Supporting information

Figure S1. ¹⁵N longitudinal relaxation rates R_1 , transverse relaxation rates R_2 and $\{{}^{1}H\}{}^{-15}N$ heteronuclear steady NOEs of the N-terminal domain of human Aha1 (Aha1²⁸⁻¹⁶²) in its free state.

Figure S2. ¹⁵N longitudinal relaxation rates R_1 , transverse relaxation rates R_2 and $\{{}^{1}H\}{}^{-15}N$ heteronuclear steady NOEs of the C-terminal domain of human Aha1 (Aha1²⁰⁴⁻³³⁵) in its free state.

Figure S3. (a) Superposition of ¹H-¹⁵N-HSQC spectra recorded on ¹⁵N, 50% ²H-double labeled Aha1²⁸⁻³³⁵ (colored in black) and ¹⁵N, 50% ²H-double labeled Aha1²⁸⁻¹⁶² (colored in red). (b) Superposition of ¹H-¹⁵N-HSQC spectra recorded on ¹⁵N, 50% ²H-double labeled Aha1²⁸⁻³³⁵ (colored in black) and ¹⁵N, 50% ²H-double labeled Aha1²⁰⁴⁻³³⁵ (colored in purple).

Figure S4. Structural ensemble of 20 best structures of human Aha1²⁸⁻³³⁵ (PDB code: 7DME). A jellyfish-like shape was formed when human Aha1's N-terminal domain served as an anchor in the superposition of Aha1²⁸⁻³³⁵'s solution structures.

Figure S5. The two domains of human Aha1 do not interact with each other in solution. (a) Superposition of ¹H-¹⁵N-HSQC spectra recorded on ¹⁵N-labeled Aha1²⁸⁻¹⁶² (Aha1N) without (colored in black) or with (colored in red) the addition of an equal amount of unlabeled Aha1²⁰⁴⁻³³⁵ (Aha1C). (b) Superposition of ¹H-¹⁵N-HSQC spectra recorded on ¹⁵N-labeled Aha1²⁰⁴⁻³³⁵ (Aha1C) without (colored in black) or with (colored in red) the addition of an equal amount of unlabeled Aha1²⁰⁴⁻³³⁵ unlabeled Aha1²⁸⁻¹⁶² (Aha1N).

Figure S6. ¹⁵N longitudinal relaxation rates R_1 , transverse relaxation rates R_2 and $\{{}^{1}H\}{}^{-15}N$ heteronuclear steady NOEs of Aha 1^{28-335} in its free state.

Figure S7. Chemical shift changes for (a) $Aha1^{1-338} vs Aha1^{28-338}$ and (b) $Aha1^{1-338} vs Aha1^{28-335}$ were calculated by using equation (1) listed below.

$$\Delta \delta = \sqrt{\left(\left(\Delta \delta_N / 5\right)^2 + \Delta \delta_H^2\right)/2} \tag{1}$$

Figure S8. Superposition of ¹H-¹⁵N-HSQC spectra recorded on ¹⁵N-labeled Aha1¹⁻³³⁸ (colored in black) and ¹⁵N-labeled Aha1²⁸⁻³³⁵ (colored in red). Selected ¹H-¹⁵N-HSQC spectra regions are expanded to view representative residues which undergo resonance shifting upon the absence of Aha1's N-terminal fragment spanning M1-W27.

Figure S9. Representative SDS-PAGE gels for the preparations of protein samples used in the study. SDS-PAGE (15% gel) results for the purifications of (a) Aha1²⁸⁻³³⁸, (b) Aha1²⁸⁻³³⁵, (c) Aha1¹⁻³³⁸, (d) α -synuclein, (e) Aha1²⁸⁻¹⁶² and (f) Aha1²⁰⁴⁻³³⁵. The protein molecular weight marker lane (26610, Thermo ScientificTM) is labeled with M, and the gel staining results for the purified protein samples used in the experiments are highlighted with red box.