Electronic supporting information for

A versatile solid-phase approach to the synthesis of oligonucleotide conjugates with biodegradable hydrazone linkert

Mariya I. Meschaninova ${ }^{1, *}$, Nina S. Entelis ${ }^{2}$, Elena L. Chernolovskaya ${ }^{1}$, Alya G. Venyaminova ${ }^{1}$

${ }^{1}$ Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of Russian Academy of Sciences, Novosibirsk 630090, Russia; elena_ch@niboch.nsc.ru (E.L.C.); ven@niboch.nsc.ru (A.G.V)
${ }^{2}$ UMR Genetique Moleculaire, Genomique, Microbiologie (GMGM), Strasbourg University
- CNRS, Strasbourg 67084, France; n.entelis@unistra.fr
*Correspondence: mesch@niboch.nsc.ru; Tel: +7-383-3635129

Content

Page
Figure S1. ${ }^{1} \mathrm{H}-\mathrm{NMR}$ spectrum of (IV) S2
Figure S2. ${ }^{1} \mathrm{H}-\mathrm{NMR},{ }^{13} \mathrm{C}-\mathrm{NMR}$ and ESI-MS spectra of (V) S3
Figure S3. ${ }^{1} \mathrm{H}$-NMR spectrum of (VI) S4
Figure S4. ${ }^{1} \mathrm{H}-\mathrm{NMR},{ }^{13} \mathrm{C}-\mathrm{NMR}$ and ESI-MS spectra of (VII) S5
Figure S5. ${ }^{1} \mathrm{H}$-NMR spectrum of (VIII) S6
Figure S6. ${ }^{1} \mathrm{H}-\mathrm{NMR},{ }^{13} \mathrm{C}$-NMR and ESI-MS spectra of (IX) S7
Figure S7. Optimization of conditions of the solid-phase synthesis of 5'-Chol- S8
$\mathrm{L}^{-d T} \mathrm{~T}_{7}$ (1)
Figure S8. Stability of hydrazone bond of 5'-Chol-L-dT7 (1) under treatment S9
in different deblocking conditions
Figure S9. PAGE-analysis of reaction mixtures after the synthesis of S10 conjugates (2-4,6,8-17) with hydrazone bond
Figure S10. ESI-MS spectrum of Ald-siRNA/s S11
Figure S11. ESI-MS spectra of Chol-L-siRNA/s and product of its destruction S12
Figure S12. ESI-MS spectra of Toc-L-siRNS/s and products of its destruction S13
Figure S13. ESI-MS spectrum of Chol-Li-C57/1 S14
Figure S14. ESI-MS spectrum of Chol-L1-C57/2 S15
Figure S15. Kinetic curves of hydrazone bond cleavage in lipophilic S16
conjugates Chol-L-siRNA/s and Toc-L-siRNA/s at different pH

Figure S1. ${ }^{1} \mathrm{H}-\mathrm{NMR}$ spectrum of 6-(cholesteryloxycarbonylamino)-hexanoic acid (IV). NMR spectrum was measured with CDCl_{3} as a solvent using AVANCE III 400 NMR spectrometer. The assignment of peaks in the NMR spectrum is given in the experimental part.

Figure S2. ${ }^{1} \mathrm{H}-\mathrm{NMR}(\mathbf{a}),{ }^{13} \mathrm{C}-\mathrm{NMR}(\mathbf{b})$ and ESI-MS (c) spectra of 6-[2,5,7,6-tetramethyl-2-(4',8',12'-trimethyltridecyl)-chroman-6-yloxycarbonyl]-hexanoic acid (V). NMR spectra were measured with CDCl_{3} as a solvent using AVANCE III 400 NMR spectrometer. Mass spectrum was recorded by the ESI LC/MS XCT. The assignment of peaks in the NMR spectra is given in the experimental part.

Figure S3. ${ }^{1} \mathrm{H}$-NMR spectrum of methyl 6-(cholesteryloxycarbonylamino)-hexanoate (VI). NMR spectrum was measured with CDCl_{3} as a solvent using AVANCE III 400 NMR spectrometer. The assignment of peaks in the NMR spectrum is given in the experimental part.
(a)

Figure S4. ${ }^{1} \mathrm{H}-\mathrm{NMR}(\mathbf{a}),{ }^{13} \mathrm{C}-\mathrm{NMR}(\mathbf{b})$ and ESI-MS (c) spectra of methyl 6-[2,5,7,6-tetramethyl-2-(4', 8',12'-trimethyltridecyl)-chroman-6-yloxycarbonyl]-hexanoate (VII). NMR spectra were measured with CDCl_{3} as a solvent using AVANCE III 400 NMR spectrometer. Mass spectrum was recorded by the ESI LC/MS XCT. The assignment of peaks in the NMR spectra is given in the experimental part.

Figure S5. ${ }^{1} \mathrm{H}-\mathrm{NMR}$ spectrum of hydrazide 6-(cholesteryloxycarbonylamino)-hexanoate (VIII). NMR spectrum was measured with CDCl_{3} as a solvent using AVANCE III 400 NMR spectrometer. The assignment of peaks in the NMR spectrum is given in the experimental part.

(b)

Figure S6. ${ }^{1} \mathrm{H}-\mathrm{NMR}(\mathbf{a}),{ }^{13} \mathrm{C}-\mathrm{NMR}(\mathbf{b})$ and ESI-MS (c) spectra of hydrazide 6-[2,5,7,6-tetramethyl-2-(4', $8^{\prime}, 12$ '-trimethyltridecyl)-chroman-6-yloxycarbonyl])-hexanoate (IX). NMR spectra were measured with CDCl_{3} as a solvent using AVANCE III 400 and 500 NMR spectrometers. Mass spectrum was recorded by the ESI LC/MS XCT. The assignment of peaks in the NMR spectra is given in the experimental part.

Figure S7. Optimization of conditions of the solid-phase synthesis of $5^{\prime}-\mathrm{Chol}^{-L-\mathrm{dT}_{7}(\mathbf{1})}$. Chol: cholesterol residue; L: -OC(O)NH(CH2)5C(O)NH-N=CH-C6 $\mathrm{C}_{4} \mathrm{O}\left(\mathrm{CH}_{2}\right)_{2} \mathrm{OP}(\mathrm{O})(\mathrm{OH})$-; Ald: $\mathrm{HC}(\mathrm{O}) \mathrm{C}_{6} \mathrm{H}_{4} \mathrm{O}\left(\mathrm{CH}_{2}\right)_{2} \mathrm{OP}(\mathrm{O})(\mathrm{OH})$-. Products were analyzed by gel electrophoresis in 20% PAAG under denaturing conditions (AA/bisAA 30:1, 7 M urea, TBE) and stained with Stains-all.

Figure S8. Stability of hydrazone bond of 5^{\prime}-Chol-L-dT7 (1) under treatment in different deblocking conditions: a) $28 \% \mathrm{NH}_{3}$ aq., $55^{\circ} \mathrm{C}$, 16 h ; b) AMA-solution, $65^{\circ} \mathrm{C}, 15 \mathrm{~min}$; c) AMA-solution, RT, 16 h ; d) $0.05 \mathrm{M} \mathrm{K}_{2} \mathrm{CO}_{3}$ in methanol, RT, 16 h ; e) NMP/TEA $\cdot 3 \mathrm{HF} / \mathrm{TEA}$ (150/100/75), $65{ }^{\circ} \mathrm{C}$, 1.5 h . K: model $5^{\prime}-\mathrm{Chol-L-dT} 7$; L: -OC(O)NH(CH2)5 $\mathrm{C}(\mathrm{O}) \mathrm{NH}-\mathrm{N}=\mathrm{CH}-$ $\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{O}\left(\mathrm{CH}_{2}\right)_{2} \mathrm{OP}(\mathrm{O})(\mathrm{OH})$; Chol: cholesterol residue. Products were analyzed by gel electrophoresis in 20\% PAAG under denaturing conditions (AA/bisAA 30:1, 7 M urea, TBE) and stained with Stains-all.

Figure S9. PAGE-analysis of reaction mixtures after the synthesis of conjugates (2-4,6,8-17) with hydrazone bond. (A) 5'-Lipophilic conjugates of sense strand of siRNA (2,3); (B) 5'Lipophilic conjugate of mitochondrial antireplicative RNA (4); (C) 5'- Lipophilic conjugates of mitochondrial antireplicative RNAs (8-11); (D) 5'- Lipophilic conjugates of mitochondrial antireplicative RNA (6) and guide RNA (12); (E) 5'- Lipophilic conjugate of mitochondrial guide RNA (13); (F) 5'-Lipophilic conjugates of crRNAs (14,15); (H) 5'Lipophilic conjugates of crRNAs $(\mathbf{1 6 , 1 7})$. K - initial oligonucleotide. Structures of conjugates are given in Table 1. Products were analyzed by gel electrophoresis in 15% or 20% PAAG under denaturing conditions (AA/bisAA 30:1, 7 M urea, TBE) and stained with Stains-all. BP - bromophenol blue.

Intens

[H9] / 784.00
[H8] / 882.20
[H7] / 1008.30
[H6] / 1176.50
[H5] / 1412.20
$\mathrm{M}_{\text {calcd }} 7066.34$
M 7065.00
M 7065.60
M 7065.10
M 7065.00
M 7066.00
Mfound 7065.34

Figure S10. ESI-MS spectrum of Ald-siRNA/s. Ald: $\mathrm{HC}(\mathrm{O}) \mathrm{C}_{6} \mathrm{H}_{4} \mathrm{O}\left(\mathrm{CH}_{2}\right)_{2} \mathrm{OP}(\mathrm{O})(\mathrm{OH})-$.

Figure S11. ESI-MS spectra of Chol-L-siRNA/s and product ($\sqrt{2}$) of its destruction. Chol: cholesterol residue; $\mathrm{L}:-\mathrm{OC}(\mathrm{O}) \mathrm{NH}\left(\mathrm{CH}_{2}\right)_{5} \mathrm{C}(\mathrm{O}) \mathrm{NH}-\mathrm{N}=\mathrm{CHC}_{6} \mathrm{H}_{4} \mathrm{O}\left(\mathrm{CH}_{2}\right)_{2} \mathrm{OP}(\mathrm{O})(\mathrm{OH})-$.

- Aldehyde-containing oligonucleotide Ald-siRNA/s (see Figure S10).

$\mathrm{M}_{\text {calcd }} 7066.34$
[H9] / 784.00
[H8] / 882.00
[H7] / 1008.90
[H6] / 1176.20

M 7065.00
M 7064.00
M 7069.30
M 7063.20
Mfound 7065.38

Intens

Figure S12. ESI-MS spectra of Toc-L-siRNA/s and products (α-tocopherol residue; $\mathrm{L}:-\mathrm{OC}(\mathrm{O}) \mathrm{NH}\left(\mathrm{CH}_{2}\right)_{5} \mathrm{C}(\mathrm{O}) \mathrm{NH}-\mathrm{N}=\mathrm{CHC}_{6} \mathrm{H}_{4} \mathrm{O}\left(\mathrm{CH}_{2}\right)_{2} \mathrm{OP}(\mathrm{O})(\mathrm{OH})$-.

춘 - Aldehyde-containing oligonucleotide Ald-siRNA/s (see Figure S10).

Mcalcd 7066.34
[H9] / 784.02
M 7065.18
[H7] / 1009.10
M 7070.70
Mfound 7067.94
\uparrow - Isocyanate derivative of oligonucleotide siRNA/s.

Mcalcd 7221.00
[H13] / 554.39
M 7220.07
[H12] / 600.59
M 7219.08
[H11] / 655.39
M 7220.29
[H10] / 721.09
M 7220.9
[H9] / 801.29
M 7220.61
Mfound 7220.19

Intens

Mcalcd 13390.19
[H20] / 671.00
[H19] / 706.40
[H18] / 744.90
[H17] / 791.80
[H16] / 839.20
[H15] / 895.60
[H14] / 959.50
[H13] / 1033.00
[H12] / 1120.70
[H11] / 1222.60

M 13440.60-2*23(MNa+) $+2^{*} 1\left(\mathrm{MH}_{+}\right)=\mathrm{M} 13396.00$ M $13440.60-2^{*} 23\left(\mathrm{MNa}_{\mathrm{Na}}\right)+2^{*} 1\left(\mathrm{MH}_{\mathrm{H}}\right)=\mathrm{M} 13396.60$ M 13426.20-2*23(MNa+) $+2^{*} 1\left(\mathrm{MH}_{+}\right)=$M 13382.20 M 13477.60-4*23(MNa+) 4 $^{*} 1\left(\mathrm{MH}_{+}\right)=\mathrm{M} 13389.60$ M $13443.20-2^{*} 23\left(M_{\mathrm{Na}^{+}}\right)+2^{*} 1\left(\mathrm{MH}_{\mathrm{H}}\right)=\mathrm{M} 13399.20$ M $13449.00-3^{*} 23\left(\mathrm{MNa}_{\mathrm{Na}}\right)+3^{*} 1\left(\mathrm{MH}_{+}\right)=\mathrm{M} 13383.00$ M $13447.00-3^{*} 23\left(\mathrm{MNa}_{\mathrm{Na}}\right)+3^{*} 1\left(\mathrm{M}_{\mathrm{H}+}\right)=\mathrm{M} 13381.00$ M $13442.00-2^{*} 23\left(\mathrm{MNa}_{\mathrm{Na}}\right)+2^{*} 1\left(\mathrm{MH}_{\mathrm{H}}\right)=\mathrm{M} 13398.00$ M 13460.40-3*23(Mna+) 3 $^{*} 1\left(\mathrm{MH}_{+}\right)=$M 13394.40 M $13459.60-3^{*} 23\left(\mathrm{MNa}_{\mathrm{Na}}\right)+3^{*} 1\left(\mathrm{MH}_{+}\right)=\mathrm{M} 13393.60$ Mfound 13391.16

Figure S13. ESI-MS spectrum of Chol-Li-C57/1. Chol: cholesterol residue; Li: $\mathrm{OC}(\mathrm{O}) \mathrm{NH}\left(\mathrm{CH}_{2}\right)_{5} \mathrm{C}(\mathrm{O}) \mathrm{NH}-\mathrm{NH}-\mathrm{CH}_{2} \mathrm{C}_{6} \mathrm{H}_{4} \mathrm{O}\left(\mathrm{CH}_{2}\right)_{2} \mathrm{OP}(\mathrm{O})(\mathrm{OH})-$.

Figure S14. ESI-MS spectrum of Chol-Li-C57/2. Chol: cholesterol residue; Li: $\mathrm{OC}(\mathrm{O}) \mathrm{NH}\left(\mathrm{CH}_{2}\right)_{5} \mathrm{C}(\mathrm{O}) \mathrm{NH}-\mathrm{NH}-\mathrm{CH}_{2} \mathrm{C}_{6} \mathrm{H}_{4} \mathrm{O}\left(\mathrm{CH}_{2}\right)_{2} \mathrm{OP}(\mathrm{O})(\mathrm{OH})$-.

Figure S15. Kinetic curves of hydrazone bond cleavage in lipophilic conjugates Chol-LsiRNA/s (a) and Toc-L-siRNA/s (b) at different pH . Quantification of the full size conjugate (\%, axis Y) depending on pH and the time of incubation. The results are mean value (\pm SD) from three independent experiments.

