzymes tryptophan is converted to the neurotransmitter, sero-
tonin. In the subsequent step, serotonin is converted into melatonin through the influence
of arylalkylamine N-acetyltransferase (AANAT) and hydroxyindole-O-methyltransferase
(HIOMT) enzymes [12] (Figure 1).
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Figure 1. Melatonin biosynthesis in human.

Melatonin is not stored inside the pineal gland and it is released as it is synthetized,
so the plasma hormone profile faithfully reflects the pineal activity [13]. Moreover, am-
phiphilic nature and the small size of melatonin facilitates its passage across cell membranes
and its access to various fluids, tissues, and cellular compartments as saliva, urine, cere-
brospinal fluid, preovulatory follicle, semen, amniotic fluid, and milk [11,14,15].

Melatonin is metabolized mainly by cytochrome P450 in the liver. It has been demon-
strated that melatonin was metabolized to 6-hydroxymelatonin and N-acetylserotonin by
CYP1A1 and CYP 2C19, respectively, at Phase I metabolism, and most of them were subse-
quently converted to sulfate conjugates by sulfotransferases in human liver and excreted in
the urine [16]. A small portion of melatonin is degraded by other tissues including skin
and brain by either CYPA2B or 2,3-indolamine dioxygenase to form 6-hydroxymelatonin
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or N1-acetyl-N2-formyl-5-methoxykynurenine (AFMK). The urinary excretion probably is
not the major metabolic route of AFMK judging from its water solubility [17].

Melatonin has specific receptors to regulate many physiological functions namely;
MT1 and MT2, both are members of the seven transmembrane G-protein coupled receptor
family [18]. Human MT1 and MT2 receptors are 350 and 362 amino acids long, respectively,
with molecular weights of 39–40 kDa and 55% amino acid homology overall [19]. Both
MT1 and MT2 affect protein kinase activity through inhibition of adenylyl (cAMP) and
guanylyl (cGMP) cyclase, respectively. Furthermore, activation of the phospholipase C
pathway that leads to increase in inositol triphosphate (IP3) and 1, 2-diacylglycerol (DAG)
levels has been proved for both MT1 and MT2 receptors [20].

3. Melatonin Natural Sources

For decades, melatonin was considered an animal neurohormone. However, in 1995
studies confirmed the presence of melatonin in higher plants. Phytomelatonin is the term
used to melatonin of plant origin, and today the presence of phytomelatonin is totally
accepted in all plants [12,21].

Generally, the phytomelatonin content is highly variable, ranging from picograms
to micrograms per gram of plant material analyzed. This variation is not appearing only
among species, but also among different varieties of the same species and even between
different organs of the same plant [22]. Although phytomelatonin was detected and
quantified in roots, shoots, leaves, flowers, and fruits, but its highest level was found
in reproductive organs, particularly in seeds [23]. It has been suggested that variations
in phytomelatonin contents might result not only from the differences in extraction and
detection techniques applied, but also from environmental growth conditions. As the role
of phytomelatonin in plants is a protective agent against multiple stress situations, mostly
higher phytomelatonin levels in plants are related with the presence of stressors, including
natural, artificial, physical, or chemicals stressor [24,25].

In contrary to humans, where the melatonin precursor tryptophan can only be sup-
plied by food, plants are able to synthesize it and theoretically it is constantly available for
further transformations into phytomelatonin or other indoleamine derivatives. Besides,
plants can also absorb melatonin provided exogenously from the environment and accu-
mulating it at high concentrations and so they can be considered as rich phytomelatonin
sources for humans [26].

Regarding the plant kingdom, first phytomelatonin was detected in the photosynthe-
sizing alga Lingulodinium polyedrum in 1988, and then in vascular plants Ipomoea nil (L.) Roth
(synonym, Pharbitis nil (L.) Choisy) in 1993 [27]. Nowadays, the occurrence of phytomela-
tonin in many edible plants and herbs has been widely reported. It has been found in toma-
toes, cherries, olives and oils, grapes and red wine, walnuts, sunflower, mustard oil, apple,
barley, cucumber, lupine, maize, rice, coffee, and medicinal plants, including pyrethrum
maruna (Tanacetum parthenium L.) and St. John’s wort (Hypericum perforatum L.) [12,26].
Table 1 summarizes the content of phytomelatonin in some plants.
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Table 1. Phytomelatonin content in some plants.

Plant Organ Melatonin [ng/g
DW] (or FW *) Reference

Coffee arabica Bean 6800 [12]
Black pepper Leaf 1093 [28]

Tomato Fruit 2.5 * [12]
Sunflower Seed 29 [29]
Walnuts Seed 3.5 [12]
Curcuma Root 120 [30]

Cherry Fruit 18 * [31]
Almond Seed 39 [12]

St. John’s wort Flower 4 * [32]
Strawberry Fruit 11.3 * [33]
Cucumber Seed 11–80 * [12]

Wheat Seed 124.7 * [34]
Pistachio Seed 233,000 [34]

* Corresponds to FW. DW, dry weight; FW, fresh weight.

Several studies demonstrated the effect of food on melatonin serum levels. Sae-Teaw
et al. assessed the effect of pineapple, orange, and banana consumption on serum mela-
tonin concentrations of healthy volunteers. Volunteers were given juice extracted from
1 kg of orange or pineapple or two whole bananas, containing 302, 150, and 8.9 ng phy-
tomelatonin, respectively. The study demonstrated that the serum melatonin concentration
was significantly increased after 120 min of fruit consumption. For pineapple (146 versus
48 pg/mL p = 0.002), orange (151 versus 40 pg/mL, p = 0.005), and banana (140 versus
32 pg/mL, p = 0.008), and this definitely proves that fruits are a good source of phytomela-
tonin. Besides, the antioxidant capacity in the serum also markedly increased, suggested
by the significant increases in two indicators; ferric reducing antioxidant power assay and
oxygen radical antioxidant capacity [35]. Likewise, a study conducted with young, middle-
aged, and elderly participants showed that the ingestion of 200 mL of grape juice twice a
day increased urinary 6-sulfatoxymelatonin, a major metabolite of melatonin commonly
used as a biomarker, and total antioxidant capacity in the all three groups of individu-
als [36]. Besides, germination of legumes increases the plant levels of phytomelatonin,
making sprouts a suitable food source of this hormone, it was reported that the melatonin
concentrations in plasma increased in Sprague–Dawley rats by 16% (p < 0.05) after the
administration of kidney bean sprout extract, which correspondingly led to the increase in
urinary 6-sulfatoxymelatonin content [37].

4. Biological Activities of Melatonin

Melatonin is widespread in nature, and it plays a vital role in different biological
activities [38]. A study has been carried out in aged animals that showed melatonin’s
effect on body temperature and energy balance [39]. Several studies have shed light on
the melatonin immunomodulatory effect. It was reported that melatonin may regulate
the activation of T/B cells in pinealectomy mice in a dose-dependent manner [40]. Be-
sides, it shows immunomodulation and neuroprotective potential in a pharmacological
Alzheimer’s disease mouse model [41]. Moreover, melatonin was known to be associ-
ated with bone homeostasis. Administration of melatonin exhibited a promising strategy
to manage postmenopausal patients via restoring the osteoporosis-impaired osteogenic
potential of bone marrow mesenchymal stem cells [42]. It also maintains bone balance;
increases the osteogenic differentiation of bone marrow mesenchymal stem cells, and
suppresses osteoclastogenesis [43]. A recent clinical trial has investigated the effect of
melatonin consumption on controlling arterial pressure and anthropometric indices in type
2 diabetes mellitus patients. It reduced significantly the mean level of systolic pressure,
mean arterial pressure, pulse pressure, and conicity index in the intervention group [44].
In addition, the chronobiotic properties of melatonin have been evaluated. It revealed that
the administration of melatonin may regulate sleep disorders related to abnormal timing of
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the circadian system: jetlag, shift work, delayed sleep phase syndrome, and some elderly
sleep difficulties [45]. Additionally, melatonin was able to inhibit neuroinflammation and
relieve depression by autophagy modulation through FOXO3a signaling [46]. Recently,
melatonin has been investigated as a candidate drug for the management of corona virus
infection. It docks with novel coronavirus proteins and exhibits a variety of interactions
with an interesting docking score that leads to prevent the virus proteins, which lead to
demolish the virus as well [47].

5. Melatonin as Antioxidants

The oxidative stress refers to the physiological disturbance between the production
of reactive oxygen species (ROS) and the ability of the body to remove them [48]. A vari-
ety of ROS are generated during a number of processes, such as inflammation, infection,
mechanical and chemical stresses, and exposure to UV rays and ionizing radiation [49].
Although the basal levels of ROS act as signaling molecules to activate cell proliferation,
survival, apoptosis, differentiation, and immune response pathways, the high levels of
ROS can damage DNA, protein, and lipids which lead to mutations and promote carcino-
genesis [50]. The human body can counteract the oxidative stress by antioxidants, which
are either naturally produced in situ (endogenous) or externally supplied through foods
and supplements (exogenous), and, therefore, enhance the immune defense and lower the
risk of disease and cancer [51].

Although the main physiological functions of melatonin are related to hormonal
properties, it has been linked to a wide range of functions. One of these essential functions
is its ability to act as antioxidant [52].

An electron rich aromatic system and the amphiphilicity of the compound arising
from O-methyl and N-acetyl residues are supposed to be the molecular bases for its antiox-
idant properties [53]. Melatonin’s antioxidant properties involved many mechanisms. It
can directly scavenge ROS and reactive nitrogen species (RNS) [54]. For instance, it was
reported that in in vitro the ability of melatonin to scavenge the hydroxyl radical (·OH)
was much higher compared with that of vitamin E, which is the reference in the field [11].
Moreover, melatonin can regulate the activities of several antioxidant enzymes like super-
oxide dismutase, glutathione reductase, glutathione peroxidase, and catalase [55]. Studies
also proved the ability of melatonin to stimulates the synthesis of other antioxidants. For
instance, melatonin was found to induce the expression of gamma-glutamylcysteine syn-
thetase (γ-GCS), the rate-limiting enzyme of glutathione (GSH) synthesis [34]. Melatonin
can also increase the efficiency of the mitochondrial electron transport chain, thereby easing
electron leakage and, thus, reducing the generation of free radicals [56].

Under the condition of severe oxidative stress, melatonin is found to be metabolized
via enzymatic degradation or free radical interactive processes to produce many metabolites
including hydroxylated melatonin metabolites (6-hydroxymelatonin, 2-hydroxymelatonin,
and 4-hydroxymelatonin), N1-acetyl-N2-formyl-5-methoxykynuramine (AFMK), N-acetyl-
5-methoxyknuramine (AMK), and cyclic 3- hydroxy melatonin. Interestingly, all these
metabolites can also act as antioxidants. Consequently, melatonin can generate a radical
scavenger cascade with never ending action even with its degradation metabolites. This cas-
cade predictably allows melatonin to neutralize up to 10 radical products, which contrasts
with classic free radical scavengers, which detoxify a single oxidizing molecule [57]. There-
fore, unlike other antioxidants, melatonin is very effective even in small doses [53,58,59].
Surprisingly, some of the metabolites are even more potent than its precursor. For example,
AMK showing stronger capability of scavenging ROS and preventing protein oxidation
than its precursor [60]. More and more, melatonin can enhance the activity of other an-
tioxidants; Xu et al. reported that melatonin treatment enhanced the polyphenol content
and antioxidant capacity of red wine [61]. Similarly, the protective effects of vitamin E, glu-
tathione, or vitamin C against iron-induced lipid peroxidation were dramatically enhanced
with melatonin combination [62].
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Accordingly, melatonin could be an excellent candidate for the prevention and treat-
ment of several cancers, such as breast cancer, prostate cancer, gastric cancer, and colorectal
cancer [2]. It was demonstrated that 1 mM melatonin concentration is the pharmacological
concentration that is able to produce anticancer effects [63–65]. Goncalves et al. revealed
that the melatonin at 1 mM concentration can induce an anti-metastatic effect on MCF-
7 breast cancer cell line through inhibiting the viability and invasiveness of the cancer
cells [66]. Furthermore, melatonin at 1 mM concentration can inhibit the angiogenesis in
MCF-7 breast cancer cells; Alvarez-Garcı’a et al. suggest that melatonin may play a role
in the paracrine interactions between malignant epithelial cells and proximal endothelial
cells through a downregulatory action on VEGF expression in human breast cancer cells,
which decrease the levels of VEGF around endothelial cells [67,68]. Likewise, melatonin
mediates the anti-angiogenic property in hypoxic PC-3 Prostate Cancer cells by upregula-
tion of microRNA3195 and microRNA374b [53]. Similarly, Lv et al. reported that 1 mM
concentration of melatonin exhibited high inhibitory effect on cellular proliferation of pan-
creatic carcinoma cells (PANC-1), along with a significantly decrease in vascular endothelial
growth factor (VEGF) [69]. On the other hand, many studies confirmed that melatonin at
physiological concentration (1 nM) exerts antiproliferative actions and induces apoptosis
in breast, prostate, and ovarian cancer cells [70]. Figure 2 summarizes the mechanisms of
action of melatonin in reducing oxidative stress.
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6. Melatonin and Cancer Hallmarks
6.1. Role of Melatonin in Maintaining the Genomic Integrity of Cells

Genomic instability is one of the factors that led to tumorigenesis in cells. In normal
mammalian cells, different pathways were followed to preserve genomic stability [71]. It
is summarized in four major mechanisms: high-fidelity DNA replication in the S-phase,
accurate chromosome distribution during mitosis, flawless repair of sporadic DNA damage,
and progression of the cell cycle [72].

The antioxidant activity of melatonin plays an important role in protecting DNA from
oxidative damage. It is either directly through scavenging of free radicals, or indirectly
by inhibiting metal-induced DNA damage, stimulating antioxidant enzymes, enhancing
the DNA repair system, and inhibiting pro-oxidative enzymes [73]. Based on a recent
study, tumor-bearing mice were treated with (10 mg/kg) of melatonin and (5 mg/kg) of
cisplatin. The results have shown that melatonin was able to reduce DNA damage and
improve the anticancer effect of cisplatin [74]. Moreover, melatonin (1200 µg/mL) was
able to reduce the production of micronucleus induced by γ-radiation in two cell lines:
HeLa and MRC5 cells. Its scavenging effect and stimulation of DNA repair pathways were
significantly reported [75]. Besides, melatonin attenuated the cytotoxic effect of arecoline in
oral squamous cell carcinoma (OSCC) by activating antioxidant enzymes and protecting the
DNA integrity. It also enhanced arecoline-induced ROS formation, G2/M phase arrest, and
cell apoptosis [76]. Another study has shown the effect of melatonin pretreatment in breast
cancer cells (MCF-7) one week before radiation exposure. It reduced cell proliferation,
promoted cell cycle arrest, and resulted in a remarkable decrease in RAD51 and DNA-PKcs
mRNA expression compared to the free melatonin cells [77].

Many previous studies have reported the effects of melatonin on mitochondrial func-
tion by decreasing ATP production, activating the reactive oxygen species (ROS) to promote
apoptosis in cancer cells, and inhibiting telomerase activity [1,78–80].

6.2. Melatonin Effect on Proliferative Signaling

Cancer cells are recognized by their ability to over-proliferate via modulation of
protein expression and signaling pathways. The most critical and controlling pathways are
hypoxia-inducible factor-1 (HIF-1), NF-κB s, PI3K/Akt, insulin-like growth factor receptor
(IGF-1R), cyclin-dependent kinases (CDK), and estrogen receptor signaling [81].

Melatonin combined with 5-fluorouracil showed antiproliferation, antimigration,
and proapoptotic effects in colon cancer cells by downregulation of PI3K/AKT and NF-
κB/iNOS signaling pathways [82]. Another study has reported that melatonin (3.4 Mm)
inhibited proliferation of CSCs (cancer stem cells isolated from ovarian cancer cells), and
reduced protein expression of Ki67 and matrix metalloproteinase 9 (MMP9). It also prevents
cell migration via alteration of PI3K and MAPK signaling pathways in both receptor-
dependent and independent manner [83]. Melatonin was able to suppress the cell growth
of breast cancer cells (MDA-MB-231) in both in vitro and in vivo. The results showed
significant downregulation of the HIF-1α gene and protein expression coupled with the
production of GLUT1, GLUT3, CA-IX, and CA-XII [84].

In hypoxic PC-3 cells (prostate cancer cells), melatonin could reduce HIF-1α accu-
mulation by inactivation of SPHK1 (new modulator of HIF-1α) [85]. Many studies have
shown the inhibitory effect of melatonin against nuclear factor-kappaB (NF-κB) in various
cancer cell lines such as lung cancer and liver cancer [86–88]. Moreover, upregulation of
p21, p27, and PTEN protein is another way of melatonin to promote cell programmed
death in uterine leiomyoma growth. It also reduced tumor growth in both xenograft and
orthotopic uterine tumor mice models [89]

Furthermore, melatonin (4 mmol/L) has suppressed cell proliferation in human
osteosarcoma cells (MG-63 cells) via reducing expression of cyclin D1, CDK4, cyclin B1,
and CDK1 [90].
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6.3. Melatonin Effect on Promoting Cell Apoptosis

The loss of apoptotic control is one of the cancer hallmarks. It allows unlimited
growth, promotes angiogenesis, and apoptosis evasion [91,92]. B-cell lymphoma-2 (Bcl-2)
family proteins composed of members that control apoptosis. Moreover, activation of
the pro-apoptotic pathway proteins is one of the main targets to conquer cancer cells [93].
According to the literature, melatonin has increased the expression of pro-apoptotic medi-
ators such as BAX/BAK, Apaf-1, caspases, and p53 [94]. Further, treating gastric cancer
cells with melatonin (2 mM) resulted in stimulating apoptosis via increase expression of
p38 and p-JNK protein, and downregulation of p65. JNK and p38 are associated with
cell growth and apoptosis, while NF-κB-p65 signaling pathway mediated suppression of
apoptosis [95]. Melatonin augmented the cisplatin activity in human cervical cancer cells
by inducing caspase-9-dependant mitochondrial apoptosis, and increasing pro-apoptotic
proteins production [96]. Another study had shown the ability of melatonin to inhibit
Bcl-2 and upregulate BAD/BAX genes in MCF-7 human breast cancer cells [97]. Melatonin
was also able to induce apoptosis in colorectal cancer cells via an increase in superoxide
production and suppress cellular prion protein expression [98]. In human gastric cancer
cells, melatonin was able to enhance BAX expression, reduce Bcl-xL production, activate
caspase-3 and 9, and inhibit the AKT/MDM2 intracellular pathway [99]. According to Yu
et al., the anti-apoptotic activity of melatonin against neural cancer cells was due to its
metabolite N-acetylserotonin (NAS) resulted from mitochondrial cytochrome P450 (CYP)
1 B1 overexpression [100]. Besides, melatonin showed an anti-apoptotic effect on several
types of cancer cells with different mechanisms [100–102].

6.4. Melatonin Effect on Angiogenesis Process

Angiogenesis is the formation of new blood vessels. This new vascular network is
very important for cancer cells, as it helps to establish cell proliferation and metastatic
spread [103]. Many factors control angiogenesis, such as vascular endothelial factor (VEGF),
platelet-derived growth factor (PDGF), epidermal growth factor (EGF), and hepatocyte
growth factor (HGF) [104]. A study has shown the activity of melatonin in inhibiting VEGF
expression in SH-SY5Y human neuroblastoma cells [105]. Additionally, the anti-angiogenic
effect of melatonin was observed in breast cancer cells (MDA-MB-231). It was able to
reduce the gene level of miR-148a-3p, IG-IR, and VEGF, both in vitro and in vivo [106].
On the same type of cancer, but different cell line (MDA-MB-468), melatonin has shown
attenuation effect on miR-152-3p expression and suppression of IGF-1R, HIF-1α, and VEGF
production [107]. Moreover, a reduction in VEGF expression was reported in ovarian cancer
cells (SKOV3) treated with melatonin [108]. A recent study has revealed that melatonin
was able to modulate tumor angiogenesis in osteosarcoma by upregulation of miR-424-5p
expression and inhibiting of VEGF [109]. Besides, melatonin prevented angiogenesis in
HepG2 liver cancer cells via inhibition of HIF-1α and STAT3 signaling pathway [63].

6.5. Role of Melatonin in Tumor-Associated Immune Evasion

There are several mechanisms by which tumors evade an immune response including
activation of regulatory cells, deformed antigen presentation, immune suppression, and
immune deviation [110]. Melatonin has an impact on immune cells by enhancing their
viability, improving cell metabolism in the tumor microenvironment, and modulating
cytokines release [111]. It was reported that melatonin can stimulate T cell and natural
killer (NK) production in in vivo study [112]. Liu et al. demonstrated the reduction effect
of melatonin on regulatory T cells (Tregs) and Forkhead box p3 (Foxp3) in gastric cancer
cells [113]. According to Wongsena et al., melatonin has an immunomodulatory effect in
hamsters treated with a chemical carcinogen. The results showed that a dose of 50 mg/kg
melatonin was able to reduce eosinophils, Th17 cells, and Foxp3 expression, as well as
increase CD4+ and TNF-α accumulation [114]. Other studies exhibited stimulation of Th1
in tumor-bearing mice treated with melatonin [10,115].
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6.6. Role of Melatonin in Tumor-Promoting Inflammation

There is a strong relationship between chronic inflammation and tumor develop-
ment [116]. The outcomes of the inflammatory process might promote carcinogenesis via
the formation of reactive oxygen species and reactive nitrogen species which play a role in
DNA damage and cancer development [117]. Melatonin has shown an anti-inflammatory
effect in human intestinal cells stimulated by interleukin-1β. As a result, the inflammatory
mediators (IL-6, IL-8, COX-2, and NO) have been downregulated significantly along with
suppression of NF-κB expression and protecting DNA from damage [118]. Another study
reported that melatonin can modulate ER stress-associated TXNIP/NLRP3 inflammasome
activity in LPS-induced endometritis in mice [119]. The antitumor effect of melatonin was
augmented by inducing Bim expression and reducing COX-2 expression in tunicamycin-
induced apoptosis breast cancer cells [120].

6.7. Role of Melatonin in Tumor Dysregulated Metabolism

Cancer cells tend to convert most glucose to lactate, even in the presence of oxygen.
This is known as (the Warburg effect). This pathway enhanced tumor cells to synthesize
macromolecules required for rapid cellular proliferation, reduced cell apoptosis, and even-
tually provided a suitable environment for tumor to metastasis [121,122]. It was suggested
that melatonin stimulate the synthesis of acetyl-CoA from pyruvate by inhibiting the
mitochondrial enzyme pyruvate dehydrogenase kinase (PDK) [123]. A study has shown
that melatonin has altered Ewing sarcoma metabolic profile by inhibiting the Warburg
effect [124]. In prostate cancer cells, melatonin was able to reduce glucose metabolism
via downregulation of glycolysis, tricarboxylic acid cycle, and pentose phosphate path-
way [125].

6.8. Melatonin Effect on Tissue and Metastasis

Cancer metastasis means that cancer cells spread away from the original tumor to
surrounding tissues and distant organs. Multi-steps are involved in metastasis, including
infiltration of tumor cells into the adjacent tissue, intravasation, traveling in the circulatory
system, extravasation, and overproliferation in the competent organs [126]. Melatonin
exhibited various mechanisms to restrain metastasis, such as modulation of cell–cell and
cell–matrix interaction, extracellular matrix remodeling by matrix metalloproteinases, read-
justment of the cytoskeleton, epithelial-mesenchymal transition, and angiogenesis [127].
A recent study reported that the overexpression of the ADAMTS family in renal cell
carcinoma was suppressed by melatonin via amplifying of miR-let-7f/miR-181d and re-
ducing protein stability. It is of note that ADAMTS, a disintegrin, and metalloprotease
with thrombospondin motifs family, thought to have an impact on cell metastasis and
developing of cancer stages [128]. Based on the Bu et al. results, melatonin inhibits
chronic restraint stress-mediated metastasis of epithelial ovarian cancer by reducing the
NE/AKT/β-catenin/SLUG axis [129]. Another mechanism of melatonin was inhibit-
ing of matrix metallopeptidase 13 (MMP-13) in prostate cancer cells in both in vitro and
in vivo [130]. Moreover, it was found that melatonin can hinder cancer-associated osteo-
clast differentiation via modulation of tumor-secreted RANKL expression in lung and
prostate bone metastasis models [131]. Gu et al. revealed the anti-metastasis effect of
melatonin against esophageal cancer. There was a reduction in MMP-9 expression along
with a high level of E-cadherin and inhibition of the NF-κB signaling pathway [132]. Be-
sides, the migration of human lung adenocarcinoma cell line A549 was suppressed after
using melatonin. This inhibition is mediated by an increase in occludin expression [133].
Additionally, applying melatonin in breast cancer cells caused a decrease in the expression
of vimentin and inhibition of cell migration [66]. It was also reported the inactivation of
MMP-2 and MMP-9 signaling pathway in breast cancer cells treated with melatonin [134].
Figure 3 summarize the role of melatonin in cancer hallmarks.
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7. Melatonin Bioavailability and Use in Cancer Treatment
7.1. The Use of Melatonin in Cancer Treatment

Plethora of clinical research have reported the oncostatic role of melatonin against
various types of cancer such as Gastric cancer [135–137], breast cancer [67,138,139], oral
cancer [140,141], prostate cancer [142–144], and other more types.

7.1.1. Gastric Cancer

Gastric cancer (stomach cancer) is one of the most common cancers worldwide. Ac-
cording to GLOBOCAN 2018 data, gastric cancer is the 3rd most deadly cancer [145].
Melatonin has been reported with distinguished anticancer activity against gastric cancer.
The anti-gastric cancer mechanisms of melatonin are still not fully understood, however,
various studies suggested several mechanisms for anticancer activity of melatonin includ-
ing stimulation of immunity, cell proliferation inhibiting, and apoptosis induction [146,147].
Zhang et al. have investigated the impact of melatonin on the functions of gastric ade-
nocarcinoma cell line, SGC7901, including apoptosis, cell proliferation, cell migration,
and colony formation. They demonstrated that melatonin could inhibit colony forma-
tion, cell proliferation, cell migration, and enhanced apoptosis [135]. In another study on
SCG7901 human gastric cells, Wang et al. have illustrated the association of melatonin with
RZR/RORγ pathway under hypoxia. Their results showed suppression in the activity of
RZR/RORγ, in addition to suppression in SUMO-specific protease 1 (SENP1) signaling
pathway, which is crucial for stabilizing the hypoxia inducible factor-1α (HIF 1α) during
hypoxia in response to melatonin. Moreover, melatonin was able to reduce the vascular
endothelial growth factor (VEGF) expression and suppress metastasis [136]. In agreement
with this, Wang et al. followed up with another study to evaluate the anticancer activity of
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melatonin on the growth and angiogenesis of SGC7901cells, revealing the inhibitory effect
of melatonin on the growth of SGC7901cells. The low concentration of melatonin (0.01, 0.1,
and 1 mM) had no clear impact on VEGF secretions, however, higher concentration (3 mM)
had clearly suppressed VEGF secretions. Besides, the expression of melatonin nuclear
receptor RZR/RORγ, HIF-1α, SUMO-specific protease 1, and VEGF had been reduced
within SGC7901 during tumorigenesis in response to treatment with melatonin [148]. In
addition, Song et al. have investigated the effect of melatonin on SGC7901 cells in term
of protein production using protein chip technology. Melatonin was found to induce cell
cycle arrest. Furthermore, melatonin induced changes in proteins that are related to cell
proliferation and apoptosis represented in downregulation of phospho-CDC25A, CDC25A,
p21, phosphor-p21, and Bcl-xl, upregulation of Bax, an activation of caspase-3 and an
increase in the level of cleaved caspase-9, which ensured the implication of mitochondria
in melatonin-induced [99].

7.1.2. Glioblastoma

Glioblastoma is the most common and aggressive primary brain tumor in adults. The
incidence rate of glioblastoma is 5–8 per 100,000, representing around 54% of diagnosed
gliomas cases. Glioblastoma has short life expectancy, less than one year since diagnosis
in average, which is owed to the tumor recurrences high rate [149,150]. Glioblastoma
was reported with higher frequency and 1.6 higher incidences in males as compared to
females [150,151]. Glioma stem-like cells are subpopulation in glioblastoma, they play
a crucial role in the tumor growth maintenance and recurrence [152–154], and promote
self-renewing capacity and tumor propagation [155–157]. Melatonin showed an anticancer
effect against glioblastoma, and it was also reported to overcome the multi-drug resistance
in glioblastoma treatment [158–160]. Sung et al. recently have investigated the impact
of combination of melatonin with vorinostat on the expression of transcription factor EB
and apoptosis in glioblastoma cells and glioma cancer stem cells. The expression of tran-
scription factor EB, which needs oligomerization to regulate transcription, was reported
to be increased in glioblastoma. The combination of vorinostat and melatonin induce
a downregulation of the transcription factor EB and oligomerization, which increased
apoptosis related gens, hence, cells apoptosis was activated [161]. In another study, Chen
et al. have studied the roles of melatonin and the associated mechanisms against glioblas-
toma stem-like cells. Their results demonstrated that melatonin altered the glioblastoma
stem-like cells biology and inhibited glioblastoma stem-like cells proliferation. Moreover,
melatonin showed to alter the transcription factors profile inhibiting the initiation and
propagation of tumor. In addition to the impairment of EZH2–STAT3 interaction and
EZH2 S21 phosphorylation, melatonin has multiple roles in attenuating several key signals
related to survival and self-renewal in glioblastoma stem-like cells [158]. Lai et al. have
studied the microenvironment of glioma investigating the correlation of melatonin treat-
ment and molecular markers in glioblastoma multiform including SIRT1, CCL2, ICAM-1,
and VCAM-1. Their results showed melatonin administration increased the expression of
SIRT1, which inhibit the growth and proliferation of glioma cells [162]. In another recent
study, Fernandez-Gil et al. have explored whether treatment with melatonin can restore
the oxidative phosphorylation after metabolic switch to glycolysis in glioblastoma cells.
The results showed that melatonin significantly decreased the viability and inhibited the
proliferation of glioblastoma cells. Besides, it modulates a metabolic shift from glycolysis
to oxidative phosphorylation, which lead to a reduction in the malignant properties of
glioblastoma cells [163]. Additionally, it was reported that the melatonin antitumor effect
can be through suppression of the EZH2-NOTCH1 signaling axis in glioblastoma stem-like
cells [164]. Moreover, several studies have shown the melatonin impact on glioblastoma
cells via enhancing apoptosis and inhibiting cell migration and invasion [165–167].
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7.1.3. Prostate Cancer

Prostate cancer (PC) is the most common cancer in males. It is the fifth leading
cause of death in men cancer cases worldwide [168,169]. Prostates represent a target for
melatonin which has been proven with its inhibitory effect on the cell growth of prostate
cancer [170–172]. Wang et al. have investigated the effect of melatonin on prostate can-
cer cells. Their results showed that melatonin downregulated the expression of matrix
metallopeptidase 13 (MMP-13) and inhibited the invasive and migratory capacities in
prostate cancer cells via the phospholipase C, p38, and c-Jun signaling cascades and MT1
receptor. MMP-13 have been reported to be highly expressed in prostate cancer patients
as compared to healthy individuals. Moreover, melatonine suppressed the growth rate
and metastasis in prostate cancer cells in both in vivo and in vitro models [130]. In a ret-
rospective study, Zharinov et al. have evaluated the use of melatonin in prostate cancer
patients with different risk groups showing that there is no significant difference between
the melatonin-treated and not treated in the favorable and intermediate prognoses groups.
However, an increase in the survival rate in poor prognosis group has been demonstrated
in melatonin-treated patients as compared to untreated patients [173]. Liu et al. investi-
gated the melatonin activity in 22Rv1 and LNCaP prostate cancer cells. They showed that
these cells overexpress androgen receptor splice variant-7 (AR-V7) and activate nuclear
factor-kappa B (NF-κB) that results in upregulation of the expression of IL-6. Melatonin
showed inhibitory effect on expression of AR-V7 and its induced activation of NF-κB
and IL-6 gene transcription [174]. Besides, Guilherme et al. have evaluated the activity
of melatonin alone or combined with docosahexaenoic acid on PNT1A prostate cancer
cells in regard to proliferation relevant pathways, ROS production, and mitochondria
bioenergetics. Melatonin upon coincubation with docosahexaenoic acid improved the
oxidative phosphorylation and restored mitochondrial bioenergetic reserve capacity. These
melatonin induced alterations were related to AKT/mTOR dephosphorylation, and mod-
ulation of ERK1/2 expression [175]. An in vivo study has demonstrated the antitumor
effect of melaonin on prostate cancer [144]. Moreover, melatonin inhibited angiogenesis in
prostate cancer cells via amplifying the miRNA3195 and miRNA374b expression [68]. It
also inhibited cell growth in LNCap and PC-3 cell line [142].

7.1.4. Lung Cancer

In cancer related-deaths globally, lung cancer is one of the most common type that is
well known with its strong metastasis [176,177]. It is the second most common cancer in
males and females according to the American Cancer Society (ACS) [178]. Melatonin has
shown its effectiveness against lung cancer [179–181]. Recently, Ma et al. have studied the
effect of melatonin on non-small cell lung cancer. Melatonin administration remarkably
enhanced apoptosis, in addition to inhibition of proliferation, invasion, and metastasis in
NSCLC. In addition, melatonin reduced the level of HDAC9 in NSCLC [179]. In another
study, Yun et al. have investigated the effect of administration of melatonin in combination
with gefitinib in H1975 NSCLC and HCC827 lung tumor cell line. The results showed
that co-administration of melatonin with gefitinib reduced the viability of H1975 cells
with harbored T790M somatic mutation, as compared to HCC827 cells with an active
epidermal growth factor receptor (EGFR) mutation. This decreased viability and cell death
lead to reduced phosphorylation of EGFR and Akt, in turn, decreasing the expression
of several survival proteins; such as Bcl-xL, Bcl-2, and surviving, and activating caspase
3 in H1975 cells. Additionally, it was found that co-administration induced apoptosis
and downregulated EGFR phosphorylation in H1975 as compared to administration of
melatonin or gefitinib alone, suggesting that melatonin acts by increase the sensitivity of
H1975 cells to gefitinib [180]. Furthermore, Plaimee et al. have evaluated the anticancer
effect of melatonin in combination with cisplastin in SK-LU-1, human lung adenocarci-
noma cisplatin-sensitive cell line. The results showed that co-administration of melatonin
decreased the IC50 of cisplatin and enhanced apoptosis of SK-LU-1 cells via increasing
the membrane polarization of mitochondria, activating caspases-3/7, and promoting cell
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cycle arrest, as compared to using cisplatin alone [181]. Besides, Zhou et al. have ex-
plored the anticancer effect of melatonin and its mechanism on A549 cells, human lung
adenocarcinoma cell line. Treatment with melatonin decreased the viability and inhibited
migration of A549 cells. Moreover, downregulation of the expression of MLCK and OPN
have been observed, in addition to a reduction in phosphorylation of MLC of A549 cells.
However, an elevation in the occludin expression involving JNK/MAPK pathway have
been demonstrated suggesting that these effects mediate inhibition of the migration of
A549 [133].

7.1.5. Ovarian Cancer

Ovarian cancer is the main cause of death worldwide among the gynecological ma-
lignancies [182]. Melatonin has been reported with its efficiency against ovarian can-
cer [183,184]. Chuffa et al. have studied the anti-inflammatory activity of melatonin in
modulation of toll-like receptors (TLR) which expressed on the surface of ovarian cancer.
The results showed that there is no decrease in the level of TLR2 in response to melatonin.
However, the ovarian cancer-associated increase in several proteins was suppressed by
melatonin. Moreover, melatonin decrease the expression of IRF-3, IkBα, TRIF, p65, and
NF-kB, which are involved in TLR4 mediated signaling pathway, suggesting the role of
melatonin in attenuating the TLR4-mediated TRIF- and MyD88-dependent signaling path-
ways in ovarian cancer in ethanol-consuming rats [183]. Akbarzadeh et al. also explored
the cytotoxic activity of melatonin alone or in combination with photodynamic irradiation
on HUVEC umbilical cells and SKOV3 ovarian cancer cell line. A remarkable increase in
the levels of reactive oxygen species generation, apoptosis–necrosis rate, and heat shock
protein 70 expression was reported in both cell lines in response to the combination of
melatonin and photodynamic therapy. This can highlight the melatonin as an enhancing
agent for the apoptosis and efficacy of laser therapy in ovarian cancer cells [185]. In another
recent study, ZemŁA et al. have explored the effectiveness of using melatonin with the
anticancer drug, cisplatin on SK-OV-3, IOSE 364, and OVCAR-3 ovarian cancer cell lines.
This study demonstrated that melatonin at certain concentration showed synergistic effect
with cisplatin. Moreover, this synergism found to be independent of membrane melatonin
receptor MTI [186]. Ataei et al. have explored the activity of melatonin as inhibitor for
the Cadmium-induced proliferation in SK-OV-3 and OVCAR-3 cell lines. While cadmium
showed proliferation enhancement, melatonin showed inhibition of this cadmium-induced
proliferation. Furthermore, melatonin inhibited the cadmium-induced effect on estrogen
receptor α expression in SK-OV-3 and OVCAR-3 cells [184]. A study has demonstrated
the effect of melatonin in ovarian cancer cells (OVCAR-429 and PA-1). It repressed cell
growth and downregulated CDK2 and 4 [187]. Interestingly, using long-term treatment
of melatonin in an in vivo model of ovarian carcinoma (OC), exhibited high potency of
melatonin in regulating different signaling pathways associated with OC [188].

7.1.6. Colorectal Cancer

Colorectal cancer is a challenging cancer, with a high expected incidence in elderly
people. Its signs and symptoms depend on the anatomical location, tumor progression,
and cancer stage [189–191] However, 60% of cases can be monitored with therapies [192].
Melatonin has been used as an anticancer therapy in colorectal cancer [193,194]. Wang et al.
have investigated the effect of combining melatonin with ionizing radiation on HCT 116
human colorectal cancer cell line in vitro and in vivo Melatonin inhibited proliferation, cell
migration, and colony formation in HCT 116 following ionizing radiation. This increase
in radiosensitivity of the cells was in association with cell cycle arrest in the phase G2/M,
activation of caspas-related apoptosis, and decrease in the expression of proteins involved
in break repair. In vivo, cell growth of the xenografted tumor was significantly inhibited
after treatment with melatonin and ionizing radiation as compared to each agent alone,
hence, higher tumor suppression rate suggesting melatonin sensitizing the colorectal cancer
cells in cancer radiotherapy [194]. In an attempt to explore apoptosis activity of melatonin,
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Wei et al. have investigated the mechanism of melatonin-induced apoptosis in LoVo
colorectal cancer cell line. It was found that melatonin inhibited proliferation and promoted
apoptosis in LoVo cells. It was observed that the melatonin induced apoptosis via nuclear
import and dephosphorylation of histone deacetylase 4 (HDAC4), as well as reduced the
expression of Bcl-2 [193]. In another study, Yun et al. have explored the apoptic and the pro-
oxidant effect of melatonin in wild type human colorectal cancer cell line (SNU-C5/WT).
It was found that melatonin increased the production of superoxide via decreasing the
levels of PTEN-induced kinase 1 (PINK1) and cellular prion protein (PrPC). This induces
endoplasmic reticulum stress and apoptosis. The results of this study have shed the light
on a promising targeting strategy in colorectal cancer [98]. In the same line, Lee et al.
have investigated the PrPC level in oxaliplatin-resistant colorectal cancer (SNU-C5/Oxal-
R). Significantly increased levels of PrPC was found in SNU-C5/Oxal-R as compared
with SNU-C5/WT colorectal cancer. Interestingly, co-administration of melatonin with
oxaliplatin downregulated the PrPC expression and increased the superoxide production.
Moreover, apoptosis and endoplasmic reticulum stress were remarkably increased in SNU-
C5/Oxal-R following co-administration of melatonin with oxaliplatin suggesting the role
of as a key protein in resistance to oxaliplatin in SNU-C5/Oxal-R [195]. Antitumor activity
of melatonin was also reported in human colorectal cancer cells (HCT116). Melatonin
amplified apoptosis action, autophagy, and senescence in cancer cells [196]. Besides, it
was able to prevent cell migration in RKO colon cancer cells via suppression of ROCK
expression [197].

7.1.7. Oral Cancer

Oral cancer is a highly aggressive cancer with a high mortality rate worldwide [198].
Chemotherapy showed beneficial activity for survival in local oral cancer [199]. Liu et al.
have investigated the effect of melatonin on SCC9, SCC25, Cal27, Tca8113, FaDu, and
hNOKs oral cancer cells. It was found that the apoptosis resistance and proliferation
were impaired upon treatment with melatonin. This effect was due to inactivation of
ROS-dependent Akt signaling, downregulation of Bcl-2, PCNA, and cyclin D1. Melatonin
also decreased invasion and migration of oral cancer cells [200]. Yeh et al. have explored
the antimetastatic activity of melatonin in OECM-1 and HSC-3 oral cancer cell lines. Their
results demonstrated that melatonin hampered the migration of OECM-1 and HSC-3 cells;
in addition, it decreased the activity of MMP-9 enzyme, as well as its expression of mRNA
and protein. Moreover melatonin showed a suppression effect on the phosphorylation
of the ERK1/2 signaling pathway that decreased the gene transcription of MMP-9 [201].
Additionally, Yang et al. have evaluated the action of melatonin on oral cancer patient-
derived tumor xenograft as a model and in oral squamous cell carcinoma. They examined
the effect of overexpressing of histone lysine-specific demethylase (LSD1). Melatonin
significantly suppressed the cell proliferation of oral squamous cell carcinoma in a time-
and dose-dependent manner. The results suggested that proliferation suppression was
associated with melatonin-induced inhibition of histone lysine-specific demethylase in
oral cancer in vitro and in vivo [202]. In a recent study, Hunsaker et al. have evaluated
the effect of melatonin on the microRNA content in the extracellular vesicles in different
oral cancer cell lines including CAL27, SCC25, and SCC9. The results showed differential
effect of melatonin on specific microRNAs in the three oral cancer cell lines highlighting
the importance of evaluation of microRNA when studying the anti-oral cancer activity of
melatonin [203]. Another study has shown the effect of melatonin on suppressing molecular
proteins associated with angiogenesis and metastasis in oral carcinoma cells [141]. Besides,
antiapoptotic activity of melatonin was reported in VCR-resistant oral cancer cells [204].

7.1.8. Liver Cancer

Liver cancer is the fourth leading cause of cancer death globally in 2018 [169]. Several
studies have reported the efficiency of melatonin against hepatocarcinoma cells [63,146].
Ordoñez et al. have evaluated the role of melatonin in ceramides metabolism and au-
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tophagy in HepG2 cells, human liver cancer cell line. Melatonin promoted autophagy
in HepG2 cells via JNK phosphorylation which is characterized by an increase in p62
degradation, Beclin-1 expression, and colocalization of LAMP-2 and LC3II that lead to
decreased cell viability. Furthermore, melatonin increased the ceramides levels through
acid sphingomyelinase (ASMase) stimulation and de novo synthesis indicating. Given the
crucial role of ceramides in regulating the autophagy, it is indicated the effect of melatonin
on autophagy and apoptosis through affecting the ceramides metabolism [205]. Carbajo-
Pescador et al. have investigated the anti-angiogenic activity of melatonin in HepG2. It
was found that melatonin decreased the levels of VEGF, the expression of HIF-1α pro-
tein under hypoxic conditions. Furthermore, melatonin inhibited the hypoxia-induced
increase in phospho-STAT3, CBP/p300, and HIF-1α and inhibited their physical interaction,
suggesting that melatonin exhibited its anti-angiogenic effect by interfering with VEGF
transcriptional activation through HIF-1α and STAT3 [63]. Cheng et al. have evaluated the
effect of melatonin on the exosome derived from hepatocarcinoma cells and the expression
of inflammatory factors. Melatonin reduced the expression of programmed death ligand 1
on macrophages. Furthermore, melatonin inhibited the high expression of the inflamma-
tory cytokines; TNFα, IL-10, IL-6, and IL-1β in macrophages. It was found that exosomes
derived from melatonin treated hepatocarcinoma cells can change the immunosuppression
state via STAT3 axis in macrophages, suggesting the role of melatonin in manipulating the
immunosuppressive state in hepatocarcinoma cells [206]. Besides, melatonin has reduced
the expression of HIF-1α, VEGF, and suppressed cell proliferation in hepatocarcinoma
cells [207]. In addition, Human hepatoma cell apoptosis has been induced by melatonin
via downregulation of COX-2 [208].

7.1.9. Renal Cancer

Several studies have focused on the role of melatonin as an anticancer in renal can-
cer [209,210]. Abraham et al. have explored whether melatonin can prevent Methotrexate-
induced renal damage in rats. The results revealed that the rats which were treated with
melatonin prior to methotrexate treatment showed a reduction in methotrexate-induced re-
nal damage biochemically and histologically. Moreover, pretreatment of melatonin showed
a reduction in Methotrexte-induced oxidative stress and perturbation in the antioxidant en-
zymes, indicating the beneficial role of melatonin in decreasing the Methotrexate-induced
side effects in renal cancer cells and tissues [211]. Park et al. have investigated the mecha-
nism underpinning melatonin effect on renal cancer Caki cells. It was shown that melatonin
promoted apoptosis; it elevated the proapoptic protein Bcl-2-interacting mediator of cell
death (Bim). Melatonin increased the mRNA expression of Bim through increasing the
expression and transcriptional activity of E2F1 and Sp1, suggesting that melatonin pro-
motes apoptosis in renal cancer Caki cells via increasing Bim expression [212]. Recently,
Lin et al. have studied the impact of melatonin on the migration and invasion of Caki-1
and Achn renal cancer cell lines. Melatonin inhibited migration and invasion of these
cells. Furthermore, melatonin decreased MMP-9 by decreasing p52- and p65-DNA-binding
activities. In addition, ERK1/2 and JNK1/2 signaling pathways were implicated in the
melatonin regulatory effect on cell motility and MMP-9 transactivation, indicating the im-
pact of melatonin on motility and metastasis of renal cancer cells [213]. Table 2 summarizes
the anticancer effect of melatonin on different cancer types with the mechanisms of action.
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Table 2. Anticancer activities of melatonin against different cancer types.

Cancer Type Study Model Dose of Melatonin Main Effects of Melatonin and
Outcomes Reference

Gastric cancer

AGS and SGC-7901 cell
lines
mice

1 mM, 2 mM, 3 mM
melatonin

50 mg/kg melatonin

inhibited cell proliferation via the
activation of the IRE/JNK/Beclin1

signaling
induced the expression of apoptotic

and autophagy-related proteins

[214]

SGC7901 cell line 10−4 M melatonin

affected the expression of
differentiation relevant factors; the

gene expression of endocan was
significantly increased and the activity

of lactate dehydrogenase and
phosphatase was downregulated

[215]

SGC7901 and BGC823
cell lines 10−4 M melatonin

decreased the motility and migration
distance, remodeled cells tight

junctions, and increased cells adhesion
[216]

AGS and MGC803
human gastric cell lines 3 mM melatonin

induced apoptosis by upregulating the
apoptosis related proteins; Caspase 3,
Caspase 9, and downregulating the
phosphorylation and expression of

upstream regulators MDM2 and AKT

[217]

SGC7901 gastric
cancer cells 2 mM melatonin

inhibited migration, reduced viability,
and induced apoptosis

upregulated the expression of
phosphorylated (p) p38 and c Jun N
terminal kinase (p JNK) protein, and

downregulated the expression of
nucleic p65

[95]

Mice
Murine foregastric

carcinoma (MFC) cells

0, 25, 50 and 100
mg/kg melatonin

0, 2, 4, 6, 8 and 10 mM
melatonin

inhibited cells proliferation and
decreased the tumor volume increased

IL-2, IL-10, and IFN-γ expression
decreased IL-6 level

[218]

Glioblastoma

Glioblastoma cell lines
(U251 and T98G) 0.1–1000 µM melatonin

Reduced cell viability and self-renewal
of glioblastoma cells through blocking

EZH2-NOTCH1 signaling axis.
[164]

U87 MG and A172
cell lines 1 mM melatonin

induced autophagy
increased the levels of LC3 II, and

Beclin 1
upregulation of Bcl-2, the key initiator

of autophagy
enhanced the apoptosis in

glioblastoma cells

[165]

U251 and U87
glioblastoma cells 1 nM, 1 mM melatonin

blocked the expression of HIF-1α
protein and inhibited the expression of

vascular endothelial growth factor
and matrix metalloproteinase 2

(MMP-2) under hypoxia

[166]

Human normal neural
stem cells hNSC.100

1 µM, 100 µM, 1 mM
melatonin

inhibited the proliferation of
glioblastoma initiating cells, decreased
the clonogenic and self-renewal ability,
and downregulated stem cell markers

including the transcription factors
sox2 oct3/4, nanog, and the

transmembrane glycoprotein CD133
decreases the expression levels of de

mRNA of these markers

[167]
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Table 2. Cont.

Cancer Type Study Model Dose of Melatonin Main Effects of Melatonin and
Outcomes Reference

Prostate cancer

Xenografted LNCaP
in mice 1 mg/Kg melatonin

density reduction in the xenograft
micro-vessels (lower angiogenesis),

and decreased the growth rate
downregulated the Ki67 expression,

increased the HIF-1α expression, and
enhanced phosphorylation of Akt

[144]

Prostate cancer cell line
PC-3 cells 1 mM melatonin

upregulated miRNA3195 and miRNA
374b under hypoxia decreased the
mRNA expression of angiogenesis

related genes including HIF-1α,
HIF-2α and VEGF at mRNA level

under hypoxia

[68]

LNCaP and PC-3
prostate cancer cell lines 1 mM melatonin

increased cell toxicity caused by
hrTNF-alpha and NF-related

apoptosis-inducing ligand (TRAIL)
without affecting the action of

docetaxel, doxorubicin, or etoposide
induced phenotypic changes, and

neuroendocrine differentiation

[142]

Lung cancer

CL1-5 and A549cell lines 0.1, 0.3, and 1 mM
melatonin

reduced the expression of CD133 in
lung cancer cells

inhibited PLC, β-catenin, ERK/p38,
and Twist signaling pathways to
suppress lung cancer stemness

[177]

CL1-0, CL1-5 and A549
cell lines

male SCID mice

0.1, 0.3, or 1 mM
melatonin

reduced the lung cancer metastasis
reversed the phenotype of

epithelial–mesenchymal through twist
inhibited Twist/Twist1 expression via

MT1 receptor, p38/ERK PLC, and
β-catenin signaling cascades

[219]

SK-LU-1 cell line
with PBMC

1 nm, 1 µm and 1 mM
melatonin

increased apoptosis and oxidative
stress via reduction in GSH, and

increased cell cycle arrest
[220]

Ovarian cancer

SKOV3 ovarian cancer
cells 3.4 mM melatonin

inhibited proliferation
decreased the expression of the

proliferation marker Ki67
reduced the ZEB1, ZEB2, vimentin,

and snail expression
increased E-cadherin

decreased the expression of matrix
metalloproteinase 9 (MMP9)

[83]

OVCAR-429 and PA-1
cell lines

0.4, 0.6, and 0.8 mM
melatonin

downregulated CDK 2 and 4 which
lead to accumulation of OVCAR-429

and PA-1 cells the G1 phase
[187]

Rats 200 µg/100 g bw/day

decreased the expression levels of
proteins involved in important
metabolic processes which are

associated with energy generation,
mitochondrial processes, antigen

presenting and processing, hypoxia,
endoplasmic reticulum stress, and
cancer-associated proteoglycans

overexpression of fatty acids binding
proteins, ATP synthase subunit β, and

heat shock protein

[188]
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Table 2. Cont.

Cancer Type Study Model Dose of Melatonin Main Effects of Melatonin and
Outcomes Reference

Colorectal cancer

HCT116 cell line (p53
wild type) 1, 10, 100 µM melatonin

decreased plasma MT1, and increased
the nuclear receptor, RORα

induced apoptosis and autophagic
process

decreased cells population in S-phase
decreased Trichostatin A-associated

cardiotoxicity via inhibition of A- and
E-type cyclins, and upregulation of

p16 and p-p21 expression
promoted G1 phase arrest

[196]

RKO cell line 1, 2, and 3 mM
melatonin

downregulated the levels of
Rho-associated protein kinase 2
(ROCK2), p-myosin light chains

(p-MLC), and phospho (p)-myosin
phosphatase targeting subunit 1

(p-MYPT1) expression
increased occluding and ZO-1

expression
decreased the levels of p38

phosphorylation
supp-ressed the migration of RKO

cells

[197]

Oral cancer

SCC9 and SCC25 cells 1 mM melatonin

decreased cell viability in both cell
lines

inhibited the expression of the genes
VEGF and HIF-1α under hypoxia and
the expression of the gene ROCK-1 in

SCC9 cells

[141]

SAS and SCC9 oral
cancer cell lines

Vincristine
(VCR)-resistant oral
cancer cells; SASV32,

SASV16, SCC9V16, and
SCC9V32.

0.5–2 mM melatonin.

promoted the autophagy and the
apoptosis of VCR-resistant oral cancer

cells via p38, AKT, and c-Jun
N-terminal kinase (JNK)

inhibited ATP-binding cassette B1 and
4

induced apoptosis and decreased the
drug resistance in VCR-resistant oral

cancer cells via increasing the
expression of microRNAs

[204]

Liver cancer

HepG2 hepatocarcinoma
cell line 1 mM melatonin

decreased the cell viability and
downregulated the expression of

proangiogenic proteins VEGF and
HIF-1α under hypoxia and in normal

state
reduced the cell migration and

invasion

[207]

HepG2 hepatocarcinoma
cell line

10−9, 10−7, 10−5 and
10−3 mol/L melatonin

enhanced apoptosis in HepG2 under
ER stress via selective blocking of
activating transcription factor 6

(ATF-6)
inhibition of cyclooxygenase-2

(COX-2) expression, and decreasing
Bcl-2/Bax ratio

[208]
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Table 2. Cont.

Cancer Type Study Model Dose of Melatonin Main Effects of Melatonin and
Outcomes Reference

Renal cancer
A498, 786-O, Achn,

Caki-1, and Caki-2 cells.
Mice

0.5, 1, and 2 mM
melatonin

200 mg/kg melatonin

modulated ADAMTS1 independently
of the MT1 receptor, affecting invasion

and growth ability
induced microRNA -181d and
microRNA -let-7f targeting the

non-3′-UTR and 3’-UTR of ADAMTS1
to inhibit its expression and reduce the

invasive in renal cancer cells

[128]

7.2. Bioavailability of Melatonin

Exogenous melatonin is being exceedingly used for treatment of various patholog-
ical conditions and diseases [221,222]. However, its pharmacokinetic properties are still
not fully understood [223], so neither the optimal dose to elicit a therapeutic effect [224].
Few experimental studies have been applied to compare the bioavailability of oral and
intravenous melatonin in humans, also these studies are different in the number of the
subjects, dose regimen, and pharmacokinetic analytical methods, in addition to the scarcity
of studies that include intravenous formulations of melatonin [224,225]. The limited data
on humans implied a high variability in the bioavailability of exogenous melatonin ranging
from 1% [226] to 100% [227]. Fourtillan et al. have reported an absolute bioavailability
with values of 1 and 37% for male and female, respectively. Lane et al. have calculated
oral bioavailability from previous data and found it was 0.03–0.06% [228], 0.03–0.76% [229],
and 0.09% [230]. Additionally, DeMuro have reported 15% as absolute oral bioavailability
of melatonin [225]. This variability is related to remarkable inter-individual variations in
all pharmacokinetic aspects including absorption, metabolism, and elimination. These
variations highlight the need for further studies on the bioavailability of exogenous mela-
tonin are still needed [231]. In human, exogenous melatonin is well absorbed orally, well
distributed, and completely metabolized [232]. It is metabolized extensively by hepatic first
pass metabolism with high volume of distribution and cleared by liver [233]. Yeleswaram
et al. have investigated the oral bioavailability of synthetic melatonin in animal models
showing clear variation in the bioavailability of melatonin. The bioavailability was 53.5%
orally and 74% intraperitoneally in rats, and 100% orally in monkeys and dogs [227]. In
the same study investigating the in vitro permeability on CACO-2 human cells, melatonin
showed good absorption [227]. Aguilera et al. investigated the impact of the aqueous
extract intake of bean (Phaseolus vulgaris L.) sprouts, a source of phytomelatonin (melatonin
of plant origin), in rats. In addition to a comparison between the bioavailability of bean
sprouts-derived phytomelatonin and synthetic melatonin, the results showed increased
plasma level of melatonin after administration of phyto- and synthetic melatonin with
higher bioavailability (17%) of melatonin for synthetic melatonin treated rats [37]. In
another study, Andersen et al. have performed a crossover study in healthy volunteers to
explore the pharmacokinetics of oral and iv melatonin. Following administration of 10 mg
melatonin, orally or intravenously, low absolute bioavailability (3%) was demonstrated
with inter-individual variations for oral melatonin, and lower values of Cmax for oral
melatonin as compared to iv melatonin [231].

8. Melatonin in Clinical Trials

Experimental and clinical studies have determined that melatonin exhibits significant
prophylactic properties against the toxic adverse event profiles of chemotherapy and radio-
therapy [234–236]. It has also been investigated as a complementary modality alongside
chemotherapy owing to its antioxidant and immunoregulatory influences. However, in
this capacity, melatonin is still the subject of research and not in use in routine clinical
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practice [237,238]. Several studies have documented that melatonin demonstrates a va-
riety of anti-tumor actions. These encompass antioxidant, cytostatic, anti-proliferative,
and pro-apoptotic effects, together with various activities pertaining to its ability to reg-
ulate epigenetic responses [236,239,240]. There are increasing data to show that these
anti-malignancy traits are evident during several phases of tumor advancement and dis-
semination [241], although recent reports have indicated that these influences are poor or
non-existent [242,243].

The potentiating influence of melatonin on additional anti-tumor agents requires
further elucidation in clinical studies. Moreover, its direct impact, utilizing exogenous
administration, on individuals with definitive neoplasia requires further study in order to
delineate melatonin’s effect on tumor progression and to generate its data profile relating to
dosage and adverse events. The compound’s modes of action also require clarification [2].

Several clinical studies have suggested that the efficiency of chemotherapy can be en-
hanced by the concomitant prescription of melatonin; side effects of the former are also ame-
liorated. Data also indicate that survival is increased and life quality improved [244–246]. It
is thought that the capacity of melatonin to scavenge free radicals together with its antioxi-
dant characteristics, are responsible for the improved outcomes [247]. Further investigation
into the properties and clinical use of melatonin using in vivo animal experiments and
clinical trials are necessary in order to further delineate the prophylactic and clinically
relevant actions of the compound when utilized as an adjunct to chemotherapy.

It has been proposed that melatonin’s benefit in mitigating the toxic effects of chemother-
apy and its association with aberrant mitochondrial function should be explored using double-
blind placebo-controlled trials. It can be expected that a plethora of information will emerge
over the next 10 years relating to the way in which melatonin exerts a positive effect in
conjunction with anticancer drugs [248]. The development of resistance to therapy, together
with the occurrence of tumor spread, means that the investigation of de novo modes of
treatment for malignancies is essential.

In one study, researchers reached the conclusion that one-year survival may be en-
hanced without adverse effects with the use of melatonin; response rates are acceler-
ated when melatonin is used as an adjunct to several routinely employed anti-tumor
treatments. Furthermore, it mitigates the toxic effects of chemotherapy and can lessen
symptomatology associated with malignancy [249]. A meta-analysis encompassing 21
clinical studies relating to patients with disseminated solid malignancies concluded that
the pooled relative risk (RR) for one-year mortality was 0.63 (95% CI = 0.53–0.74; p < 0.001).
An improved effect was found for stable disease, partial response, and complete response
with statistically significant RRs of 1.51, 1.90, and 2.33, respectively. In studies com-
bining melatonin with chemotherapy, adjuvant melatonin decreased one-year mortality
(RR = 0.60; 95% CI = 0.54–0.67) and improved outcomes of stable disease, partial response,
and complete response; statistically significant pooled RRs were 1.15, 1.70, and 2.53, re-
spectively. In these studies. melatonin also significantly reduced thrombocytopenia,
leucopenia, asthenia, nausea, vomiting, and hypotension [249]. Independently conducted
well-designed trials are needed to confirm these findings. Table 1 shows the published
clinical human studies evaluating the effects of melatonin on cancer patients.

Such research implies that melatonin is not a suitable compound for the initial phase
of malignancy treatment; recommendations for use are restricted to combination treatment
with mainstay therapeutic drugs and other modalities. Table 3 summarizes latest clinical
studies of using melatonin to treat different cancers.
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Table 3. Published clinical human studies evaluating the effects of melatonin on cancer patients as reported in the last 10 years.

Cancer Type and
Staging Participants Sample Size Study Type Daily Dose Treatment

Intervention Group Control Group Duration and
Follow-up Outcome of the Study Ref.

Breast cancer
survivors with a
prior history of

stage 0-III

Postmenopausal
females who had

finished active
cancer therapy

95

A randomized
double-blind

placebo-
controlled

trial

3 mg Oral melatonin
(n = 48) Placebo (n = 47)

Sleep, mood, and
hot flashes were

assessed at
baseline and after

4 months

Compared to subjects on
placebo, Participants of

melatonin group
experienced significantly
larger improvements in

subjective sleep quality with
no substantial adverse effects

[250]

Breast cancer
survivors with a
prior history of

stage 0-III

Postmenopausal
females who had

finished active
cancer therapy

95

A randomized
double-blind

placebo-
controlled

trial

3 mg Oral melatonin
(n = 48) Placebo (n = 47) 4 months

The safety profile of
melatonin was perfect
without any grade 3/4

toxicity and adherence was
high (89.5%). Melatonin did

not affect circulating
estradiol, IGFBP-3, or IGF-1

levels. The low baseline
estradiol levels may have
prevented the detection of

any additional estradiol
lowering effects of melatonin

[251]

Breast cancer

30–75 years females,
undergoing surgery
and without signs of
depression on major

depression
inventory (mdi)

54

A randomized
double-blind

placebo-
controlled

trial

6 mg oral melatonin (n = 28) Placebo (n = 26) 3 months

Melatonin significantly
decreases the risk of

developing depressive
symptoms

[252]

Breast cancer
[early stage (60%)
and a locally ad-

vanced/metastatic
stage (40%)]

30–73 years (mean:
51) 20

Retrospective
analysis 70 mg

A biological
multimodal treatment

(melatonin,
somatostatin, retinoid,

vitamin D3 and
prolactin inhibitors)

10 mg in the morning,
at midday, in the

evening with meals,
and 40 mg at bedtime

- -

An overall clinical benefit
was attained in 75% of cases
(complete response, 55% and
partial response, 20%). The

overall survival rate was 71%
for metastatic cases.

[253]
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Table 3. Cont.

Cancer Type and
Staging Participants Sample Size Study Type Daily Dose Treatment

Intervention Group Control Group Duration and
Follow-up Outcome of the Study Ref.

Advanced
Non-small cell lung

cancer (NSCLC)
Average age = 56

years 151

A randomized,
double-blind,

placebo-
controlled trial

10 mg (n = 51),
20 mg (n = 53) Oral melatonin Placebo (n = 47)

Assessment of
health-related

quality of life was
completed at

baseline, and at 2, 3
and 7 months.

Melatonin in combination with
chemotherapy enhances the

adjusted health-related quality
of life and a slightly

significantly improve the score
in social well-being. However,
it did not affect survival and

adverse events of the
participants with NSCLC

[238]

Advanced cancer
receiving

palliative care

Patients aged ≥18
years from the

palliative care, had a
histologically

confirmed stage IV
cancer, and who
reported feeling

significantly
tired

72

A randomized
double-blind

placebo-
controlled

trial

20 mg

Melatonin for 1 week
orally each night, a
washout period of 2

days, then
crossing over and

receiving the opposite
treatment for 1 week

placebo

Outcomes were
measured using the
Multidimensional
Fatigue Inventory
(MFI-20) and The

European
Organization for

Research and
Treatment of Cancer

Quality of Life
Questionnaire.

Physical fatigue
from the MFI-20 was

the primary
outcome.

No significant differences
between the melatonin and

placebo periods were
Observed for physical fatigue,

secondary outcomes, or
explorative outcomes.

[254]
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8.1. Melatonin as an Adjuvant to Radiotherapy

Emerging literature in the last few years has demonstrated that melatonin used
alongside radiotherapy is able to augment the impact of ionizing radiation on tumors
and can also prevent the latter’s toxic effects on non-cancerous cells. In vivo and in vitro
scenarios have been deployed to examine melatonin’s radio-sensitizing properties; a range
of modes of action have been postulated for its activity in this regard [94,194,255,256].

Although multiple in vivo and in vitro studies have been performed in order to
evaluate this phenomenon, the use of melatonin to enhance the effect of radiotherapy
in human subjects has been poorly studied. Lissoni et al. were one of the first institutions
to try to study melatonin’s influence on ionizing radiation; they looked at this combination
of treatment, using 60 Gy of radiation, in 30 patients presenting with glioblastomas. Their
initial publication indicated that radiotherapy in combination with melatonin in this clinical
cohort may improve life quality and increase the one-year survival statistics [257].

This positive outcome was not experienced in a randomized phase II clinical trial
evaluating patients with cerebral metastases who were administered 30 Gy radiotherapy
in 10 fractions in the afternoon, and were randomized to 20 mg melatonin which was
prescribed for morning or evening administration. No clinical value with respect to either
survival or neurological tumor progression was discerned [258].

One study reported that an emulsion therapy with melatonin as a constituent notably
diminished manifestations of radiation-induced dermatitis in patients in stages I, II, or 0 of
breast neoplasia that received 50 Gy radiotherapy to the entire breast [259]. A cohort of
individuals, comprising low numbers, who received pelvic radiotherapy for malignancy in
the presence or absence of exogenous melatonin, were examined with respect to radiation-
induced lymphopenia. Melatonin was found to have no impact on the development of the
hematological disorder [260].

A meta-analysis encompassing 21 clinical studies relating to patients with dissemi-
nated solid malignancies concluded that melatonin appeared to be helpful in those indi-
viduals who were also being treated with chemicals, ionizing radiation, and undergoing
supportive or terminal care. Enhanced survival was reported together with mitigation of
the toxic consequences of chemotherapy. The review only included one paper relating to
the combination of melatonin and ionizing radiation [249].

The ability to potentiate the efficacy of radiotherapy in patients with malignancy could
have multiple advantages. The oncostatic actions of melatonin mean that this compound is
of great interest in tumor therapy. In particular, the in vitro and in vivo data obtained for
melatonin, used as a co-treatment with ionizing radiation, are striking.

8.2. Lung Cancer

Lung tumors are a major contributor to malignancy-related deaths in both males and
females [198]. Responsible for approximately 13% of all malignancy presentations, lung
cancer is the most commonly diagnosed form of neoplasia [198]; it is also the second most
often detected in men [261].

One of the most frequently arising respiratory tract tumors, comprising 85% of lung
malignancies [262], is non-small-cell lung cancer (NSCLC) [87]. This is aggressive, with an
anticipated 5-year survival rate of just under 16% [263]. Modest improvements in survival
can be achieved with surgery and combination chemotherapy and radiotherapy [264],
although these treatment forms have a significant toxic event profile in relation to non-
cancerous tissues, thus restricting their therapeutic potential [181].

Several studies have investigated ways of diminishing the side effects of therapy and
augmenting the effectiveness of chemotherapy and radiotherapy by using complementary
agents including melatonin, which are well tolerated [181,265]. Changing melatonin’s
circadian rhythm has been postulated as causing a rise in the incidence of NSCLC [239]. A
few research groups have suggested that melatonin may be a possible treatment option
in patients with lung tumors, predominantly owing to melatonin’s ability to potentiate
radiotherapy and other anti-tumor agents.
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It is possible that melatonin could act as an anticancer agent in the therapy of NSCLC,
together with additional forms of neoplasia. Given melatonin’s ability to potentiate ra-
diotherapy and chemotherapy and to minimize their adverse event profiles, its use as
an adjunct may facilitate higher doses of the former and thus augment their efficacy to
treat malignancy. In addition, since melatonin has anti-proliferative, pro-apoptotic, anti-
metastatic, and immunostimulatory properties, it merits more attention as a potential
compound that can decelerate tumor progression. Since melatonin per se is well toler-
ated and combines well with other forms of therapy, more clinical studies which evaluate
melatonin, together with elucidating its mechanism at the molecular level in relation to its
beneficial effects on tumors, will assist in optimizing the use of this compound in relation
to the therapy of patients with NSCLC [239].

One study, comprising 70 patients with late-stage NSCLC, compared combination
cisplatin and etoposide with or without the addition of melatonin. When either total or
partial tumor response rates were appraised, patients additionally receiving melatonin
demonstrated an augmented response to the chemotherapy; additionally one-year survival
was similarly prolonged. Moreover, the frequency of myelosuppression, neuropathy and
cachexia were notably decreased, suggesting that melatonin improved patient’s abilities to
withstand the chemotherapy [266].

Another study appraised the addition of 20 mg daily melatonin in patients with
disseminated NSCLC, who were also being treated with cisplatin and etoposide. In those
individuals taking melatonin, the overall tumor regression rate and the 5-year survival were
elevated, together with an improved clinical tolerance to the pharmaceutical agents [267].

8.3. Breast Cancer

Malignancy of the breast is one of the most frequently presenting tumors in females,
and one of the main causes of death in this gender in the age-group 40–55 years [268,269].

The majority of breast tumors are generally detected in an early phase of the disease;
however, metastases will arise in almost a third of patients even though they receive
therapy [270]. Tumor dissemination is pathognomonic of neoplasia and is the main cause
of death in breast disease [271]. Pathogenetic mechanisms that explain the incidence of
metastatic breast cancer have yet to be fully elucidated at molecular levels; their delineation,
however, is essential to future treatments.

There are multiple studies pertaining to the impact that melatonin has on breast ma-
lignancy; melatonin has been demonstrated to influence numerous facets of the hormonal
system. A spectrum of oncostatic functions related to melatonin has been determined in
in vitro studies in breast cancer cell lines, including inhibition of cellular division, invasive-
ness and stimulation of cellular necrosis [272].

Melatonin has been ascribed with anti-estrogenic activity, and it is, therefore, thought
to exert a prophylactic action in relation to breast tumorigenesis. Furthermore, a distur-
bance in circadian rhythms, e.g., though working nights, might disturb environmental
effects on melatonin synthesis. This is a potential risk factor for the development of breast
neoplasia [273].

Data from a meta-analysis have implied that melatonin may influence the prevalence
of breast tumors in females. Further work is necessary to understand methodological
discrepancies [273].

Several researchers have described enhancement of sleep and life quality in individuals
with breast neoplasia who were prescribed melatonin. Melatonin, given at night, was
reported to give rise to notable benefits in objective and subjective sleep qualities, sleep
fragmentation and amount, the degree of tiredness experienced, overall life quality, and
increased scores on scales relating to social and mental function [274].

In a double-blind placebo-controlled randomized study, a reduced likelihood of pre-
senting with symptoms suggestive of an affective disorder was reported in individuals
administered 6 mg oral melatonin compared with those given a placebo [252]. Reported
secondary endpoints in this study included the fact that an evening prescription of mela-
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tonin 1 h before sleep enhanced sleep efficacy and diminished wake after sleep onset for
the fortnight following surgery [252].

A further study, also randomizing melatonin versus a placebo, noted that participants
receiving the former reported benefits in subjective quality of sleep when assessed using
the Pittsburgh Sleep Quality Index [250]. The administration of melatonin admixed with so-
matostatin, retinoids, vitamin D3, and low-dose cyclophosphamide proved to be beneficial
with respect to effectiveness and survival statistics in humans with breast malignancy [253]
although in a study that, again, had a double-blind placebo-controlled design, melatonin
failed to impact estradiol and IGF-1/IGBBP-3 titers in females with a previous history of
breast malignancy of stage III or less [251]. Yet another double-blind placebo-controlled
crossover study, comprising 72 subjects, obtained results that indicated that 20 mg oral
melatonin failed to ameliorate tiredness or related symptomatology in individuals with
late-stage carcinoma [254].

8.4. Colorectal Cancer

Another global leading cause of death from malignancy is colorectal cancer (CRC)
[169,275–277]. Melatonin has been demonstrated to have anti-tumor effects for CRC in
a number of studies. If detected early within its disease course, CRC has an excellent
prognosis with a 5-year survival rate of 90% following definitive surgery; however, this
figure drops to 14% once remote metastasis occurs [278].

In CRC, therapeutic strategies include surgery, together with neo-adjuvant and ad-
juvant chemotherapy approaches, and treatment that is specifically targeted to tumor
cells, e.g., antibodies and kinase inhibitors [279]. In patients with disseminated cancerous
lesions, such multi-modality options have improved survival to a median value of almost
2.5 years [280]. The mainstay of treatment is surgical tumor excision; when offered together
with chemotherapy 5-year survival is 58% [54]. Unfortunately CRC cells are recognized as
having the capacity to develop resistance to pharmaceutical anticancer agents through a
range of mechanisms [281]. In order to offer superior treatment regimens and increase sur-
vival rates in CRC, new encouraging admixtures of chemotherapy and potential adjuvants
require additional study.

Experimental and clinical studies have determined that melatonin exhibits significant
prophylactic properties against the toxic adverse event profiles of chemotherapy and
radiotherapy [234,235]. These properties may enable increasingly powerful and, therefore,
more effective chemotherapy regimens to be utilized [57]. Furthermore, melatonin per se
also has anti-proliferative, anti-metastatic and cytotoxic properties on a spectrum of human
cancers; these results have included work on CRC [2,193,282]. It should be noted that this
molecule, which is intrinsically produced, has a benign adverse event profile even when
administered in relatively high quantities [34,231,241].

In 1987, Lissoni et al. were the initial workers to report the impact of melatonin in
malignancy [283]. They recruited 19 patients with late-stage solid cancers, encompassing
some with CRC, who had failed to gain benefit from conventional treatments. In total,
20 mg of intramuscular melatonin was prescribed on a daily basis. In individuals who
went into remission, evidenced disease stability, or were able to function more effectively,
the melatonin dose was reduced to a maintenance regimen. Improved performance scores
and enhanced life quality were reported in 60% of the study subjects. This early work
highlighted that melatonin had the potential to be of therapeutic value in patients for
whom traditional treatment methods were no longer effective [283].

The clinical impact of melatonin in individuals with disseminated CRC in whom
5-fluorouracil therapy was ineffective was studied by Barni et al. [284]. 20 mg daily
melatonin was prescribed and delivered as an intramuscular injection for 8 weeks; mainte-
nance therapy comprised 10 mg oral melatonin. Overall, 5 of the 14 patients in the study
demonstrated obvious positive change in their functional abilities, although no anticancer
properties attributed to melatonin were described in this study.
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One trial enrolled 1440 patients who had late-stage solid tumors, including 279 with
CRC, which were deemed to be beyond conventional therapy. In the first section of
this study, half of the patients were given melatonin in addition to standard supportive
care [285]. The latter phase of the study used melatonin, 20 mg per day given in the evening,
alongside chemotherapy, which comprised treatment with 5-fluoroucracil with folinic acid
or raltitrexed. This patient group of 200 individuals had disseminated tumors that were
resistant to chemotherapy, of whom a quarter had CRC. The data from this work implied
that melatonin could act as a prophylactic agent in order to diminish symptomatology
related to advancing cancer, e.g., cachexia, asthenia, and lymphocytopenia, together with
adverse events arising from the pharmaceutical agents, i.e., thrombocytopenia, asthenia,
and cerebral and cardiac toxicity. Mutually potentiating interactions of melatonin with the
anti-tumor agents were also noted.

Again, in patients with CRC and distal metastases, one randomized study appraised the
concurrent use of melatonin together with irinotecan [286]. A total of 30 patients were included
who had failed to show regression despite a minimum of one episode of chemotherapy
including 5-fluorouracil. In total, 20 mg oral melatonin was given to the relevant patient
cohort in the evening. Those patients experienced a higher degree of disease control, i.e., 85.7%
compared with the group that did not receive melatonin, i.e., 43%.

A further clinical trial randomized 370 individuals with malignancy, which included
122 with CRC, to undergo chemotherapy with or without oral melatonin, dosed at 20 mg per
day [287]. Patients with CRC had been receiving combination oxaliplatin, 5-fluororuracil
and folinic acid, 5-fluorouracil and folinic acid, or irinotecan on a weekly schedule. In those
patients in whom melatonin was given as an adjunct, the regression rate of malignancy
was elevated, and a prolonged 2-year survival was documented.

In vitro and in vivo studies have been performed, encompassing both experimental
animal models and clinical trials in order to appraise the properties of melatonin, either as
a sole agent or as an adjunct to anti-tumor strategies. Clinical studies have mostly recruited
patients at a late stage of their disease. However, the optimum route and dose of melatonin
is yet to be determined; additional studies are required. In order to further elucidate the
benefits of melatonin in patients with CRC, animal work in particular is necessary in order
to provide a knowledge base to use as a foundation for human studies.

In conclusion, there is substantial data to implicate melatonin in tumorigenesis, de-
velopment and CRC cell advancement through a variety of modes of action. Additional
clinical studies are therefore essential in order to be able to incorporate melatonin as an
encouraging novel anti-tumor agent in patients with CRC [278].

8.5. Hepatocellular Carcinoma

Worldwide, liver tumors are attributed with being the second most frequent cause of
demise from malignancy. Hepatocellular carcinoma (HCC) is the most prevalent cancer
type, comprising between 70 and 80% of hepatic lesions. It is most common in less devel-
oped nations [288,289]. Surgical resection is the only definitive therapy for HCC. However,
many patients fail to meet operative inclusion criteria, and so efficacious chemotherapy
regimens need to be established [290].

Over recent years, a remarkable proliferation of the prevalence of liver malignancy
has been reported globally; in total, 841,000 instances of liver tumors and 782,000 deaths
were reported from this disease in 2018 [169]. This form of malignancy is the 5th most
common in men, and the 7th most prevalent in women; it is recognized as fourth on the list
in terms of fatality [169]. Thus, it can be anticipated that liver malignancies are currently
demonstrating a rapid acceleration in both incidence and mortality [291,292].

There are numerous published studies that have assessed the use of melatonin in
patients with liver tumors, including the evaluation of its impact and modes of action
with respect to HCC [293]. Mesenchymal stem cells (MSC), arising from bone marrow,
express Mel receptors. Thus, melatonin exhibits a spectrum of influences mediated through
these receptors on MSCs, encompassing survival prolongation, motility, engraftment, and
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cellular differentiation. These actions appear to be associated with interplay between the
receptors and enzymes within the matrix; MSC homing effects are augmented when an
admixture of melatonin and MSCs is pre-administered [294].

In contrast, numerous mechanisms have been the subject of theory with respect
to MSC-dependent cancer inhibition, e.g., MSCs, pulsed with micro-vesicles obtained
from cancer cells, have demonstrated potentiated anticancer properties in patients with
HCC [295]. Earlier studies have shown that melatonin is able to augment the likely
beneficial clinical effects of MSCs in a selection of pathologies, including acute kidney
injury and metabolic disease, e.g., diabetes. Modes of action for these possible therapeutic
roles include stimulation of antioxidative pathways, suppression of the inflammatory
response and a decrease in both apoptosis and fibrosis [296–299].

Of note is that some current studies have described a mutually potentiating effect
between melatonin and MSCs for targeting the inflammatory processes associated with
HCC [300–302] although it should be emphasized that there is still a dearth of clinical data
in relation to this phenomenon.

In summary, the admixture of MSCs and melatonin in HCC may offer encouraging
clinical outcomes by stimulating resistance to cellular necrosis. This mechanism has been
documented in experimental murine models of HCC in which combination therapy led to a
reversal of hepatic dysfunction and reduced tumor load when compared to administration
of each treatment component as a sole agent. These beneficial effects were also noted when
the combination therapy was given together with preconditioning [300,303]. Since only
minimal studies have been published in relation to this subject, additional work is crucial
in order to investigate the future potential of this treatment combination, to elucidate the
underlying modes of action and to delineate the application of targeted stem cell therapy
in HCC.

8.6. Prostate Cancer

Malignancies of the urological tract, which encompass tumors of the prostate, bladder
and kidney, give rise to 12% of cancer-related fatalities globally. Prostate neoplasia is the
most common, with an annual incidence of one million, and a yearly mortality rate of
300,000 [304,305]. Worldwide, tumors of the bladder comprise the ninth most prevalent
malignancy; the annual incidence and death rates from bladder cancer are about 330,000
and 130,000, respectively [305]. Prostate tumors in men become more prevalent with
advancing years.

A link between loss of circadian rhythms or sleep deprivation with prostate lesions
has been reported in an epidemiological study systematic review [306]. Additionally, a
case-cohort study documented a possible relationship between early morning urine titers
of 6-sulfatoxymelatonin (aMT6) and prostate malignancy. Males with values that were
less than the median were noted to have four times the risk of late stage or terminal
prostate tumors when contrasted with individuals with more elevated aMT6s levels [172].
Melatonin circadian rhythm analysis has demonstrated that serum melatonin titers are
decreased in individuals with primary prostate malignancy; this is attributed to diminished
activity of the pineal gland rather than being induced by heightened hepatic metabolic
breakdown [307].

Conventional treatments have shown no survival benefit in patients with prostate
cancer, and therefore further studies are urgently needed in order to design additional
efficacious pharmaceutical agents as alternative forms of treatment or to be used in con-
junction with standard regimens. Further to enhancing sleep and life quality in patients
with malignancy, melatonin delivered as an adjuvant to anti-tumor drugs promotes their
effectiveness and improves survival rates [308]. In order to demonstrate the clinical value
of melatonin in individuals with prostate cancer, additional research is required.
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8.7. Ovarian Cancer

Among gynecological carcinomas, ovarian cancer presents with a poor prognosis and
is frequently fatal [309]. Due to the lack of early detection methods, this type of cancer is
usually presenting in its advanced stage when it is discovered. Therefore, it is important
to find new therapeutic strategies. We need first to identify the laboratory and biological
sources of inconsistency in melatonin levels determined in samples to investigate the
association of melatonin with cancer.

Over a five-year period in the Prostate Lung Colorectal and Ovarian Cancer Screening
Trial (PLCO). Serum melatonin levels were measured in 97 participants to test if melatonin
levels are constant over time. The results of this study regarding the high correlation of
melatonin levels indicates that single measurements may be used to discover population
level associations between melatonin and risk of cancer [310].

8.8. Brain Tumors

Glioblastoma is the most frequently identified cerebral cancer in adults, and also
recognized as the most aggressive. The incidence rate is between 5 and 8 adults in every
100,000; it is responsible for just over half of all detected gliomas. A poor survival rate is
associated with glioblastoma; the majority of patients have an average life expectancy of
under a year after presentation, mostly owing to recurrence [149]. Currently, the main form
of treatment is radiotherapy, together with chemotherapy in the form of temozolomide
(TMZ) [311].

An alkylating drug administered orally, TMZ is able to cross the blood-brain barrier
and gain access to the cerebrospinal fluid. This ability enhances its anti-tumor activities and
prolongs the life expectancy of individuals with glioblastoma [311]. Additional compounds
that have been appraised have so far yielded no benefits relating to either overall survival
rates or tumor suppression [312].

It is well established that therapy for individuals presenting with glioblastomas is
complex; curative surgery is nearly impossible, and the majority of tumors exhibit a high
recurrence rate despite treatment with radiation and anticancer agents [313]. Thus, several
workers have concentrated on the development of de novo adjuvant treatment approaches,
favoring natural compounds in order to offer anti-tumor agents that are suitable for clinical
use. A number of studies have documented the properties of melatonin with respect to
glioblastomas. Melatonin has well-known antioxidant effects, and its anti-tumor actions are
becoming acknowledged. It, therefore, has potential to thwart the resistance to numerous
chemotherapy agents that plagues treatment of glioblastomas [159,160,313]. Additional
work is necessary to design novel molecular compounds and approaches, combination
treatments, and optimal dosing regimens.

Resistance to chemical anti-tumor drugs is a central issue in chemotherapeutic ap-
proaches to this tumor. The principal objectives for combination therapies encompassing
prolongation of survival rates and enhancing life quality include mitigating the cytotoxic
adverse event profiles of pharmaceutical agents and simultaneously diminishing tumor
resistance and unwanted drug effects. Studies in experimental and clinical scenarios have
demonstrated that melatonin can potentiate the anti-tumor actions of chemotherapy in
numerous forms of malignancy. This action, together with diminishing the toxic impact of
chemotherapy, enhances life quality [236,312].

Although a few studies have reported anti-tumor actions of melatonin in relation to
glioblastoma in vitro, as yet, few animal models have been published, and there is scant
literature available on this subject in humans.

An in vivo experiment by Martin et al. documented the efficiency of melatonin
administration in diminishing cancer cell growth [314]. Melatonin was used to pre-treat
glioma cells, which were then administered to rats parenterally. In contrast to a control
cohort, a notable decrease in malignant growth was observed six days after commencement
of therapy, i.e., at day 11, reaching 50% by two weeks after treatment initiation. However,
the dose of melatonin prescribed, i.e., a subcutaneous injection of 15 mg/kg body weight,
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was much higher than utilized in human studies, the latter typically being 20 mg orally
per day. Thus, in subsequent clinical studies, updated dosing regimens for melatonin,
similar to those used effectively in in vivo experiments, may lead to the appreciation of the
anti-tumor effects of melatonin as a sole agent in individuals with glioblastomas.

To date, only a single clinical trial has appraised adjunctive treatment with melatonin
in patients with glioblastoma. Lissoni et al. [257] studied the additional use of melatonin in
30 patients with this tumor, who were undergoing radical or complementary treatment with
ionizing radiation. Randomization to receiving or not receiving oral melatonin, dosed at
20 mg per day, was performed. The addition of melatonin at one year follow-up conferred
a survival advantage compared with the control cohort, i.e., 6/14 and 1/16, respectively.
This study also documented a reduction in the adverse effects relating to steroid treatment
in the melatonin group, including less infections and alopecia, alleviated symptoms of
anxiety and enhanced sleep quality. Further studies need to follow up this preliminary
data, incorporating larger patient populations. However, this early work highlights that
melatonin may be a suitable therapy adjunct in patients with glioblastoma, and have effects
on the tumor per se, as well as promoting life quality.

Lissoni et al. published an additional study, investigating treatment with an admixture
of melatonin and Aloe vera [315]. The latter is known for its anti-inflammatory properties.
The purpose of this trial was to determine whether these two compounds could act in
synergy to improve the anti-tumor properties of melatonin. A total of 50 patients with
malignancy, including breast, lung, gastrointestinal tract tumors and glioblastomas, and
who had developed resistance to chemotherapy, radiation, and hormone treatments, or
who were unable to tolerate chemical anticancer agents, were recruited for the study. There
was a minimum time period of one month between the final episode of chemotherapy and
starting 20 mg per day of oral melatonin and tincture of Aloe vera. The study endpoint
was tumor suppression. A total of eight weeks after therapy commencement, no effect on
lesion regression was seen in the cohort only receiving melatonin. In the group taking Aloe
vera and melatonin, 2/24 patients (8%) exhibited a partial response. The side effect profile
for melatonin was benign, but Aloe vera was associated with diarrhea, although this was
limited to the initial day of prescription in some patients [315].

One issue is that a melatonin concentration of 1 mM has been used in in vitro studies
which may not be pragmatic physiologically. Data from McConnell have indicated that a
melatonin concentration of 50 nM is similar to the measured pharmaceutical titers of 54 nM
in individuals prescribed 20 mg orally [316]. It, therefore, may not be possible to achieve
serum levels of 1 mM.

Data relating to the utilization of melatonin as an adjunct to chemotherapy are encour-
aging, both in terms of augmenting the effectiveness of therapy and mitigating adverse
event profiles [159,316]. However, clinical studies that have investigated the clinical efficacy
of melatonin in conjunction with other forms of treatment in patients with neoplasia, exclud-
ing glioblastoma, have usually been performed outside evidence-based recommendations
following lack of success with conventional therapy and a guarded life expectancy.

Clearly, there are some restrictions with respect to how effective melatonin might be in
promoting tumor suppression. Despite in vitro confirmation of anti-neoplastic properties,
together with documented palliative benefits in human studies, adding melatonin to first-
line therapy for cancer treatment has ethical difficulties, although simply enhancing sleep
quality or alleviating the toxic effects of more traditional anticancer treatment strategies
are clinical benefits that should not be underestimated [8].

An initial stage with the aim of evaluating the possible utilization of melatonin in
patients with glioblastoma, possibly admixed with TMZ, could be the inauguration of a
scientific evidence consortium, which appraises both in vivo and preclinical data [312].

8.9. Osteosarcoma

Osteosarcoma is identified as high-grade primary bone cancer. Despite the many
available chemotherapies, the 5-year survival rate is only around 65%. Melatonin could be
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presented as a new strategy for the osteosarcoma treatment due to the parallel incidence of
its levels and osteosarcoma.

The results of numerous experimental studies stated that melatonin can exert its
anticancer activities against osteosarcoma through activation and inhibition various mech-
anisms for example induction of anti-proliferative, apoptosis, and anti-oxidant effects.
Moreover, the ability of melatonin to inhibit the invasion and migration of osteosarcoma
cells to different organs is a promising approach to prevent the metastasis of osteosarcoma.
In conclusion, melatonin alone or in combination with other agents may be a good choice
for osteosarcoma cancer therapy [317], however, clinical trials are lacking.

8.10. Gastric and Pancreatic Cancer

The beneficial role of melatonin for the management of many cancers has been widely
proposed [2,318,319]. However, the potential benefits of melatonin in the treatment of
gastric and pancreatic carcinomas are less well known and it is, therefore, crucial to
concentrate research in this area.

9. Melatonin Safety Profile

One of the main considerations about the treatment in the field of oncology is the
evaluation of the toxic effects and risk of new therapies directed against cancers. Regard-
ing melatonin, it has recently been stated that both physiological and pharmacological
concentrations have no significant toxicity even at high doses, and aside from some rare
exceptions [320], similar to other natural supplement like resveratrol [321].

Based on human trials and reported use, melatonin seems to have a high safety
profile especially when used in appropriate doses and short term. Although the doses
used in the published studies are 10–50 mg/d higher than those used for other indi-
cations (0.5–5.0 mg/d), none of the studies found any severe adverse effects linked to
melatonin; while, melatonin decreased some of the side effects caused from radiotherapy
and chemotherapy [249,320].

The most common side effects are excess sedation and somnolence. Because melatonin
has immune-boosting effects, caution should be exhibited in the post-organ transplant pa-
tients, as this could increase the risk of graft rejection, though more research is needed [322].

According to a systematic review and meta-analysis of 21 clinical studies dealt with
solid tumors, melatonin significantly reduced thrombocytopenia, leucopenia, asthenia,
nausea, vomiting, and hypotension [249].

10. Clinical Pharmacokinetics and Dosing of Melatonin

A systematic review including 22 studies with 359 participants, offered valuable
understandings regarding the pharmacokinetics of administered melatonin [223]. This
systematic review documented a time to maximal serum and plasma concentration (Tmax)
of around 50 min after immediate-release oral formulations of melatonin. The half-life time
of intravenous and oral melatonin was approximately 45 min (28–126 min). Bioavailability
following oral administration was low (9–33%) with substantial intra-individual variability.
It is suggested that the low bioavailability is due to the considerable first-pass metabolism
in the liver [323]. Additional systematic review of experimental or clinical studies ex-
amined the pharmacokinetics of alternative administration regimen for melatonin [324].
Intranasal administration proved a higher Tmax and bioavailability compared with oral
melatonin (2.5–7.8 min and 55–94%, respectively). While the oral transmucosal regimen
achieved higher maximal serum and plasma concentrations with similar Tmax compared
with oral route of administration, transdermal administration generated slow melatonin’s
absorption and deposition in the skin. Melatonin showed to be safe for daily doses up to
100 mg/kg [325]. However, the majority of the studies mainly involved healthy partici-
pants, but preceding studies implied that the melatonin’s pharmacokinetics is influenced
by health status, age, and other factors, such as cigarette smoking, caffeine intake, and oral
contraceptives use [231,326].
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According to a crossover cohort study that examined the pharmacokinetics of intra-
venous and oral melatonin in healthy male participants [231], oral melatonin was rapidly
absorbed, and Tmax was reached after 41 min. Cmax and AUC varied greatly between
participants. Elimination half-lives after intravenous and oral melatonin administration
were 39 and 54 min, respectively. The bioavailability of oral route of administration was
only 3%, but a substantial variability between the participants was observed.

Melatonin is available as immediate-release (1, 3, 5, and 10 mg), and controlled-
release oral tablets (3 and 5 mg). A 2 mg sustained-release formulation is available outside
of the United States. The usual initial dose is 1 mg once daily, and 0.5 mg in geriatric
patients. Melatonin should be administered within one hour of bedtime to mimic the body’s
endogenous nocturnal surge. In the case of in liver failure, lower doses should be used
due to the extensive hepatic metabolism of melatonin, although specific recommendations
have not been published [224,242].

In conclusion, several administration regimens for melatonin have been investigated,
but it is not yet clear which regimen results in the optimal pharmacologic effect.

11. Pharmaceutical Formulation of Melatonin

Melatonin has short plasma half-life, variable oral absorption, and low variable
bioavailability that could be due to extensive first pass metabolism [327], in addition
to its poor solubility and stability [328]. Therefore, conventional oral dosage forms (im-
mediate release) are unsuitable candidates for melatonin delivery. To overcome these
limitations, many pharmaceutical formulations have been developed using different ap-
proaches and different routes of administration. For instance, Martarelli et al. have used the
hydrophilic polymers; xanthan gum, hydroxypropyl methylcellulose, and Carbopol® 974P
NF to formulate tablets which showed prolonged release of melatonin [329]. Another tablet
formula as monolayered and three-layered have been prepared by Vlachou et al. with in-
corporation of polyvinylpyrrolidone and cellulose acetate as nanofibrous mats loaded with
melatonin. These tablets showed prolonged release of melatonin as well [330]. Circadin®

tablets, as the only licensed melatonin in United Kingdom, showed prolonged release
profile, with no effect on the release profile upon division of the tablets [331]. Proietti
et al. have prepared soft gel capsules of melatonin and evaluated the pharmacokinetics
in comparison with melatonin powder. A total of 1 mg soft gel capsules of melatonin
showed comparable pharmacokinetics parameters (AUC0-360, Cmax and Tmax) to 3 mg
melatonin powder and both were significantly have better pharmacokinetic parameters
than 1 mg powder, the Cmax values were 2620, 2405, and 799.1 µmol/L, respectively [332].
Recently, Li et al. have used porous starch as a carrier producing melatonin-loaded porous
starch to improve the pharmacokinetics of melatonin. Increased suppression to DCFH–
DA-oxidized peroxyl radicals have been shown with melatonin-loaded porous starch as
compared with raw melatonin. In addition, melatonin-loaded porous starch showed an
increase in Cmax (291.77 and 134.26 ng/mL at 15 and 20 min, respectively), and higher
AUC0-360 with 2.34 folds in treated groups as compared to raw melatonin [333]. In another
study, Li et al. have prepared sustained release enteric melatonin-loaded nanosphere
composed from silica and hydroxypropyl methylcellulose to enhance bioavailability of
melatonin. As compared to raw melatonin, the prepared melatonin-loaded nanosphere
showed an increased Tmax and increased Cmax 168.86 to 383.71 ng/mL. Moreover, higher
AUC with 3.5 folds in melatonin-loaded nanosphere compared with raw melatonin [334].
Vlachou et al. designed a drug delivery system composed of the algal sulfated polysac-
charide ulvan as a hydrophilic matrix system loaded with melatonin to obtain a modified
release in vitro. This ulvan-based tablets showed higher %release profile than that of the
marketed melatonin drug Circadin® in gastric pH 1.2 [335]. To deliver melatonin to the
brain, intranasal administration is a promising alternative to oral route. In this context, de
Oliveira Junior et al. have prepared nanoparticles of melatonin-loaded polycaprolactone as
intranasal dosage form. These melatonin-loaded nanoparticles enhanced the solubility of
melaonin with 35 fold. Moreover, this formulation resulted in IC50 that is 2500 fold lower
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than raw melatonin. In addition, the AUCbrain in melatonin-loaded nanoparticles treated
glioblastoma cells and targeting index were higher than that of raw melatonin administered
orally or intranasally [336]. Another intranasal preparation was developed by Priprem et al.
when they encapsulated the melatonin in nanosized niosomes. The intranasal melatonin-
loaded nanoniosomes were shown to be bioequivalent to melatonin intravenous injection
in rats [337]. Terraneo et al. investigated transdermal route as non-invasive alternative
to administrate melatonin followed by cryopass laser treatment on mice. The cryopass
laser in the transdermally-melatonin pretreated groups showed the same efficiency as the
interperitonial-melatonin pretreated group, showing that transdermal administration of
melatonin represent a promising noninvasive route with targeting potential on the site of
action [338]. Recently, a US patent have been registered for administration of melatonin
sublingually where melatonin is complexed with a valerian extract providing a rapid and
complete dissolution of melatonin in saliva. This rapid absorption and rapid onset lead
to melatonin pharmacokinetics that is comparable to an intravenous melatonin (patent).
Furthermore, Li et al. have investigated the melatonin-loaded bacterial cellulose nanofiber
suspension to enhance the solubility and bioavailability of melatonin. This formulation
showed higher dissolution rate, and the oral bioavailability was 2.4 times higher that of
the marketed melatonin [339]. Another formulation was prepared by Terauchi et al. to
improve the solubility of melatonin using complexation approach. An inclusion com-
plex of melatonin with 2-hydroxypropyl β-cyclodextrin was prepared. Upon addition of
2-hydroxypropyl β-cyclodextrin, the solubility of melatonin showed linear increase, in
addition to the increased uptake of MC3T3-E1 cells as compared to free melatonin [340].

12. Conclusions

The role of melatonin in cancer treatment and prevention have been widely studied
and numerous experimental studies proved the anticancer effect of melatonin against
many cancers, including colorectal, breast, gastric, prostate. ovarian, lung, and oral. The
anticancer effect of melatonin is mediated by integrated mechanisms, such as apoptosis
induction, immune system modulation, targeting cancer altered mechanism, angiogen-
esis inhibition, and antimetastatic effect. Combination of melatonin with conventional
anticancer therapies showed positive results through reinforcing the therapeutic effects
of these therapies. Clinically, melatonin was active to augment the therapeutic effects
of anticancer drugs and improve the sleep and life quality of cancer patients. Several
clinical studies have suggested that the efficiency of chemotherapy can be enhanced when
melatonin was incorporated. The therapeutic effect of melatonin increases when combined
with other anticancer agents. Studies showed that the melatonin anticancer effect is not
tissue specific and its therapeutic and preventive properties were reported in cancer arising
from different tissues. Melatonin can be obtained from plants as phytomelatonin. Its levels
vary according to plant species and plant parts. However, the highest level was found
in seeds. Bioavailability and pharmacokinetic properties of exogenous melatonin are still
not fully understood. High variability in bioavailability was reported with values ranging
from 1 to 100%. Such variable numbers are mainly due to remarkable inter-individual
variations in all pharmacokinetic aspects including absorption, metabolism, and elimi-
nation. Bioavailability of melatonin deserves further studies to clearly understand the
interindividual differences. Overall, the low toxicity, diverse mechanisms of action, and
high efficiency of melatonin support its use in cancer prevention and treatment.
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