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Abstract: The binding free energy calculation of protein–ligand complexes is necessary for research
into virus–host interactions and the relevant applications in drug discovery. However, many current
computational methods of such calculations are either inefficient or inaccurate in practice. Utilizing
implicit solvent models in the molecular mechanics generalized Born surface area (MM/GBSA)
framework allows for efficient calculations without significant loss of accuracy. Here, GBNSR6, a new
flavor of the generalized Born model, is employed in the MM/GBSA framework for measuring the
binding affinity between SARS-CoV-2 spike protein and the human ACE2 receptor. A computational
protocol is developed based on the widely studied Ras–Raf complex, which has similar binding free
energy to SARS-CoV-2/ACE2. Two options for representing the dielectric boundary of the complexes
are evaluated: one based on the standard Bondi radii and the other based on a newly developed set of
atomic radii (OPT1), optimized specifically for protein–ligand binding. Predictions based on the two
radii sets provide upper and lower bounds on the experimental references: −14.7(∆GbindBondi) <
−10.6(∆GbindExp.) < −4.1(∆GbindOPT1) kcal/mol. The consensus estimates of the two bounds
show quantitative agreement with the experiment values. This work also presents a novel truncation
method and computational strategies for efficient entropy calculations with normal mode analysis.
Interestingly, it is observed that a significant decrease in the number of snapshots does not affect the
accuracy of entropy calculation, while it does lower computation time appreciably. The proposed
MM/GBSA protocol can be used to study the binding mechanism of new variants of SARS-CoV-2, as
well as other relevant structures.

Keywords: binding free energy; implicit solvent; SARS-CoV-2; entropy

1. Introduction

Emerging as a global threat to human health, the SARS-CoV-2 virus that causes
the COVID-19 disease has been widely studied since early 2020 [1]. This fast-growing
pandemic highlights the role of computational structural biology and computer-aided
drug design (CADD), which have the ability to accelerate the slow and expensive process
of drug discovery [2]. Recent computational studies on SARS-CoV-2 have been able to
identify frequent points of contact between the virus and ACE2 and the favored conforma-
tions of the virus, elucidating potential targets for drug therapy [3–6]. In structure-based
drug discovery, the accuracy and speed of binding free energy estimations of drug-like
compounds (ligands) to target biomolecules plays a key role in virtual screening of drug
candidates [7–9]. Despite decades of research, efficient and accurate computational predic-
tion of binding free energies is still a challenge [10–14]. In theory, the binding free energy
of a molecular system can be estimated directly from thermodynamic first principles [15].
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However, for any realistic molecular system, approximations must be made to make the
estimate computationally feasible. For example, alchemical methods [16,17], simulate
changes in the free energy along a pathway that sometimes reflects non-physical properties
or, literally, “alchemy”. The required sample points along the pathway are generated via
Monte Carlo (MC) or molecular dynamics (MD) simulations. Some of the popular methods
in this class are thermodynamic integration (TI) and free-energy perturbations (FEP) [18].
However, these simulations are still computationally expensive, especially when it comes
to absolute binding free energy calculation of large protein-ligand complexes [19] and
high-throughput virtual screening of thousands of potential drugs [20].

Remarkably more efficient, end-point free energy methods ignore details of the bind-
ing pathway and estimate free energy on an ensemble of snapshots representing the bound
and unbound states only. These snapshots can be generated by an MD simulation. Molec-
ular mechanics Poisson–Boltzmann surface area (MM/PBSA) and molecular mechanics
generalized Born surface area (MM/GBSA) [21–24] are among the most popular of such
methods. While calculations based on practical implicit solvation models, such as Poisson–
Boltzmann (PB) or generalized Born (GB), are arguably not as accurate as corresponding
estimates based on the best available explicit solvent models, the use of implicit solvent not
only brings about computational efficiency but also provides a transparent context for rea-
soning about the physical origins of observed effects in protein–ligand interactions [25–27].
As another important advantage, it is possible to decompose the total free energy into
sub-components through MM/PB(GB)SA and measure their contributions separately [8,28].
This feature is certainly useful when it comes to comparing several different free-energy
methods. MM/PB(GB)SA is applicable to a wide range of structures [29], from small
host–guest systems to large protein–protein complexes with thousands of atoms [8]. This
method is mainly used in docking projects where a quick estimate of binding affinities
is required [30]. Docking software [31,32] and servers [33,34] rank the feasible poses of
a ligand in a binding pocket based on a scoring function in which binding affinity plays
an important role. MM/PB(GB)SA can improve the accuracy of these scoring functions
on-the-fly. For example, in [35], MM/GBSA was employed to improve the accuracy of
docking software in the Drug Design Data Resource (D3R) Grand Challenge 4 (GC4). In
another relevant study [36], MM/GBSA demonstrated accurate pose prediction on a large
benchmark of protein–ligand complexes with non-redundant binding poses. Recently,
MM/GBSA was used to study the effect of nelfinavir stereoisomers on the SARS-CoV-2
main protease [37].

Entropy calculation plays a key role in characterizing the absolute binding free energy
within MM/PB(GB)SA methods [38]. Normal-mode analysis (NMA) [39] is a widely used
method with promising convergence in calculating configurational entropy [28]. The main
drawback of this method is the computational cost, which becomes intractable for large
structures due to the expensive calculation of the covariance matrix of internal coordinates
for all degrees of freedom. Due to the complex and time-consuming calculations required,
the entropy term has been simply ignored in many studies, which leads to considerable
overestimation of binding free energy. To tackle this problem, one standard approach is to
truncate the protein–ligand complex so that the binding interface remains preserved [40],
allowing for a suitable structure size for NMA. The common implementation of this idea is
to retain the ligand and remove all protein residues that are more than 8–16 Å far from the
center of mass of the ligand.

In this work, we employ MM/GBSA implemented in AmberTools18 [41] for the
binding free energy calculation of the SARS-CoV-2 spike receptor-binding domain (SARS-
CoV-2 S RBD) and the human ACE2 receptor complex (PDB ID: 6M0J [42]), see Figure 1.
Through the MM/GBSA approach, the absolute binding free energy of a complex is
calculated as the sum of gas-phase energy, solvation free energy, and entropic contributions
averaged over several snapshots extracted from the main MD trajectory. A grid-based
surface GB model is used for estimating the polar component of solvation-free energy,
coupled with a new water model and atomic radii introduced earlier in [43,44]. Human H-
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Ras and the Ras-binding domain of C-Raf1, the so-called Ras–Raf complex [8,28], is chosen
as the reference for the initial evaluation of the MM/GBSA model. As a new extension to
our previous works [45,46], a novel truncation strategy is introduced and tested on Ras–Raf
and SARS-CoV-2 S RBD/ACE2. Through this strategy, the truncated structure will be one
connected component that is biologically more interpretable than the standard truncation
methods. The final results are compared with experimental values. The main goal of the
work is to assess the potential of the simple and efficient MM/GBSA method to future
studies of SARS-CoV-2 binding to the human ACE2 receptor. With respect to emerging
mutations of this virus around the world [47–49], an efficient computational framework to
study binding mechanisms of new variants is vital.

Figure 1. Binding scheme of the SARS-CoV-2 spike protein to the human ACE2 receptor.

2. Materials and Methods
2.1. Binding Free Energy Decomposition

Binding-free energy, ∆Gbind, of a molecular system is calculated as follows

∆Gbind = ∆H − T∆S, (1)

where ∆H is the enthalpy change in the system, T is the absolute temperature in K, and ∆S
is the entropy change in the system. A high-level illustration of ∆Gbind between bound and
unbound states of a solvated complex is shown in Figure 2.

Figure 2. Binding a ligand (shown in red) to a protein receptor (shown in grey) in a box of solvent
(shown in blue) releases free energy of ∆Gbind. A negative value of ∆Gbind indicates that spontaneous
binding occurs, and the magnitude of ∆Gbind characterizes the binding strength (affinity).

In computational studies, a useful way of calculating ∆Gbind is through a thermody-
namic cycle shown in Figure 3. With this approach, ∆Gbind,solv is calculated as follows:

∆Gbind, solv = ∆Gbind, vacuum + ∆Gsolv, complex−
(∆Gsolv, ligand + ∆Gsolv, receptor)

(2)

The solvation-free energy, ∆Gsolv, is broken into the polar and non-polar components

∆Gsolv = ∆Gpol + ∆Gnonpol . (3)
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The free energy in vacuum, ∆Gvacuum, is decomposed into the gas-phase energy
(∆EMM) and the configurational entropy of the solute (T∆S)

∆Gvacuum = ∆EMM − T∆S. (4)

Note that the T∆S above does not exactly correspond to T∆S in Equation (1); specifi-
cally, the entropy of solvent re-arrangement [25,27] is subsumed into ∆Gsolv, which is then
considered a part of ∆H. Combining the free-energy components defined above, we obtain
∆H = ∆EMM + ∆Gpol + ∆Gnonpol . Our approaches for calculating ∆Gsolv, ∆EMM and T∆S
are explained in Sections 2.3–2.5, respectively.

Figure 3. The thermodynamic cycle used to estimate the binding free energy of a protein–ligand
complex in the solvent.

2.2. MM/PB(GB)SA Free Energy Methodology

MM/PB(GB)SA is a popular end-point free energy method which estimates ∆Gsolv
by Poisson–Boltzmann (PB) or generalized Born (GB) implicit solvent model [50], while
components of ∆EMM are estimated based on a classical molecular mechanics force-field.
Through the MM/PB(GB)SA approach, the average of ∆Gsolv is calculated on a collection
of snapshots extracted from an MD simulation. Several decisions have to be made when
applying the approach in practice. First, the computational protocol must be selected
between the “single-trajectory” (one trajectory of the complex), or “separate-trajectory”
(three separate trajectories of the complex, receptor and ligand). In this study, we choose
the “single-trajectory” protocol, as it was shown [51] to not only be much faster than
the alternative, but also less “noisy” due to the cancellation of intermolecular energy
contributions. This protocol applies to cases where significant structural changes upon
binding are not expected. The single-trajectory MM/PB(GB)SA begins with the initial
structure of the complex in a vacuum. After solvating the structure in a solvent model,
an MD simulation is performed to generate the snapshots for further analysis. Then,
a relatively large number (typically N > 100) of uncorrelated snapshots are extracted
to represent the structural ensemble. The binding free energies of these structures are
calculated in the implicit solvent after removing the explicit solvent molecules. The average
binding free energy over these snapshots is reported as the final ∆Gbind. This process is
depicted in Figure 4.

With the single-trajectory protocol, the binding free energy of a protein–ligand complex
is formally calculated as follows

∆Gbind =< Gcomplex(i)− Gprotein(i)− Gligand(i) >i, (5)

where < ... >i denotes an average over i snapshots extracted from the main MD trajec-
tory. The implementation of this protocol is available in AmberTools18 in Perl [51] and
Python [52]. In this work, the former is used to maintain consistency with the reference
study [28] opted for tuning the MM/GBSA model.
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Figure 4. MM/PB(GB)SA flowchart. The initial structure of the complex is solvated using a water
model. An MD simulation is run, from which a relatively large number of snapshots are extracted.
After removing solvent molecules, the average binding free energy of the snapshots is assigned as
the ∆Gbind of the system. The mean and standard deviation of each component of the ∆Gbind are
supplemented by MM/PB(GB)SA.

2.3. Solvation Free Energy
2.3.1. Polar Component

A more computationally efficient alternative to the PB, the GB implicit solvent model [53,
54], can be used for computing ∆Gsolv. Generally speaking, GB models have shown to
be less computationally expensive than the PB models, although the deterioration of the
accuracy has always been a concern. A grid-based surface GB model called GBNSR6 [55]
is employed. In a recent study [56], GBNSR6 was shown to be the most accurate among
several GB models in terms of approximating ∆Gpol relative to the numerical PB. In this
work, ∆Gpol is calculated with the ALPB modification [57,58] (enforcing correct dependence
on dielectric constants) of the generalized Born [59] model

∆Gpol = ∑
ij

∆Gpol
ij ≈ −

1
2

(
1

εin
− 1

εout

)
1

1 + βα ∑
ij

qiqj

(
1

f GB
ij

+
αβ

A

)
, (6)

where εin = 1 and εout = 80 are the dielectric constants of the solute and the solvent,
respectively, β = εin/εout, α = 0.571412, and A is the electrostatic size of the molecule,
which is essentially the overall size of the structure that can be computed analytically.

We employ the most widely used functional form f GB
ij =

[
r2

ij + RiRj exp(−r2
ij/4RiRj)

] 1
2
,

where rij is the distance between atomic charges qi and qj, and Ri, Rj are the so-called
effective Born radii of atoms i and j, which represent each atom’s degree of burial within the
solute. The effective Born radii, R, are calculated by the “R6” equation [60,61]

R−3
i =

(
− 1

4π

∮
∂V

r− ri

|r− ri|6
· dS

)
, (7)

where ∂V indicates the chosen representation of the dielectric boundary of the molecule, dS
is the infinitesimal surface element vector, ri is the position of atom i, and r represents the
position of the infinitesimal surface element. Uniform offset to the inverse effective radii
is set to the default (optimal) value of 0.028 Å−1 [62]. The screening effect of monovalent
salt is introduced into Equation (6) as is standard for the GB model [53]; in our MM/GBSA
calculations the salt concentration was set to 0.1 M.
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2.3.2. Non-Polar Component

A common method to estimate the non-polar contribution to the solvation free energy
in Equation (3) is to assume that it is proportional to the solvent-accessible surface area
(SASA) of the molecule

Gnonpol = γ ∗ SASA. (8)

While there are more accurate methods to estimate the non-polar [63] contribution,
here we use the simple Equation (8) for the sake of simplicity and consistency with [28]. For
consistency with the same work, here we use γ = 0.0072 kcal/mol/A2. Atomic radii that
form SASA not only play an important role in the non-polar component, but also enter the
polar component through the dielectric boundary. Therefore, the right choice of atomic radii
is crucial to the accuracy of binding free energy estimation [64,65]. Two sets of atomic radii
are used here: global optimal radii for ∆Gbind calculations (OPT1) [43,44] and Bondi [66],
see Table 1. The van der Waals radii determined by Bondi from molecular crystals and
noble gas crystals are commonly known as “all-purpose” sets of intrinsic atomic radii
in a wide range of molecular modeling applications [67] including continuum solvent
calculations [68]. OPT1 radii were specifically optimized to best reproduce the explicit
solvent results, particularly in the implicit solvent-based binding MM/GBSA estimates.
Carbon (C), hydrogen (H), oxygen (O), nitrogen (N), and sulfur (S) are the main atomic
types in this study. The water probe radius is fixed to 1.4 Å. Note that OPT1 radii have been
optimized only on C, H, O, and N. The remaining atomic radii are identical to Bondi radii.

Table 1. Two sets of atomic radii in Å used in this study.

ρC ρH ρN ρO ρS ρF ρCl ρI

Bondi 1.70 1.20 1.55 1.52 1.80 1.47 1.75 1.98

OPT1 1.40 1.55 2.35 1.28 1.80 1.47 1.75 1.98

2.4. Gas-Phase Energy

Gas-phase energy of the solute, ∆EMM, is the summation of internal energies, electro-
static energies, and van der Waals energies. In all of the MM/GBSA calculations reported
here, ∆EMM is calculated using the ff99 AMBER force field. The choice of this old force
field is deliberate, and was initially motivated to ensure maximum consistency with [8],
which provides a very detailed analysis of MM/GBSA performance on Ras–Raf. Good
agreement with experiment motivated us to use the same ff99 force field for all the subse-
quent MM/GBSA calculations reported here. All of the enthalpy calculations in this study
are averages over 500 snapshots extracted from the main MD trajectory.

2.5. Configurational Entropy

NMA is selected for entropy calculations according to its promising convergence
compared to other methods, such as quasi-harmonic analysis [28]. The main drawback
of this method is the computational cost, which becomes intractable for large systems,
e.g., systems with more than 8000 atoms in MM/GBSA (Perl version) of AMBER18 are
not supported for NMA. To tackle this problem, one standard approach is to truncate
the complex so that the binding interface is preserved in its original shape [40]. In this
study, a novel truncation algorithm is proposed and tested on the Ras–Raf complex. En-
couraged by the accurate results, the SARS-CoV-2 S RBD and ACE2 complex is truncated
based on a similar algorithm for NMA feasible calculations. An offset of 1.92 kcal/mol
has been subtracted from the −T∆S component of GBNSR6 calculations to address the
concentration- dependency of the translational entropy at 1 M, see [28] for details. NMA
entropy calculations are done over 150 snapshots extracted from the main MD trajectory
unless stated otherwise.
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2.6. Structure Preparation
2.6.1. Ras–Raf Complex

This well-studied complex was selected as the reference for testing the parameters of
the MM/GBSA model and the proposed truncation algorithm. We used tleap module in
AMBER18 to set up the input coordinate and topology files. The structure was solvated
in a box of TIP3P [69] water model (10 Å buffer). This choice of old water model and ff99
AMBER force field was intended to ensure full consistency with [8]. The GTP molecule and
the magnesium ion (Mg2+) were eliminated for the sake of simplification. No counterions
were added to the system.

2.6.2. SARS-CoV-2 S RBD and ACE2 Complex

H++ server [70] was employed to protonate the complex (PDB ID: 6M0J) at pH = 7.5.
The server automatically generates the solvated structure in a box of OPC [71] explicit
water model (10 Å buffer), with the AMBER ff14SB force field. This full structure is used
only for enthalpy calculations that are compared with those of the truncated complex
structure for justifying the truncation approach, see below.

2.7. MD Simulation

All of the MM/GBSA estimates are based on snapshots extracted from MD trajectories,
generated as described below. The solvated complexes were first energy-minimized (max.
minimization cycle of 1000), followed by 50 ps of heating (from 1 K to 300 K) at constant
volume, followed by 50 ps of density equilibration at 300 K at constant 1 bar pressure,
followed by another 2 ns of constant (1 bar) pressure equilibration at 300 K. In these
stages, atomic coordinates were restrained to their initial positions with 2 kcal/mol/A2.
All simulations, including the production runs described below, were executed with the
GPU-enabled pmemd.cuda MD engine in AMBER18, using Langevin dynamics with a
collision frequency of 2 ps−1 and an integration time step of 2 fs, while the bonds involving
hydrogen atoms were constrained by the SHAKE algorithm. Electrostatic interactions were
approximated via the Particle Mesh Ewald (PME) method, with a non-bond cutoff set to
9 Å. Coordinates were recorded every 10 ps. A production of 10 ns was performed using
the Ras–Raf structure prepared with the protocol described in Section 2.6. A production of
50 ns was carried out using the SARS-CoV-2 S RBD and ACE2 complex structure described
in Section 2.6.

2.8. Proposed Truncation Algorithm

As an improvement to the standard truncation methods [40], the following algorithm
is suggested for addressing the computational inefficiency of entropy calculation via
NMA: first, the binding interface of the given complex is identified via visualization
of the structure and locating receptor and ligand residues that are around 8 Å from
another. Residues that are out of this range are candidates to be eliminated from the
ligand terminal by trimming its amino acid sequence. Depending on the size of the
structure, it might be necessary to eliminate residues from the protein terminal to enable
NMA calculations. In this algorithm, the final truncated structure will be one connected
component ,which is easier to interpret compared to the outcome of standard truncation
methods [40]. Specifically, this new characteristic reinforces control over the motion of
residues in the binding interface during the MD simulation. Based on the protocol used for
the full structure, MD simulation of the truncated structure is carried out. A weak restraint
of 0.01 kcal/mol/A2 is applied to the atoms of the truncated complex relative to the X-ray
positions during the production, preventing the truncated complex from falling apart.
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3. Results and Discussion
3.1. Efficient Calculation of Entropy: Continuous Truncation of Protein Structures
3.1.1. NMA on the Truncated Ras–Raf Complex

To test the accuracy of the proposed truncation algorithm, NMA entropy was cal-
culated on three truncated structures of the Ras–Raf, as follows: the binding interface of
the complex was found through visualization, and the residues of the Ras protein within
8 Å of the Ras ligand were considered necessary for calculation, as removal within this
distance would minimize absolute entropy changes [40]. In these modifications, only the
protein structure was modified as it was not necessary to modify the ligand to decrease the
duration of the NMA calculation. The binding interface of the complex was found to be
residues 36–41 Ras, and this region remained conserved in all truncated simulations. Three
simulations were run: 0% truncation (the full structure of the complex), 10 % truncation,
and 50% truncation. In each of the scenarios, residues were removed one-by-one from
the PDB files to create continuous sequences with the appropriate truncation. For the 0%
truncation MD simulation, no residues were removed. For the 10% truncation, the last
17 residues of Ras were removed (150–166), and for the 50% truncation, the last 83 of the
residues (84–166) in Ras were removed. The truncated structures are shown in Figure 5. The
production file for the MD simulation was modified to account for the restraints necessary
for the truncation. Only two snapshots were taken from the NMA (at the beginning and the
end) to retrieve the entropy values. After adjusting for concentration dependence, each of
the three simulations gave a −T∆S value of 37.26 ± 3.21 kcal/mol. These results indicate
that so long as the binding interface remains conserved and the structures are continuous,
truncating protein structures do not impact the validity of NMA calculations.

Figure 5. Truncated structures of the Ras–Raf complex. The protein, Ras, is shown in orange and the
ligand, Raf, is shown in green. The untruncated complex (full structure) is on the left, followed by
the 10% truncated structure (17 residues of Ras eliminated) in the middle, and the 50% truncated
structure (83 residues of Ras eliminated) on the right. The image on the left shows two pairs of
residues in the binding interface that are less than 8 Å apart.

3.1.2. NMA on the truncated SARS-CoV-2 S RBD and ACE2 Complex

To execute NMA entropy calculations, the original structure of SARS-CoV-2 S RBD
bound with ACE2 (PDB ID: 6M0J) was truncated from 12,515 atoms (791 residues) to 7286
atoms (463 residues) by removing residues, one by one, starting from the N-terminus of
the spike protein, and the C-terminus of the ACE2 protein. The goal was to have fewer
than 8000 atoms remaining while preserving sequence continuity of the resulting structure
to facilitate the set-up of MD simulations. Figure 6 shows this truncation. The remaining
atoms are still within 8 Å from the binding interface. The same protocol used for the full
structure was employed for parameterization and solvation.
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Figure 6. Truncation of SARS-CoV-2 S RBD used in the entropy estimate. The spike protein is in
cyan, and the ACE2 receptor is in green. Left: original complex. Right: truncated complex. A pair of
atoms on the binding interface that are 8.8 Å apart is shown in a solid red segment to illustrate the
length scale.

The RMSD of the truncated SARS-CoV-2 S RBD and ACE2 backbone compared to the
crystal structure of the full complex is shown in Figure 7. The trajectory is stable after 50
ns of production, with the RMSD from the X-ray reference of around 3.15 Å(the RMSD
convergence was checked by running the next 50 ns of the MD simulation). The weak
restraint on the truncated structure diminishes the discrepancy between the force field and
water model in the structure used for MD simulation (OPC, ff14SB) and the one for ∆Gbind
calculations (TIP3P, ff99).

Figure 7. Backbone RMSD of the truncated SARS-CoV-2 S RBD and ACE2 complex relative
to the truncated part of the experimental crystal structure of the full complex, along the 50 ns
production trajectory.

3.2. Efficient Calculation of Entropy: Selection of a Few Snapshots

Entropy calculation is one of the most challenging and time-consuming parts of
∆Gbind estimation. Even after truncation, it took one day using 10 threads in parallel
to calculate −T∆S on 150 snapshots on a server with the following specifications: Intel
(R) Xeon (R) CPU 2.60 GHz and 32 GB RAM. In order to maintain a consistent protocol,
150 snapshots were selected for −T∆S calculations. We also conducted an investigation to
examine whether a fewer number of snapshots would be sufficient for accurate calculation
of entropy. Two subsets, one of 15 equidistant snapshots and the other of 50 equidistant
snapshots, were collected from the set of 150 snapshots. According to Figure 8 it is observed
that entropies calculated on 15 and 50 sample snapshots lead to a similar −T∆S calculated
on the whole set. Apparently, the standard error of the mean decreases as the sample
size increases; however, this does not affect the stability of the mean around 52 kcal/mol.
Given entropy calculation as the bottleneck of more accurate ∆Gbind estimations, this
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observation suggests that with a relatively small set of snapshots, it is still possible to
accurately compute −T∆S.

Figure 8. Entropy convergence of the truncated SARS-CoV-2 S RBD and ACE2 complex. Means and
standard error of the means are shown. Increasing the number of equidistant sample points from 15
to 150 shows the stability of the entropy around 52 kcal/mol.

3.3. MM/GBSA on Ras–Raf

GBNSR6—the most accurate flavor of GB in terms of calculating polar binding free
energy [56]—was selected as the implicit solvent model in MM/GBSA. In this model,
the choice of atomic radii plays an important role, reflected through the dielectric boundary
in ∆Gpol and SASA in ∆Gnonpol . Two sets of atomic radii are considered here: the standard
Bondi radii and the recently optimized radii set called OPT1. According to Figure 9, it is
observed that ∆Gbind calculated by GBNSR6 coupled with OPT1 radii underestimates the
binding affinity, whereas GBNSR6 coupled with Bondi radii overestimates it. One rationale
for this observation would be that Bondi and OPT1 have very different physical foundations
behind them (geometry for the former and global optimization of the electrostatics for
the latter), so the resulting errors are not as strongly correlated as for radii derived on
the same principle. Both of these results have better agreement with the experiment [72]
compared to the reference MGB model in [28]. It is noticed that the consensus estimate
∆Gbind = (Gbind(Bondi) + Gbind(OPT1))/2 ≈ −11.87 kcal/mol is only 2 kcal/mol off the
experimental reference. Encouraged by this agreement with experiment, we used GBNSR6
with both Bondi and OPT1 radii to produce a consensus estimate of ∆Gbind for the SARS-
CoV-2 S RBD and ACE2 complex.

Figure 9. MM/GBSA results for Ras-Raf. The experimental value is from isothermal titration
calorimetry [72]. An offset of 1.79 kcal/mol has been subtracted from the ∆H component of MGB-
based estimate [28] for consistency with the author’s recommendation.
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3.4. MM/GBSA on SARS-CoV-2 S RBD and ACE2

The result of calculating ∆Gbind on the truncated structure (explained in Section 3.1)
and the full structure (explained in Section 2.6) are shown in Table 2. The entropy term of the
both structures is the same, as expected from the truncation process explained in Section 3.1.
The enthalpy term, however, is calculated on the truncated and full structures separately.
The final estimates are compared to another study [73], in which ∆Gbind of a structure
similar to the SARS-CoV-2 S RBD and ACE2 complex has been determined experimentally.
Similar to Figure 9, it is observed that the two radii sets provide a feasible range in which
the experimental value lays. More specifically, ∆Gbind calculated with Bondi radii provides
a lower bound and ∆Gbind calculated by OPT1 radii provides an upper bound on the
binding affinity of the structure. Incidentally, the consensus estimate for the truncated
and full complexes are ∆Gbind = −9.4± 1.5 kcal/mol and ∆Gbind = −2.92± 1.5 kcal/mol,
respectively. The former is in near quantitative agreement with the experiment, suggesting
that working with the truncated structure not only accelerates the computations, but also
leads to a more accurate estimation of absolute binding free energy. The consensus estimate
of the full structure, however, is quite off the experimental reference. In particular, ∆Gbind
calculated with the OPT1 atomic radii is extremely underestimated which may necessitate
further investigations in radii optimization. This observation could also be due to the
exact replication of entropy term for the truncated and full structures. A more accurate
alternative could be finding a constant factor (or a function) that adjusts the entropy term
adapted from the truncated structure to the original structure.

Table 2. MM/GBSA results on the truncated SARS-CoV-2 S RBD and ACE2 complex. Means and
the standard errors of the mean are listed. All the components are in kcal/mol. Experimental value is
derived from a fit to surface plasmon resonance sensogram [73].

Truncated Structure Full Structure Exp.

Bondi OPT1 Bondi OPT1

∆EMM −453.76 ± 0.87 −453.76 ± 0.87 −614.29 ± 0.91 −614.29 ± 0.91

∆Gnonpol −14.71 ± 0.02 −16.35 ± 0.02 −14.32 ± 0.01 −16.42 ± 0.02

∆Gpol 401.55 ± 0.81 413.72 ± 0.87 566.49 ± 0.84 582.43 ± 0.87

∆H −66.93 ± 0.29 −56.39 ± 0.37 −62.12 ± 0.31 −48.28 ± 0.44

−T∆S 52.28 ± 1.49 52.28 ± 1.49 52.28 ± 1.49 52.28 ± 1.49

∆Gbind −14.65 ± 1.52 −4.11 ± 1.54 −9.84 ± 1.52 4 ± 1.55 −10.6

4. Conclusions

In this study, an effective MM/GBSA protocol is introduced for the absolute binding
free energy calculation of SARS-CoV-2 S RBD and ACE2 complex. This protocol is designed
based on the Ras–Raf complex, which has a similar energy profile and has been widely
studied in the literature. We evaluated the performance of a relatively new GB model and
the newly introduced intrinsic atomic radii, called OPT1, in binding free energy calculation
of Ras–Raf. A common set of atomic radii (Bondi) was also tested. It was observed that
the two radii sets provide a reasonable range for ∆Gbind, which contains the experimental
value. More specifically, ∆Gbind calculated with Bondi radii is overestimated (lower bound),
whereas ∆Gbind calculated by OPT1 radii is underestimated (upper bound). The consensus
estimate of the two ∆Gbinds (i.e., the midpoint of the range) was in quantitative agreement
with the reference experiment. Encouraged by the better agreement with experiment for
Ras–Raf compared to a previous work, we applied the same approach to estimate ∆Gbind
of the SARS-CoV-2 S RBD and ACE2 complex. As a bottleneck of our simulation, entropy
calculation was studied exclusively. We modified the standard truncation approach for
dealing with large structures so that the final truncated structure becomes one connected
component which is biologically interpretable. In order to confirm that working with the
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truncated structures does not affect the accuracy of final ∆Gbind, the enthaply component
was calculated for both full and truncated structures of SARS-CoV-2. Similar to the Ras–Raf
case study, it was observed that the ∆Gbind calculated by the two sets of radii provide
a feasible range in which the consensus estimate demonstrates quantitative agreement
with the experiment for the truncated structure. The high binding affinity of SARS-CoV-
2/ACE2, which has been experimentally measured and computationally validated, may
be associated with the great severity of the virus. The proposed MM/GBSA protocol is
recommended for future analysis of relative binding free energies in the SARS-CoV-2 S RBD
and ACE2 system, including the effects of mutations, relative contributions from various
residues to ∆Gbind and congeneric series of ligands.
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