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Abstract: Tannic acid is a chief gallo-tannin belonging to the hydrolysable tannins extracted from
gall nuts and other plant sources. A myriad of pharmaceutical and biological applications in the
medical field has been well recognized to tannic acid. Among these effects, potential anticancer
activities against several solid malignancies such as liver, breast, lung, pancreatic, colorectal and
ovarian cancers have been reported. Tannic acid was found to play a maestro-role in tuning several
oncological signaling pathways including JAK/STAT, RAS/RAF/mTOR, TGF-β1/TGF-β1R axis,
VEGF/VEGFR and CXCL12/CXCR4 axes. The combinational beneficial effects of tannic acid with
other conventional chemotherapeutic drugs have been clearly demonstrated in literature such as
a synergistic anticancer effect and enhancement of the chemo-sensitivity in several resistant cases.
Yet, clinical applications of tannic acid have been limited owing to its poor lipid solubility, low
bioavailability, off-taste, and short half-life. To overcome such obstacles, novel drug delivery systems
have been employed to deliver tannic acid with the aim of improving its applications and/or efficacy
against cancer cells. Among these drug delivery systems are several types of organic and metallic
nanoparticles. In this review, the authors focus on the molecular mechanisms of tannic acid in tuning
several neoplastic diseases as well as novel drug delivery systems that can be used for its clinical
applications with an attempt to provide a systemic reference to promote the development of tannic
acid as a cheap drug and/or drug delivery system in cancer management.

Keywords: tannic acid; anticancer; combinatorial effects; drug delivery systems; nanoparticles;
molecular mechanisms

1. Introduction

The process of carcinogenesis consists of complex steps that end up by transforming
a normal functional cell into an unresponsive aggressive neoplastic one [1]. This process
involves a series of transition states starting with initiation, promotion, progression and
to end up with metastasis to other distant organs [2]. Alterations at the genetic and the
epigenetic levels are the main fuels that promote such transitions in cancer development [3].

Yet, the introduction of nutraceuticals or phytochemicals in the field of oncology
has shown promising results concerning prevention, treatment and/or harnessing of that
disease [4–6]. Moreover, nutraceuticals’ potential has exceeded the limits, and very recent
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reports have highlighted their potential in tuning the immunogenic profile of cancer cells to
be radically eliminated by the immune cells in a process called immune surveillance [6,7].
A positive correlation between a healthy diet that is rich in fruits and vegetables, and
the prevention of health-daunting diseases such as cancer, has been well evidenced, and
is partially ascribed to polyphenols as dietary bioactive class [8]. Natural compounds
were reported to halt carcinogenesis through several molecular mechanisms such as the
regulation of cell cycle, cell apoptosis, migration, invasion, cancer stemness phenotype and
other molecular signaling pathways [4].

Tannins are phenolic compounds resulting from the secondary metabolism in several
plants of high economic and ecological values. Tannic acid (TA) is a hydrolysable tannin
present in several natural sources such as grapes, green tea, coffee, and others [9]. Concern-
ing the physiochemical properties of TA, its molecular weight is 1701.2 g/mol with weak
acidic properties and a strong astringent taste. TA exhibits a myriad of medicinal benefits
such as anticancer, antioxidant, anti-inflammatory and neuro-protective effects [10]. In
contrast, TA can interact with biopolymers and macromolecules by cross-linking due to
its hydroxy and carboxy groups [11], posing it as a promising pharmaceutical candidate.
This review focuses on TA potential as an anticancer agent and its possible incorporation
in several drug delivery systems to improve its delivery, efficacy and clinical application.

TA has been recently casted as one of the promising polyphenolic phytochemicals that
has a well-defined role in each transition step in the process of carcinogenesis [12]. It retains
several pharmacological actions that pose it as a potential antitumorigenic agent mediated
via various mechanisms of actions including radical scavenging [13], anti-oxidant [14] and
anti-inflammatory effects [15]. However, little is known about the molecular signaling
pathways tuned by such phytochemical compound in different malignant scenarios.

Recently, a growing volume of evidence has been piled in literature supporting the
versatile ability of TA in harnessing the oncological process. Novel molecular mechanisms
have been drawn downstream TA, thus confirming its potential anticancer action, posing
TA as an adjuvant therapy in combination with other conventional chemotherapeutic
agents. In this review, our main aim is to unveil the molecular mechanisms underlying the
anticancer properties of TA and its intracellular target proteins in different cancer types, as
summarized in Table 1, and Figures 1 and 2.

Table 1. Molecular targets of tannic acid (TA) in various neoplastic diseases.

Effect Molecular Target Cancer Type References

Inhibition

TGF-β1/TGF-β1R axis Lung Cancer and Breast Cancer [16,17]

EMT Mediators Lung Cancer [16]

VEGF/VEGFR axis Lung Cancer [18]

Cyclin D1 Lung Cancer, Prostate Cancer,
Gingival Cancer [18–20]

BCL-2 Lung Cancer, Prostate Cancer [18,19]

SOX2 Lung Cancer [21]

OCT4 Lung Cancer [21]

NANOG Lung Cancer [21]

Fatty acid synthase Breast Cancer [22]

JAK/STAT signaling pathway Gingival Cancer, Breast Cancer, [20,23]

epidermal growth factor receptor
(EGFR) Breast Cancer [23]

NF-Kb Breast Cancer [17]

CXCL12/CXCR4 Breast Cancer [24]
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Table 1. Cont.

Effect Molecular Target Cancer Type References

pyruvate kinase isoenzyme M2
(PKM2) Colorectal Cancer [25]

MMPs Prostate Cancer, Liver Cancer, [19,26]

poly(ADP-ribose) glycohydrolase
(PARG) Ovarian Cancer [27]

Induction

p53 Lung Cancer, Gingival Cancer [18,20]

p21 Lung Cancer, Prostate Cancer,
Gingival Cancer [18–20]

P27 Gingival Cancer [20]

p18 Lung Cancer, Prostate Cancer [18,19]

BAX Lung Cancer, Prostate Cancer [18,19]

Caspases Prostate Cancer, Breast Cancer, Liver
Cancer, Ovarian Cancer [19,22,28], [27]

Bak and FADD ratio Colorectal Cancer [29]

ER stress response (Protein kinase
R-like endoplasmic reticulum

kinase (PERK) and inositol
requiring enzyme 1 (IRE1)

Prostate Cancer [19]
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Figure 1. Tannic acid (TA) acts as a repressor for multiple proteins essential in several oncological signaling pathways. 

TA inhibits SMAD-dependent gene transcription in response to TGF-β, therefore inhibiting the transcription of TGF-β 

target genes. TA also inhibits VEGF/VEGFR, inhibiting a major angiogenesis signaling pathway in cancer. Moreover, TA 

inhibits the expression of SOX2 gene and inhibits EGF/EGFR signaling pathway and consequently cell growth and pro-

liferation. 

Figure 1. Tannic acid (TA) acts as a repressor for multiple proteins essential in several oncological signaling pathways. TA
inhibits SMAD-dependent gene transcription in response to TGF-β, therefore inhibiting the transcription of TGF-β target
genes. TA also inhibits VEGF/VEGFR, inhibiting a major angiogenesis signaling pathway in cancer. Moreover, TA inhibits
the expression of SOX2 gene and inhibits EGF/EGFR signaling pathway and consequently cell growth and proliferation.
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Figure 2. Induction of tumor suppressor proteins by tannic acid (TA). TA enhances the phosphorylation of p53, thereby
increasing the expression of its target genes such as p21 and BAX. Moreover, on another level, TA could stimulate both p21
and BAX gene expression directly. TA also stimulates the gene expression of p27 and p18.

2. TA in Lung Cancer

Globally, lung cancer is the leading cause of cancer-related deaths [30]. Statistically,
around 80% of lung cancer cases fall under the non-small-cell lung carcinoma (NSCLC)
category. TA was found to repress several hallmarks of lung cancer in vitro such as the
repression of cellular viability, invasion, colony forming ability, migration and cancer cells’
stemness [16,21]. This was verified in two NSCLC cell lines known as A549 and H1299, and
with no significant toxicity effects on human bronchial epithelial cells (BEAS-2B). Mechanisti-
cally, this was achieved through the direct binding of TA to transforming growth factor-β1
(TGF-β1), leading to a simultaneous repression of TGF-β1 and TGF-β1 receptor (TGF-β1R),
turning off all signaling pathways downstream TGF-β1/TGF-β1R, as shown in Figure 1 [16].
Moreover, a repression of several epithelial-to-mesenchymal transition (EMT) mediators
such as N-cadherin, type-1-collagen, fibronectin, and vimentin in A549 cell lines was also
observed. Additionally, a significant deactivation of Smad2/3/Akt/ERK1/2/JNK1/2 and
p38 mediators was detected [16]. Likewise, a repression of VEGF/VEGFR2-related pathway
was confirmed [18]. It should be noted that TA effects on NSCLC cells have been extended to
affect vital cell cycle regulatory proteins such as Cyclin D1, p53, p21, p18, BAX, BCL-2 [18]. In
such context, another recent study performed by Nipin et al. also confirmed the pro-apoptotic
effects of TA in NSCLC cells via inducing cell cycle arrest at G0/G1 phase [21], where cell
cycle arrest at this particular phase has been a repeatedly reported phenomena exhibited
by TA in lung cancer cells [16,18]. Also, the same group has reported that TA could reduce
the stemness of NSCLC cells through reducing the sphere formation ability of A549 cells
concurrent with a reduction of SOX2, OCT4 and NANOG expression that represent vital
markers for cancer stem cells (see Figure 1). Likewise, a marked reduction in the percent-
age of cells over-expressing CD133 was evidenced [21]. Collectively, these experimental
evidences support the anticancer activity of TA against lung cancer and specifically NSCLC
cells. However, it should be noted that all reported studies were based on in vitro testing
of TA against NSCLC cells; thus, this urges more research on TA molecular mechanisms
to confirm such results using in vivo models. It is essential in parallel to perform selective
toxicity studies for TA to confirm the selective anticancer effects of TA against lung cancer
and to promote its use in clinical trials in the future.
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3. TA in Breast Cancer

Breast cancer (BC) is considered the most common cause of cancer-related mortalities
among women [30]. BC is a heterogeneous disease that involves various molecular sub-
types such as hormone receptors-positive tumors, human epidermal growth factor (HER-2)
over-expressed tumors and the most aggressive subtype, triple-negative tumors [31,32].
TA has been described as an anticancer agent in all the previously mentioned molecular
subtypes, found to induce apoptosis in hormone receptors-positive BC cells (MCF-7) [33],
HER-2 positive BC cells (BT474) [34] and the triple-negative BC cells (MDA-MB-231) [22]
mainly by activating a series of caspases such as caspase 3/7 and caspase 9, as shown in
Figure 2 and inhibiting the overly expressed fatty acid synthase in BC cells [22]. Mechanis-
tically, TA was found to negatively regulate the oncogenic JAK/STAT signaling pathway
in BC cells regardless of its molecular subtype, as indicated in Figure 1 [23]. Furthermore,
it was also found to deactivate the epidermal growth factor receptor (EGFR) and thus to
affect the canonical and non-canonical STAT pathways resulting in G1 arrest and activation
of intrinsic apoptotic pathways in BC cells [23]. In a more comprehensive study, TA was
reported to alleviate TGF-β induced EMT and NF-κB activation, thus inhibiting cancer stem
cells’ (CSCs) activity in murine mouse model, highlighting TA as a promising therapeutic
approach for BC patients [17]. It is also worth mentioning that TA was found not to inhibit
the normal human epithelial cells (MCF10) growth posing TA as a selective anticancer agent
in BC [33]. TA was identified as a novel selective CXCL12/CXCR4 antagonist being able to
selectively inhibit CXCL12-induced migration (IC50, 7.5 µg/mL) in MDA-MB-231 cells, as
shown in Figure 1 and Table 1 [24]. Nonetheless, TA was found to ameliorate doxorubicin
(potent anti-cancer agent)-induced cardiotoxicity and to further potentiate its anticancer
activity against MDA-MB-231 cells [35]. Formulation based on TA to ameliorate doxoru-
bicin side effects shall be discussed later in this review. In a more translational approach,
TA was tested in a combinatorial approach with paclitaxel, a standard chemotherapeutic
agent for BC as well as other solid malignancies such as ovarian, pancreatic and NSCLC.
A crystal-clear synergistic effect was observed upon co-treatment of MDA-MB-231 cells
with TA and paclitaxel on the proliferation, colony-forming ability, migration and invasion
capacities when compared to the solo-treatment of MDA-MB-231 cells with Paclitaxel [36].
Therefore, such intensive investigational studies of TA against different BC cell lines, mouse
models and in combinational treatment protocols highly suggest the pan-tumor suppressor
activity of TA against multiple subtypes of BC, including the most aggressive BC subtype
(triple-negative BC).

4. TA in Colorectal Cancer

Colorectal cancer (CRC) is the third most common cancer worldwide after lung and
breast cancers among both sexes, yet is the second most common cause of cancer-related
mortalities in both males and females collectively [30]. CRC was one of the earliest types
of cancers that was reported to respond to the anticancer activity of TA. TA was found to
reduce the cellular viability of CaCo-2 cell lines in a dose- and time-dependent manner
through increasing the apoptotic index of such cells as well as inducing the Bak and Fas-
associated protein with death domain (FADD) protein percentage ratios. Such evidence
unveiled a potential role of TA in inducing apoptosis in CRC through mitochondrial and
death receptor pathways [29]. In a more comprehensive study, TA was found to act as a
selective inhibitor of pyruvate kinase isoenzyme M2 (PKM2) in CRC cells resulting in an
attenuation of the CRC cellular proliferation capacity, as shown in Figure 1 [25]. In a more
clinical approach, TA was reported to alleviate several side effects exhibited by Oxaliplatin
anticancer agent, where it was found that a combinatory approach of dual delivering
TA and Oxaliplatin showed several advantages over conventional usage of Oxaliplatin
treatment alone. TA/Oxaliplatin combination resulted in a synergistic reduction in the
tumor size of the induced human CRC in vivo, improved the quality of life and prolonged
the survival time of mice. This collectively supports the anticancer activity of TA CRC both
in vitro and in vivo, yet a more detailed description of the molecular activity of TA in CRC
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cells is highly needed to exactly recognize the array of downstream signals which might
propagate inside CRC cells.

5. TA in Liver Cancer

Liver cancer is the third leading cause of cancer-related deaths among males [30]. TA
was found to act in a synergistic manner with Cisplastin (a potent antitumor agent) in
preventing liver cancer progression in vitro through inducing the mitochondrial-mediated
apoptosis [37]. Moreover, Mhlanga et al. have recently reported the effect of TA on
HepG2 cells where they found out that TA induced apoptotic pathways, increased reactive
oxygen and nitrogen species while decreased antioxidants expression. Consequently, DNA
fragmentation via caspase-dependent and -independent pathways has occurred followed
by instant cell death, as shown in Figure 2 [28]. It is also worth mentioning that TA
has been described as a hepato-protective and anti-fibrotic agent where it was found to
decrease ALT and AST serum levels in vivo and to act as fibrinolytic agent through altering
the TIMP/MMP balance and thus inhibit the activation of the hepatic stellate cells (chief
fibrinogenic cell in liver) [26]. Collectively, TA can be described as dually acting anti-fibrotic
and anticancer agent in liver cancer, suggesting its high potential in alleviating steatotic
and liver cancer patients.

6. TA in Ovarian Cancer

Epithelial ovarian cancer is regarded as the most common and fatal ovarian cancer of
gynecological malignancies [27]. Advanced ovarian cancer patients are the least fortunate
in terms of effective therapeutic approaches, where the backbone treatment is cytoreductive
surgery and Cisplatin-based chemotherapy. Yet, a large proportion of patients exhibit an
innate or acquired type of resistance against Cisplastin-based treatment protocols [38].
In such context, TA was investigated in combination with Cisplastin in different human
ovarian carcinoma cell lines such as Cisplatin-resistant (SKOV-3 CDDP/R) and Cisplatin-
sensitive (SKOV-3). Such combinational approach was found to induce apoptosis and
increase DNA damage in both ovarian carcinoma cell lines [27]. Such effect was not
exhibited in normal human ovarian cell, suggesting for its safety. Mechanistically, it
was found that TA enhances the activity of Cisplatin in ovarian carcinoma cells through
the inhibition of poly(ADP-ribose) glycohydrolase (PARG) expression, increasing the
accumulation of poly(ADP-ribose) (pADPr), following the release of apoptosis-inducing
factors, and the activation of caspase-3, as shown in Figures 1 and 2, thus drawing a
clear mechanism for how/why TA is recommended in a combinatorial approach with
Cisplatin in the treatment of advanced ovarian carcinoma, especially in the case of Cisplatin-
resistant patients [27].

7. TA in Pancreatic Cancer

Pancreatic cancer (PanCa) is one of the most lethal carcinomas, with a 5 year survival
rate of only 7% [39]. PanCa is typically diagnosed at a late stage of the disease, rendering
the surgical option and leaving PanCa patients as victims for the side effects associated
with the ineffective chemotherapeutic agents such as 5-Flurouracil, Gemcitabine, and
Irinotecan [40], highlighting an urgent need to foster other drug regimens or combinations
to improve patients’ survival rates. The implication of TA in a combinational strategy
with the 3 FDA-approved chemotherapeutic agents—5-Flurouracil, Gemcitabine, and
Irinotecan—in a nano-technological fashion was examined. TA was used as part of an
innovative approach of highly stable nano-complexes specifically targeting pancreatic
cancer adenocarcinoma (PDAC) cell lines (HPAF-II and PANC-1) resulting in a marked
repression of PDAC cellular proliferation and clonogenicity [40].

8. TA in Prostate Cancer

Prostate cancer (PCa) is the second most common cause of cancer-related mortalities
after lung cancer in males [30]. TA was found to retract cellular growth, clonogenic,
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invasive, and migratory capacities of PCa cells [19,41]. Mechanistically, TA was found to
induce ER activation stress response (Protein kinase R-like endoplasmic reticulum kinase
(PERK) and inositol requiring enzyme 1 (IRE1)), and alter their downstream regulatory
proteins (ATF4, Bip, and PDI) expression in PCa cell lines, Table 1 [19]. Nonetheless,
TA treatment was reported to induce the expression of the apoptosis-associated markers,
i.e., Bak, Bim, cleaved caspase 3, and cleaved PARP (Figure 2). On the other hand, a marked
repression of the pro-survival proteins (Bcl-2 and Bcl-xL) was also reported in the same
experiment, as shown in Figure 1. It is also important to note that TA had an effect on cell
cycle in PCa cells where an arrest of G1/S phase was reported together with an elevation
of the tumor suppressor proteins p18 and p21 concurrent with suppression of cyclin D1
expression. Also, a marked attenuation of MMP2 and MMP9 was reported to suggest for
the antimetastatic potential of TA against PCa cell lines [19]. Nevertheless, such effect has
yet to be tested using animal models to be more conclusive. In a more comprehensive study,
a dose-dependent attenuation of C4-2, DU145, and PC-3 cellular proliferation was reported
in response to TA administration. Additionally, an induction of ROS species has been
evidenced in PCa cells as a result of induction of endoplasmic reticulum stress signaling
pathway upon TA treatment [42]. Nonetheless, TA was also found to alter lipid metabolism
and disrupt the cellular and the nuclear membranes in PCa cells [42]. Collectively, this
highly suggests TA as a potential antitumorigenic weapon in PCa.

9. TA in Gingival Cancer

Gingival squamous cell carcinoma (GSCC) is a rare type of cancer which comprises <10%
of all head and neck squamous cell carcinomas [20]. GSCC has a high probability of metastasis
and specially to the bones [43]. TA was reported to harness GSCC cellular proliferation in
vitro. To unravel the molecular mechanisms underlying such anticancer activity against
YD-38 cells, a deactivation of STAT3 transcriptional activity was coupled to TA treatment [20].
Moreover, TA treatment resulted in an induction of P53 transcript levels, resulting in G1
arrest in YD-38 cells. Molecularly, it was reported that TA treatment resulted in a marked
attenuation of the positive regulators of cell cycle such as cyclin D1, cyclin E and CDK-4,
and at the same time resulted in a transcriptional activation of the negative regulators of
the cell cycle such as p21 and p27, as shown in Figure 2 [20], thus presenting a potential
anticarcinogenic effect against GSCC cells mainly through altering vital cell cycle regulators.

10. TA-Based Pharmaceutical Formulations

Our second focus in this review was to provide a roadmap for the clinical application
of TA. TA is a promising naturally occurring substance which can be designated as a
dual function ingredient in pharmaceuticals, being an effective anticancer agent as well
as a pharmaceutical excipient having the potential to act as a cross-linker aiding in the
preparation of versatile formulations, as illustrated in Figure 3.
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Of the several formulations of TA targeting its anticancer action, poly(TA) micropar-
ticles were prepared via cross-linking using trimethyl-ol-propane-triglycidyl ether and
glycerol diglycidyl ether and to exhibit an antioxidant, antimicrobial and cytotoxic effects.
The prepared particles were effective against A549 cancerous cells comparable to that of the
anticancer drug Cisplatin (36% and 34% cellular viability, respectively) while the cellular
viability was 66% in the case of linear TA at a dose of 37.5 µg mL−1 [44].

Likewise, TA was cross-linked with different biological macromolecules to prepare
matrices tested for their potential anticancer effects. TA solution was incorporated by
diffusion into collagen type I beads stabilized via hydrogen bonding between the amines of
collagen peptide backbone and phenolic group of TA. This prepared device was able to act
as a biocompatible cell scaffold for the regeneration and reconstruction of breast tissue with
prolonged anticancer activity. In addition, the small diameter of the beads (~1 mm) allows
its subdermal injection offering a non-invasive reconstructive option for outpatients [45].
In the same context, TA was used as a cross-linking agent to prepare collagen-based breast
tissue scaffolds. The concentration of TA solution used influenced apoptosis in MCF-7 BC
cells as well as toxic effect on D1 mesenchymal stem-like stromal healthy cells, suggestive
that TA level cross-linking can be changed to provide an optimum effect [46].

Thin films composed of different ratios of chitosan and TA mixture (80/20, 50/50
and 20/80) were tested in vitro on different cell lines such as MNT-1, SK-MEL-28, Saos-2,
HaCaT and BMSC. The results showed that the strongest influence was recorded for MNT-1
cells versus weakest for BMSC cell line. It was observed that films with higher surface
roughness (Chitosan: TA 80/20) had the highest ability to inhibit cell growth [47]. Likewise,
TA cross-linked collagen gels inhibited the proliferation of melanoma cells and with gel
stiffness found halting of tumor proliferation and progression occurred [48].

11. Combinational Approach of TA with Conventional Chemotherapeutic Agents in
Pharmaceutical Formulations

Combined with other anticancer agents, TA deployment in nanotechnology has been
introduced in several studies for cancer therapeutics. Below are displayed some examples
of these combinations, as summarized in Table 2 and explained below.
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Table 2. Examples of several combinational Approaches of TA and other anticancer agents.

Drug Dosage Form Cell Line Most Important Key Finding References

Oxaliplatin Polymeric nanoparticle CT26 Synergistic inhibitory effect of
oxaliplatin and TA [49]

Paclitaxel Nanoparticle MDA-MB-231
Reduced IC50 & increased cellular
uptake of the drug compared to

free drug
[36]

Gemcitabine,
5-Flurouracil
&irinotecan

Nanocomplex HPAF-II and PANC-1 Lower IC50 value& increased
cellular uptake for the drugs [40]

Gemcitabine,
carboplatin &irinotecan Nanocomplex A549 and H1299

Enhanced decrease in IC50 from
drug-loaded nanocomplex

fabricated from TA and mice
lung fluid

[50]

Doxorubicin
hydrochloride Polymeric nanoparticle HeLa

Similar inhibitory action of the
nanoparticles compared to the free
drug at the same concentration of

5 mg/mL

[51]

Nobelitin Coated nanoparticle H1299
Improved anticancer effect as well as
good cytocompatibility at nobelitin

concentration of 80 µg/ mL
[52]

Paclitaxel Nanocomplex A549
Lower IC50 values compared to both

the pure drug and uncoated
nanoparticles

[53]

TA is considered as a polydentate ligand that could bind to various metal ions to
form stable metal complexes. Such metal nanoparticles have several advantages including
anticancer properties. For instance, gold nanoparticles (AuNPs) have shown several ap-
plications in cancer treatment [54] as well as incorporation in drug delivery systems [55].
TA-stabilized gold nanoparticles (TA/AuNP) were synthesized, and showed higher cyto-
toxic activity against different cancer cell lines (HCT116, MCF7 and HepG2) as compared
to free TA. Such potentiation is likely due to the generation of more efficient ROS by the
TA/AuNPs in HCT116 cells compared to TA leading to a decrease in IC50 value. Additional
advantage of TA/AuNPs lies in its improved stability up to 50 days and less toxicity on
normal cells (HEK 293) compared to TA, with an IC50 values at 80.45 and 16.67µM, respec-
tively. However, Nag et al.’s study revealed that TA has high binding affinity towardsAkt
oncogenic protein, which repressed the expression of Akt, and hence inhibited the survival
of colon cancer cells as explained earlier in this review [56]. In another study, Fe+3–TA
nanoparticles were prepared using a low-cost, reproducible iron-mediated self-assembly
process revealing that the higher uptake of Fe+3–TA nanoparticles by HepG2 cells can
result in autophagic cell death. Consequently, prepared nanoparticles offer a promising
approach for imaging and further the treatment of liver cancer [57].

The combination of Oxaliplatin, an anti-colorectal cancer agent with TA for the prepa-
ration of polymeric nanoparticles using poly-lactic acid-10R5-PLA (PLAR) using the solvent
evaporation technique [49]. For achieving more targeted and sustained action with effective
therapeutics (drug & TA) dose at the site of action, the formed nanoparticles were loaded in
thermosensitive hydrogels with delayed degradability at the site of action. Invitro studies
on CT26 cells verified the synergistic inhibitory action of TA and Oxaliplatin with combina-
tion index < 1.Colorectal peritoneal carcinomatosis mouse invivo models were further used
to assess the anticancer efficacy of the developed thermosensitive hydrogels administered
intra-peritoneal at a dose of 10 mg/kg for Oxaliplatin and TA individually. The prepared
nanoparticles loaded-hydrogels extended the median survival life up to 38 days compared
to free drug (27 days) and hydrogel loaded with blank nanoparticles (21 days) [49]. The
synergistic effect of TA with chemotherapeutics was revealed in another study for the
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treatment of breast cancer via the preparation of Paclitaxel/TA nanoparticles using solvent
evaporation. The TA-based nanoparticles possessed small particle size of ca.102 nm, high
encapsulation efficiency values > 95%, good short-term stability (6 days) at ambient tem-
perature and excellent binding efficiency of TA with Paclitaxel. These bindings were due to
hydrogen bonding and electrostatic attractions as verified using infrared spectroscopy [36].
Assembled TA nanoparticles showed superior cellular uptake of the drug in MDA-MB-231
cells compared to the plain drug at 95% versus 57%, respectively, which might be attributed
to TA ability to partially inhibit the ATPase and in turn P-glycoprotein [58]. Furthermore,
nanoparticles possessed higher anti-proliferative effect compared to plain drug post 2 days
of treatment on MDA-MB-231 and MCF7 breast cancer cells with significantly lower IC50
values by 41% and 13% for the aforementioned cell lines, respectively. Although these
findings are promising, long-term stability studies should be conducted for these fabricated
nanoparticles for application at an industrial scale in pharmaceutical companies.

The cross-linking ability of TA was exploited with modified pectin to fabricate
nanocomplexes through hydrogen bonding, offering a promising platform for pancreatic
cancer treatment [40]. Pectin can target cancer cells via its γ-galactose units [59], whereas
TA can act as a bridge capturing hydrophilic (gemcitabine) and hydrophobic (5-Flurouracil
& Irinotecan) anticancer drugs through self-assembly.Drug-loaded nanocomplexes pos-
sessed superior anticancer properties compared to free drugs against HPAF-II and PANC-1
cells, indicating their efficacy to actively deliver the drugs to cancer cells as determined by
lower IC50 values and increased cellular uptake as detected by using flow cytometry [40].
Similar significant growth-inhibiting effect against A549 and H1299 cells —verified by 2-
to 2.5-fold decrease in IC50 values—was obtained with drug (Gemcitabine, Carboplatin
Oririnotecan)-loaded nanocomplexes constructed from the interaction between TA and
mice lung fluid through hydrogen bonding attributed to the adherence of lung fluid on the
surface of TA highlighting the efficient drug carrier properties of TA [50].

With regards to the ability of TA to modulate the physicochemical properties of drug
delivery systems, as well as to decrease cytotoxic drug side effects, one study reported the
combination of TA with the widely used anticancer agent doxorubicin hydrochloride [60].
Doxorubicin suffers from an initial burst release due to its high water solubility [61], neces-
sitating the use of higher drug doses that could lead to cardiotoxicity [62]. TA was used to
limit its toxicity through the construction of freeze-dried Doxorubicin-loaded polymeric
nanoparticles prepared by the co-assembly between Doxorubicin, TA (hydrogen donating
molecule) [63], and neutral poly (2-methyl-2-oxaozline). The nanoparticles possessed
good stability in physiological environment—screened by negligible change in particle
size—after storage in phosphate buffer saline (PBS) (pH 7.4) for 6 days. Additionally,
the nanoparticles showed sustained drug release profile at different release rates at dif-
ferent pH values (5 & 7.4), with the higher release rate observed in acidic medium [51],
which is considered an added value as it mimics the relative acidic pH values inside
tumor cells [64,65].The inhibition capacity of the nanoparticles on HeLa cell lines was
nearly similar to the free drug at a concentration of 5 mg/mL drug [51], confirming the
success of such co-assembly. However, invivo studies on experimental animals should
be further conducted to elucidate its therapeutic applicability and monitoring its side
effects. Although the enhanced drug release in acidic medium is favored for cancer therapy,
sometimes because of the physicochemical properties of drugs as well as the route of ad-
ministration, this concept can be modified as previously mentioned with Paclitaxel-loaded
TA/polyvinylpyrilidone nanoparticles (54 nm) prepared using flash nano-precipitation.
The nanoparticles showed the formation of microaggregates (2 µm) at acidic conditions
(pH 2) due to the low ionization of TA and hence formation of strong hydrogen bonding.
In contrast, quick dissociation and release of drug was observed at higher pH values of 6.8
or 7.4 [66]. Such pH sensitivity could protect acid-sensitive drugs like Paclitaxel [67] from
degradation inside the stomach and achieve site-specific drug release in the intestine to
enhance its oral bioavailability. This effect was further confirmed in MCF-7 tumor-bearing
mice, where more enhanced tumor inhibition rate at 86% compared to 78% was observed
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after oral administration of nanoparticles given at a dose of 20 mg/Kg drug compared to
Taxol® injection (positive control; 10 mg/Kg), respectively [66]. Such enhanced inhibition
effect might also be attributed to the ability of TA to inhibit P-glycoprotein as previously
reported [58]. TA/polyvinylpyrilidone/zoledronic acid self-assembled nanoparticles parti-
cle size of ca. 400 nm, targeted mice bones and prostate tumor tissues in an exvivostudy as
well as enhanced drug delivery to tumor cells [68].

Another study reported the combination of TA with hydrophobic anticancer drugs,
i.e., nobelitin as nanoparticles assembled by adsorbing TA on zein/nobelitin aggregates.
TA was further cross-linked with metal ions (Fe3+ & Al3+) to form a cross-linked coat with
good long-term stability as denoted by no significant changes in particle size between
fresh and stored ones. Besides, this cross-linked coat enhanced the entrapment efficiency
of the drug by nearly 50% compared to zein nanoparticles lacking the presence of such
coat with a complete sustained drug release at pH 7.4 within 25 h compared to free drug
(within 5 h). Excellent anticancer response against H1299 cell line was recorded for coated
nanoparticles at a nobelitin concentration of 80 µg/mL with good cytocompatibility [52].
This co-assembly between TA/metal ions using zein as a polymer could offer an effective
carrier for other hydrophobic drugs for cancer treatment in the future. Another study
reported the cross-linking of TA with FeCl3·6H2O to be used as a coat for Paclitaxel
nanoparticles. Paclitaxel nanocomplexes showed sustained drug release behavior which
were pH-dependent, i.e., the release efficiency of Paclitaxel was reached 51% & 30% at pH
5.2 & 7.4, respectively, within one week. Additionally, the nanocomplexes demonstrated
excellent anticancer effect against A549 cells with reduced IC50 values compared to crude
drug and uncoated Paclitaxel nanoparticles, likely attributed to the improved stability
of Paclitaxel nanocomplexes in neutral pH [53] as well as improved endocytosis of the
complexes [69]. Collectively, these results highlight the multifaceted role of TA and sheds
light onto the diversity of essential oils that contain considerable amount of TA to be
considered as anticancer agent beside its well-known anti-microbial activity [70–72].

Considering the merits of nanotechnology, more research should be directed towards
new developments to improve cancer drug therapy based on nanotechnology. Nanotrans-
formers with quick response to different biological environments inside the body have been
recently introduced through tailoring their physical properties [73]. Nano-transformers
prepared by co-assembling TA (hydroxyl group donor for interactions), Doxorubicin and
Indocyanine green (photothermal agent) showed enhanced proton prompted hydrophobic-
hydrophilic transformation associated with size conversion characters. In brief, the prepara-
tion method relied on the assembly of TA with doxorubicin through π−π interactions and
electronic interactions, and then Indocyanine green was assembled with drug/TA assembly
through π−π interactions and electrostatic interactions in water as a safe green solvent [73].

The transformation hypothesis is based mainly on the conversion of the prolonged
blood-circulating hydrophilic nanoassembly (bypass phagocytosis by reticuloendothelial
system) to the hydrophobic micron-sized particles inside the acidic pH of the tumor
cell. These micron-sized particles were able to rupture the lysozyme [74,75] then re-
transform to the hydrophilic nanoform in the cytoplasm where they could release their
drug payloads. The optimum nanotransformers possessed small particle size (nearly 74 nm)
and with an encapsulation efficiency of 23% and 35% for Doxorubicin and Indocyanine,
respectively. The nanotransformersenhanced significantly the decrease in tumor weights
in MCF7 xeno-grafted tumor mice group compared to doxorubicin, indocyanine green
administered group, which might be attributed to the nanotransformers acting to enhance
the synergistic effect of Doxorubicin and Indocyanine green [70]. Despite the success offered
by these nanotransformers, further studies altering weight proportions of the components
are required to enhance the encapsulation efficiency of the drug to reach higher levels.
Besides, invitro and invivo studies on experimental animal models should be further
conducted to explore the anticancer role of TA-based nanotransformers compared to others
prepared using another –OH group donating materials i.e., L-ascorbic acid, D-mannitol
and hydroxylpropyl-β-cyclodextrin.
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12. Conclusions

This review represents a comprehensive overview on the deployment of TA in cancer
therapy. The authors tried to shed light onto the versatile ability of TA to halt the malignant
transformation process in several dominating solid malignancies such as lung, breast, liver,
pancreatic, prostate, ovarian and gingival carcinomas, as summarized in Figure 4. TA
appears to act as a multifunctional player turning off several oncogenic signaling pathways
simultaneously such as VEGF, TGF-β1 pathways together with the repression of vital
oncogenic mediators such as MMPs and several EMT mediators, Figure 4. Nonetheless, TA
has also been proven to act as a potent cell cycle regulator in different malignancies. Such
promising antimalignant actions pose TA as a promising, cheap and safe anticancer agent
to act on different molecular targets. TA showed selective promising anticancer activities
against two of the most dominating cancers worldwide, which are lung and breast cancers.
In a more translational approach, this review focused on the combinational strategies of
TA with other conventional chemotherapeutic agents, which showed promising results in
different studies, including some nanotechnology-based formulations. Nanotechnology
approaches with enhanced delivery capability for therapeutics have shown myriad benefits
in cancer treatment. However, several bio-barriers, i.e., poor tumor penetration, inactivation
of drugs by lysozymes, can mitigate the efficacy of therapeutics transport, hence developing
innovative and different nanotechnology approaches is still needed to reap the full merits
of nanotechnology applications, i.e., nanocomplexes and nanotransformers.
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Figure 4. Schematic Representation of Tannic acid potential anticancer activity against several solid malignancies. This
figure represents a summary of the potential role of Tannic acid (TA) as an anticancer agent through repressing several
oncogenic signaling pathways and tumor-promoting factors in different solid malignancies such as colorectal, ovarian,
breast, lung, prostate and liver cancers.

Furthermore, this review also paves the road for the clinical application of such poten-
tially abundant cheap naturally occurring polyphenolic compound through highlighting
its potential incorporation into the pharmaceutical industries. Asides from its promising
anticancer activity, the chemical structure of TA (hydroxyl donating molecule) presents
the potential to be used as a strong cross-linking agent, hence acting as a dual-functional
pharmaceutical ingredient.

Several studies have reported the preparation of various successful anticancer TA-
based drug delivery systems; however, more experimental and clinical studies should
be conducted in the future to prove its efficacy. Additionally, this promising compound
should be well exploited in designing different TA-based phytotherapeutics based on novel
technologies aiming to tackle its low bioavailability and short half-life in the human body
as well as to create safe, effective and low-cost remedies for cancer treatment. Nonetheless,
detailed analytical studies should be performed to screen for herb–drug interactions with
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tannic acid as its polyphenolic nature could have several interferences with other drugs.
Also it is worth mentioning that there are no studies that addressed the preparation of TA-
based personalized medications using the 3D printing technique. This emerging technology
could offer a good opportunity for the preparation of natural inks for the development of
cheap 3D prints as a part of the future digital pharmacies.
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