

Supplementary Material

$Poly(\beta$ -cyclodextrin)-activated carbon gel composites for removal of pesticides from water

Gianluca Utzeri¹, Luis Verissimo¹, Dina Murtinho¹, Alberto A.C.C. Pais¹, F. Xavier Perrin², Fabio Ziarelli³, Tanta-Verona Iordache⁴, Andrei Sarbu⁴ and Artur J.M. Valente^{1,*}

¹ University of Coimbra, Coimbra Chemistry Centre, Department of Chemistry, 3004–535 Coimbra, Portugal; uc2015276036@student.uc.pt; luisve@gmail.com; dmurtinho@ci.uc.pt; pais@ci.uc.pt; avalente@ci.uc.pt ² Université de Toulon, Laboratoire MAPIEM, 83041 Toulon CEDEX 9, France; perrin@univ-tln.fr

³ Aix Marseille University, CNRS, Centrale Marseille, FSCM, Marseille, France; fabio.ziarelli@univ-amu.fr

⁴ National Institute for Research & Development for Chemistry and Petrochemistry- ICECHIM, Splaiul Independenței 202, București, 060021, Romania; iordachev.icechim@gmail.com; andr.sarbu@gmail.com

Imidacloprid								
Theorical	Average Concentration		G calculated		_			
Concentration (mg L ⁻¹)	(mg L ⁻¹)	Standard Deviation	Inferior	Superior	G table*			
0.5	0.502	0.0003	0.98	1.02				
1	1.004	0.0004	0.80	1.12				
2.5	2.51	0.0011	0.97	1.03				
5	5.02	0.0003	0.94	1.05	0.01			
7.5	7.53	0.0002	0.86	1.10	2.21			
10	10.04	0.002	0.85	1.10				
15	15.06	0.0004	1.11	0.84				
20	20.08	0.002	0.87	1.09				
		Cymoxanil						
Theorical	Average concentration		G calculated					
Theorical	Average concentration		G cale	culated				
Theorical concentration	Average concentration	Standard deviation	G cale	culated	G table*			
Theorical concentration (mg L ⁻¹)	Average concentration (mg L ⁻¹)	Standard deviation	G cale Inferior	superior	G table*			
Theorical concentration (mg L ⁻¹) 0.1	Average concentration (mg L ⁻¹) 0.0989	Standard deviation 0.0005	G calo Inferior 0.71	superior	G table*			
Theorical concentration (mg L ⁻¹) 0.1 0.5	Average concentration (mg L ⁻¹) 0.0989 0.4945	Standard deviation 0.0005 0.0001	G calo Inferior 0.71 1.15	superior 1.14 0.62	G table*			
Theorical concentration (mg L ⁻¹) 0.1 0.5 1	Average concentration (mg L ⁻¹) 0.0989 0.4945 0.9890	Standard deviation 0.0005 0.0001 0.0004	G cald Inferior 0.71 1.15 1.07	superior 1.14 0.62 0.91	G table*			
Theorical concentration (mg L ⁻¹) 0.1 0.5 1 2.5	Average concentration (mg L ⁻¹) 0.0989 0.4945 0.9890 2.4725	Standard deviation 0.0005 0.0001 0.0004 0.0003	G calo Inferior 0.71 1.15 1.07 1.01	superior 1.14 0.62 0.91 0.98	G table*			
Theorical concentration (mg L ⁻¹) 0.1 0.5 1 2.5 5	Average concentration (mg L ⁻¹) 0.0989 0.4945 0.9890 2.4725 4.9450	Standard deviation 0.0005 0.0001 0.0004 0.0003 0.0009	G cald Inferior 0.71 1.15 1.07 1.01 0.86	superior 1.14 0.62 0.91 0.98 1.10	G table*			
Theorical concentration (mg L ⁻¹) 0.1 0.5 1 2.5 5 5 7.5	Average concentration (mg L ⁻¹) 0.0989 0.4945 0.9890 2.4725 4.9450 7.4175	Standard deviation 0.0005 0.0001 0.0004 0.0003 0.0009 0.0004	G cald Inferior 0.71 1.15 1.07 1.01 0.86 1.05	superior 1.14 0.62 0.91 0.98 1.10 0.94	G table* 2.29			
Theorical concentration (mg L ⁻¹) 0.1 0.5 1 2.5 5 7.5 10	Average concentration (mg L ⁻¹) 0.0989 0.4945 0.9890 2.4725 4.9450 7.4175 9.8900	Standard deviation 0.0005 0.0001 0.0004 0.0003 0.0009 0.0004 0.0007	<u>G calo</u> Inferior 0.71 1.15 1.07 1.01 0.86 1.05 1.05	superior 1.14 0.62 0.91 0.98 1.10 0.94 0.93	G table*			
Theorical concentration (mg L ⁻¹) 0.1 0.5 1 2.5 5 7.5 10 15	Average concentration (mg L ⁻¹) 0.0989 0.4945 0.9890 2.4725 4.9450 7.4175 9.8900 14.8350	Standard deviation 0.0005 0.0001 0.0004 0.0003 0.0009 0.0004 0.0007 0.0004	<u>G calo</u> Inferior 0.71 1.15 1.07 1.01 0.86 1.05 1.05 1.05	superior 1.14 0.62 0.91 0.98 1.10 0.94	G table* 2.29			
Theorical concentration (mg L ⁻¹) 0.1 0.5 1 2.5 5 7.5 10 15 20	Average concentration (mg L ⁻¹) 0.0989 0.4945 0.9890 2.4725 4.9450 7.4175 9.8900 14.8350 19.780	Standard deviation 0.0005 0.0001 0.0004 0.0003 0.0009 0.0004 0.0007 0.0004 0.0004	G cald Inferior 0.71 1.15 1.07 1.01 0.86 1.05 1.05 1.05 1.05 1.05	superior 1.14 0.62 0.91 0.98 1.10 0.94 0.93 0.94 0.94	G table* 2.29			

Table 1. One-tailored Grubb's test parameters.

*significance level (α) = 0.05.

Table 2. Two-tailored F-test parameters for equality variance.

Imida	acloprid	Cymoxanil			
F calculated	$F_{(\alpha-2, N1-1, N2-1)}^{*,a}$	F calculated	$F_{(\alpha-2, N1-1, N2-1)^{*,b}}$		
0.08	8.89	0.32	6.54		
* significance lev	$vel(\alpha) = 0.01$				
^a degrees of free	dom (N) = 8				

^b degrees of freedom (N) =10

Table 3. Analytical parameters of imidacloprid and cymoxanil.

Pesticide	LOD (mg L ⁻¹)	LOQ (mg L ⁻¹)	ε (10 ⁻² M ⁻¹ cm ⁻¹)	R ²
imidacloprid	0.05	20.08	8.38 (±0.04)	0.9997
cymoxanil	0.07	29.67	4.08 (±0.05)	0.9983

Table 4. Fitting parameters for eqs. 4 and 5 to the sorption isotherm data for imidacloprid in the presence of urea and NaCl.

urea, 1.0 g L ⁻¹							
Model		PCD	PCD/AC5%	PCD/AC10%	AC		
	$K_F ({ m mg}~{ m g}^{-1}~{ m mg}^{-1/n}~{ m L}^{1/n})$	0.08 (±0.01)	0.63 (±0.05)	1.43 (±0.22)	18.26 (±2.57)		
F 11:1	1/n	0.94 (±0.03)	$0.64 \ (\pm \ 0.016)$	$0.52 (\pm 0.03)$	$0.82 (\pm 0.13)$		
Freundlich	R^2	0.996	0.9977	0.985	0.9245		
	AIC -12.10 -15.42	2.57	31.40				
	$q_m ({ m mg \ g^{-1}})$	44.80 (±15.74)	36.70 (±9.60)	32.60 (±8.84)	55.00 (±2.40)		
	$Ks (10^{-2} \text{ L mg}^{-1})$	0.22 (±0.11)	0.53 (±0.30)	1.03 (±0.72)	72.75 (±3.64)		
Sips	1/ns	1.21 (±0.13)	1.97 (±0.15)	0.82 (±0.15)	2.51 (±0.24)		
	R^2	0.997	0.9913	0.9062	0.9957		
	AIC	-13.82	-13.82 -0.33		10.76		
		NaCl, 1.0 g L ⁻¹	l				
Model		PCD	PCD/AC5%	PCD/AC10%	AC		
	$K_F ({ m mg}~{ m g}^{-1}{ m mg}^{-1/n}{ m L}^{1/n})$	0.063 (±0.047)	0.32 (±0.08)	1.35 (± 0.27)	7.86 (±1.82)		
F	1/n	0.98 (± 0.14)	0.68 (±0.04)	0.52 (±0.04)	1.31 (±0.21)		
Freundlich	R^2	0.9441	0.9834	0.9811	0.9225		
	AIC	8.15	-1.33	7.70	21.02		
	$q_m ({ m mg \ g^{-1}})$	15.43 (±0.64)	30.90 (±10.11)	34.80 (±7.60)	40.42 (± 2.50)		
	$Ks (10^{-2} \text{ L mg}^{-1})$	0.90 (±0.040)	0.35 (±0.22)	0.87 (±0.50)	62.03 (±2.61)		
Sips	1/ns	2.73 (±0.23)	1.02 (±0.17)	0.85 (±0.14)	6.23 (±1.76)		
	R^2	0.9976	0.9932	0.9927	0.981		
	AIC	-14.19	-6.13	0.85	16.01		

		urea, 1.0 g L ⁻¹			
	Model	PCD	PCD/AC5%	PCD/AC10%	AC
	<i>K</i> _F (mg g ⁻¹ mg ^{-1/n} L ^{1/n})	0.03 (± 0.01)	0.53 (± 0.15)	2.26 (± 0.30)	5.90 (±1.70)
F	1/n	$0.87 (\pm 0.09)$	$0.51 (\pm 0.05)$	0.32 (±0.02)	0.93 (±0.16)
Freunalicn	R^2	0.9687	0.959	0.9765	0.8990
	AIC	-9.83	-2.19	-3.93	25.60
	$q_m ({ m mg \ g^{-1}})$	9.54 (±6.31)	13.25 (±2.70)	20.61 (±4.18)	44.01 (±3.02)
	$K_s (10^{-2} \text{ L mg}^{-1})$	0.27 (±0.27)	0.90 (±0.44)	1.09 (±0.77)	28.28 (±1.70)
Sips	1/ns	1.36 (±0.52)	0.98 (±0.200)	0.62 (±0.12)	3.34 (±0.56)
	R^2	0.9725	0.9835	0.9951	0.9852
	AIC	-10.23	-10.23 -8.94		15.90
		NaCl, 1.0 g L-	1		
	Model	PCD	PCD/AC5%	PCD/AC10%	AC
	$K_F ({ m mg}~{ m g}^{-1}{ m mg}^{-1/n}{ m L}^{1/n})$	0.08 (± 0.03)	0.15 (± 0.02)	0.72 (±0.10)	4.80 (±0.70)
F 11.1	1/n	$0.86 (\pm 0.07)$	0.80 (±0.03)	0.60 (±0.03)	1.58 (±0.10)
Freunalicn	R^2	0.973	0.9943	0.9932	0.9902
	AIC	0.05	-12.70	-4.12	14.53
	$q_m ({ m mg \ g^{-1}})$	18.58 (±2.80)	28.84 (±5.07)	35.73 (±8.04)	76.06 (±32.25)
	$K_{\rm S}$ (10 ⁻² L mg ⁻¹)	0.47 (±0.11)	0.32 (±0.97)	0.44 (±0.22)	27.95 (±10.76)
Sips	1/ns	1.50 (±0.20)	1.15 (±0.10)	0.89 (±0.11)	2.40 (±0.64)
	R^2	0.9932	0.9972	0.9955	0.983
	AIC	-11.00	-19.90	-6.60	21.65

Table 5. Fitting parameters for eqs. 4 and 5 to the sorption isotherm data for cymoxanil in presence of urea and NaCl.

 Table 6. Characterization values for three sorption/desorption cycles.

PCD			PCD/AC5%			PCD/AC10%			
IMD	q_e (mg g ⁻¹)	RE%	DC%	<i>qe</i> (mg g ⁻¹)	RE%	DC%	q_e (mg g ⁻¹)	RE%	DC%
1° cycle	15.0 (±0.3)	33.3 (±0.3)	64 (±2)	20.8 (±0.3)	43.2 (±0.8)	45 (±1)	24.0 (±0.3)	49.0 (±0.4)	31.2 (±0.4)
2° cycle	17.0 (±0.5)	36 (±1)	71 (±2)	23.6 (±0.5)	50 (±1)	51 (±1)	32.0 (±0.5)	66 (±1)	37.0 (±0.6)
3° cycle	18.3 (±0.6)	38 (±1)	70 (±2)	24.7 (±0.6)	50.3 (±1.3)	51 (±1)	34.0 (±0.6)	69 (±1)	36.4 (±0.7)
СҮМ	$q_e (\mathrm{mg}\mathrm{g}^{-1})$	RE%	DC%	<i>q</i> _e (mg g ⁻¹)	RE%	DC%	q_e (mg g ⁻¹)	RE%	DC%
1° cycle	6.3 (±0.9)	11.8 (±0.2)	54 (±8)	13.9 (±0.9)	26 (±2)	42 (±3)	18.8 (±0.8)	35 (±2)	34 (±2)
2° cycle	9.8 (±1.3)	18 (±2)	36 (±5)	18 (±1)	33 (±2)	32 (±2)	24 (±1)	44 (±2)	30 (±2)
3° cycle	10.5 (±1.6)	21 (±3)	35 (±5)	18.9 (±1.5)	37 (±3)	32 (±3)	23 (±2)	46 (±3)	31 (±2)

Figure 1. Representation of IMD and CYM (a) UV-Vis spectra, and (b) curve of calibration.

Figure 2. Maximum sorbed amount (*q*_e) of CYM (left) and IMD (right) by different adsorbents: PCD (black columns), PCD/AC_{5%} (grey), PCD/AC_{10%} (white) and AC (lines).

Figure 3. Adsorption isotherm of IMD (0-500) ppm onto PCD (a), PCD/AC_{5%} (b), PCD/AC_{10%} (c) and AC (d), in 1.0 g L⁻¹ urea solution; and onto PCD (a'), PCD/AC_{5%} (b'), PCD/AC_{10%} (c') and AC (d'), in 1.0 g L⁻¹ NaCl solution, at 25 °C.

Fig. S4. Adsorption isotherm of CYM (0-500) ppm onto PCD (a), PCD/AC_{5%} (b), PCD/AC_{10%} (c) and AC (d), in 1.0 g L⁻¹ urea solution; and onto PCD (a'), PCD/AC_{5%} (b'), PCD/AC_{10%} (c') and AC (d'), in 1.0 g L⁻¹ NaCl solution, at 25 °C.