Electronic supporting information for

A versatile solid-phase approach to the synthesis of oligonucleotide conjugates with biodegradable hydrazone linker⁺

Mariya I. Meschaninova ^{1,*}, Nina S. Entelis ², Elena L. Chernolovskaya ¹, Alya G. Venyaminova ¹

¹Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of Russian Academy of Sciences, Novosibirsk 630090, Russia; elena_ch@niboch.nsc.ru (E.L.C.); ven@niboch.nsc.ru (A.G.V)

² UMR Genetique Moleculaire, Genomique, Microbiologie (GMGM), Strasbourg University

- CNRS, Strasbourg 67084, France; n.entelis@unistra.fr

*Correspondence: mesch@niboch.nsc.ru; Tel: +7-383-3635129

Content

	Page
Figure S1. ¹ H-NMR spectrum of (IV)	S2
Figure S2. ¹ H-NMR, ¹³ C-NMR and ESI-MS spectra of (V)	S 3
Figure S3. ¹ H-NMR spectrum of (VI)	S4
Figure S4. ¹ H-NMR, ¹³ C-NMR and ESI-MS spectra of (VII)	S 5
Figure S5. ¹ H-NMR spectrum of (VIII)	S6
Figure S6. ¹ H-NMR, ¹³ C-NMR and ESI-MS spectra of (IX)	S 7
Figure S7. Optimization of conditions of the solid-phase synthesis of 5'-Chol-	S 8
L-dT7(1)	
Figure S8. Stability of hydrazone bond of 5'-Chol-L-dT7 (1) under treatment	S9
in different deblocking conditions	
Figure S9. PAGE-analysis of reaction mixtures after the synthesis of	S10
conjugates (2-4,6,8-17) with hydrazone bond	
Figure S10. ESI-MS spectrum of Ald-siRNA/s	S11
Figure S11. ESI-MS spectra of Chol-L-siRNA/s and product of its destruction	S12
Figure S12. ESI-MS spectra of Toc-L-siRNS/s and products of its destruction	S13
Figure S13. ESI-MS spectrum of Chol-L1-C57/1	S14
Figure S14. ESI-MS spectrum of Chol-L1-C57/2	S15
Figure S15. Kinetic curves of hydrazone bond cleavage in lipophilic	S16
conjugates Chol-L-siRNA/s and Toc-L-siRNA/s at different pH	

Figure S1. ¹H-NMR spectrum of 6-(cholesteryloxycarbonylamino)-hexanoic acid (**IV**). NMR spectrum was measured with CDCl₃ as a solvent using AVANCE III 400 NMR spectrometer. The assignment of peaks in the NMR spectrum is given in the experimental part.

Figure S2. ¹H-NMR (**a**), ¹³C-NMR (**b**) and ESI-MS (**c**) spectra of 6-[2,5,7,6-tetramethyl-2-(4',8',12'-trimethyltridecyl)-chroman-6-yloxycarbonyl]-hexanoic acid (**V**). NMR spectra were measured with CDCl₃ as a solvent using AVANCE III 400 NMR spectrometer. Mass spectrum was recorded by the ESI LC/MS XCT. The assignment of peaks in the NMR spectra is given in the experimental part.

Figure S3. ¹H-NMR spectrum of methyl 6-(cholesteryloxycarbonylamino)-hexanoate (**VI**). NMR spectrum was measured with CDCl₃ as a solvent using AVANCE III 400 NMR spectrometer. The assignment of peaks in the NMR spectrum is given in the experimental part.

Figure S4. ¹H-NMR (**a**), ¹³C-NMR (**b**) and ESI-MS (**c**) spectra of methyl 6-[2,5,7,6tetramethyl-2-(4',8',12'-trimethyltridecyl)-chroman-6-yloxycarbonyl]-hexanoate (**VII**). NMR spectra were measured with CDCl₃ as a solvent using AVANCE III 400 NMR spectrometer. Mass spectrum was recorded by the ESI LC/MS XCT. The assignment of peaks in the NMR spectra is given in the experimental part.

Figure S5. ¹H-NMR spectrum of hydrazide 6-(cholesteryloxycarbonylamino)-hexanoate (**VIII**). NMR spectrum was measured with CDCl₃ as a solvent using AVANCE III 400 NMR spectrometer. The assignment of peaks in the NMR spectrum is given in the experimental part.

Figure S6. ¹H-NMR (**a**), ¹³C-NMR (**b**) and ESI-MS (**c**) spectra of hydrazide 6-[2,5,7,6-tetramethyl-2-(4',8',12'-trimethyltridecyl)-chroman-6-yloxycarbonyl])-hexanoate (**IX**). NMR spectra were measured with CDCl₃ as a solvent using AVANCE III 400 and 500 NMR spectrometers. Mass spectrum was recorded by the ESI LC/MS XCT. The assignment of peaks in the NMR spectra is given in the experimental part.

Figure S7. Optimization of conditions of the solid-phase synthesis of 5'-Chol-L-dT₇ (**1**). Chol: cholesterol residue; L: -OC(O)NH(CH₂)₅C(O)NH-N=CH-C₆H₄O(CH₂)₂OP(O)(OH)-; Ald: HC(O)C₆H₄O(CH₂)₂OP(O)(OH)-. Products were analyzed by gel electrophoresis in 20% PAAG under denaturing conditions (AA/bisAA 30:1, 7 M urea, TBE) and stained with Stains-all.

Figure S8. Stability of hydrazone bond of 5'-Chol-L-dT₇ (1) under treatment in different deblocking conditions: a) 28% NH₃ aq., 55 °C, 16 h; b) AMA-solution, 65 °C, 15 min; c) AMA-solution, RT, 16 h; d) 0.05M K₂CO₃ in methanol, RT, 16 h; e) NMP/TEA • 3HF/TEA (150/100/75), 65 °C, 1.5 h. K: model 5'-Chol-L-dT₇; L: -OC(O)NH(CH₂)₅C(O)NH-N=CH-C₆H₄O(CH₂)₂OP(O)(OH)-; Chol: cholesterol residue. Products were analyzed by gel electrophoresis in 20% PAAG under denaturing conditions (AA/bisAA 30:1, 7 M urea, TBE) and stained with Stains-all.

Figure S9. PAGE-analysis of reaction mixtures after the synthesis of conjugates (**2-4,6,8-17**) with hydrazone bond. (**A**) 5'-Lipophilic conjugates of sense strand of siRNA (**2,3**); (**B**) 5'-Lipophilic conjugate of mitochondrial antireplicative RNA (**4**); (**C**) 5'- Lipophilic conjugates of mitochondrial antireplicative RNAs (**8-11**); (**D**) 5'- Lipophilic conjugates of mitochondrial antireplicative RNAs (**8-11**); (**D**) 5'- Lipophilic conjugate of mitochondrial antireplicative RNA (**6**) and guide RNA (**12**); (**E**) 5'- Lipophilic conjugate of mitochondrial guide RNA (**13**); (**F**) 5'-Lipophilic conjugates of crRNAs (**14,15**); (**H**) 5'-Lipophilic conjugates of crRNAs (**16,17**). K – initial oligonucleotide. Structures of conjugates are given in Table 1. Products were analyzed by gel electrophoresis in 15% or 20% PAAG under denaturing conditions (AA/bisAA 30:1, 7 M urea, TBE) and stained with Stains-all. BP - bromophenol blue.

[H5] / 1412.20

Mfound 7065.34

Figure S10. ESI-MS spectrum of Ald-siRNA/s. Ald: HC(O)C6H4O(CH2)2OP(O)(OH)-.

M 7066.00

Figure S11. ESI-MS spectra of Chol-L-siRNA/s and product (☆) of its destruction. Chol: cholesterol residue; L: - OC(O)NH(CH₂)₅C(O)NH-N=CHC₆H₄O(CH₂)₂OP(O)(OH)-.

☆- Aldehyde-containing oligonucleotide Ald-siRNA/s (see Figure S10).

о н о о р-0-5-siRNA/s-з-он о-	Mcalcd 7066.34
[H9] / 784.00	M 7065.00
[H8] / 882.00	M 7064.00
[H7] / 1008.90	M 7069.30
[H6] / 1176.20	M 7063.20
	Mfound 7065.38

Figure S12. ESI-MS spectra of Toc-L-siRNA/s and products (\bigstar , \bigstar) of its destruction. Toc: α -tocopherol residue; L: -OC(O)NH(CH₂)₅C(O)NH-N=CHC₆H₄O(CH₂)₂OP(O)(OH)-.

☆ - Aldehyde-containing oligonucleotide Ald-siRNA/s (see Figure S10).

+ - Isocyanate derivative of oligonucleotide siRNA/s.

Figure S13. ESI-MS spectrum of Chol-L₁-C57/1. Chol: cholesterol residue; L₁: - OC(O)NH(CH₂)₅C(O)NH-NH-CH₂C₆H₄O(CH₂)₂OP(O)(OH)-.

Figure S14. ESI-MS spectrum of Chol-L₁-C57/2. Chol: cholesterol residue; L₁: - OC(O)NH(CH₂)₅C(O)NH-NH-CH₂C₆H₄O(CH₂)₂OP(O)(OH)-.

Figure S15. Kinetic curves of hydrazone bond cleavage in lipophilic conjugates Chol-LsiRNA/s (**a**) and Toc-L-siRNA/s (**b**) at different pH. Quantification of the full size conjugate (%, axis Y) depending on pH and the time of incubation. The results are mean value (±SD) from three independent experiments.