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Abstract: Natural rubber is an essential material, especially for plane and truck tyres but also for
medical gloves. Asia ranks first in the production of natural rubber, of which the Hevea tree is
currently the sole source. However, it is anticipated that this source alone will not be able to fulfill the
growing demand. Guayule, a shrub native to northern Mexico and southern United States, may also
contribute. This plant not only contains polyisoprene, but also resin, a mixture of lipids and terpenoids.
This review summarizes various aspects of this plant, from the usage history, botanical description,
geographical distribution and cultivation practices, down to polyisoprene and resin biosynthesis
including their distribution within the plant and molecular composition. Finally, the main processes
yielding dry rubber or latex are depicted, as well as the properties of the various extracts along with
economic considerations. The aim is to provide a wide picture of current knowledge available about
this promising crop, a good feedstock candidate for a multiple-product biorefinery.
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1. Introduction

Plant chemistry has been receiving increased interest during the last decades, now
becoming fully integrated to our economy. Indeed, the petrochemicals found today in most
manufactured products, are being gradually replaced by products and materials derived
from renewable resources. Elastomers are no exception to this trend, particularly rubber,
an essential material of the 21st century [1].

Polyisoprene (PI, the polymer taken as a whole whatever its stereoisomeric structure
and origin) can be used in two different forms, either as latex (the polymer being dispersed
in water, as a white liquid) or dry rubber (obtained by latex coagulation) [in this review,
“polyisoprene” applies to the polymer molecule, while “rubber” is used when talking about
the material which is a mixture of polyisoprene and of other components like proteins
and small molecules]. PI is used in more than 40,000 products, like tyres, medical gloves
or condoms. Synthetic routes provide a large amount of PI and of similar polymers, but
natural rubber and latex from Hevea (NR and NL, respectively) remain irreplaceable for
some applications, like plane and truck tyres or medical gloves thanks to the peculiar cis
chemical structure of the contained PI and to the presence of other molecules [2]. Indeed
NR shows better dynamic properties, especially resilience (defined as the ability to undergo
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big deformations without breaking and to recover its initial form when the constraint is
released), as well as very good resistance to abrasion, shock and tearing [3,4].

More than 2000 plants produce PI [5]. The best-known plants for their potential
commercial interest are part of the families of Euphorbiaceae (Hevea, Bentamia, Manihot),
Asteraceae (Parthenium argentatum, Taraxacum kok-saghyz) and Sapotaceae (Gutta percha, Arga-
nia spinosa) [6]. The more promising ones are Kazakh dandelion (Taraxacum kok-saghyz) and
guayule (Parthenium argentatum A. Gray) [7,8]. This review will focus on guayule. As of
today, a lot of scientific papers have been published [9], on different aspects of the plant,
ranging from agronomy to extraction process, focusing on PI or even resin, a mixture of
compounds also found in this plant.

Guayule is therefore an interesting species and it falls within the framework of the
17 UN Sustainable Development Goals (SDGs) (Figure 1). These SDGs were adopted by
all United Nations Member States in 2015 and represent shared guidelines “for peace and
prosperity for people and the planet, now and into the future” [10]. Indeed, guayule can
be grown on marginal land, and its PI can be extracted under latex form by a water-based
process to manufacture non-allergenic medical gloves and condoms, thus contributing to
people’s health and safety; in addition, a range of co-products can be valorized [11,12]. The
current interest on guayule leads to large international multi-scope projects, in view of
setting-up a new production chain, potentially opening new jobs in agriculture, academia
and industry.
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2. History of Guayule

Guayule, also called “yerba de hule” is native to the desert of Chihuaha, located
in Mexico and southern Texas in the United States. The name comes from the Nahuatl
language (Aztec): quahu (wood, tree, forest) and olli (rubber). During the pre-Columbian
times, it was basic knowledge that guayule contained an elastomer. The Aztecs used it
to make rubber balls by mastication of the bark [13,14]. According to Lloyd [13], guayule
was first documented by Bigelow, a member of the Mexican Boundary Survey party, in
1852. He submitted specimens he had collected in Texas to Harvard University, where
Asa Gray named it botanically [15]. It was first presented to the public at the Centennial
Exposition of 1876 in Philadelphia by the Mexican Government. On the same year, the
Natural History Society of Mexico investigated the plant and reported the presence of good
quality rubber [15] (Figure 2).
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Figure 2. Guayule history timeline.

The first reported use of guayule, other than by the Aztec natives, was by the Me-
chanical Rubber Company, obtaining a “large quantity” of rubber, in 1888 in New Jersey.
In the early 1900s, the first guayule factories were built in Mexico and rubber exported
to the US. In 1902, the activities at the experimental laboratory at San Luis Potosi led
to the establishment of a factory in Jimulco, representing the Compañía Explotadora de
Caucho Mexicano. Guayule rubber (GNR) was put on the market, for the first time, in 1905.
From that time on, extraction factories of various sizes were established in San Luis Potosi,
Saltillo, Monterey, Gomez Palacio, as well as in Torreon and Jimulco [13]. Threatened
by the Mexican Revolution, crops were transferred to California under the name of the
American Rubber Producers, an incorporation of the Intercontinental Rubber Company. At
that time, 50% of U.S. rubber were extracted from wild shrubs [16]. Wild harvesting led to
gradual guayule depletion [17]. It was therefore decided not to use wild shrubs, but rather
to establish fields throughout California and Arizona. In the 1920s, the Intercontinental
Rubber Company in California produced 1400 tons of rubber. Production decreased with
the Great Depression in 1929 [14,15]. On the other side of the Atlantic Ocean, new interest
in guayule bloomed in Italy. The Italian Government signed a pact with the US Interconti-
nental Rubber Company, to establish guayule in Italy. Different areas in southern Italy and
northern Africa were evaluated to assess a potential production. 5000 ha were identified as
sufficient to fulfill the Italian needs. In 1937, the Agro-industrial Society of Anonymous
Rubber (SAIGA) was officially established to develop guayule cultivation in Italy [18,19].
In 1942, Hevea rubber supply to the US from South-East Asia was cut off because of the
invasion by the Japanese during World War II. The U.S. Government purchased the experi-
mental records, seed stocks, and holdings of the Intercontinental Rubber Co, and the US



Molecules 2021, 26, 664 4 of 22

Department of Agriculture established the Emergency Rubber Project: the plantation of
12,140 ha of guayule was launched and an extensive research program was initiated [15].
It stopped with the end of the World War II, since it was cheaper to import Hevea rubber
from Asia with a better quality than to use local guayule rubber [15]. The 77th Congress
ordered the destruction of the fields [16].

In Italy, the Italian Government decided to establish another society to study syn-
thetic rubber (Synthetic Rubber Industry Limited Company: SAIGS, which in 1939 also
incorporated the SAIGA. At that time, the production in SAIGA was only 1500 t/year and
the synthetic rubber had increased drastically its share. Later the whole Italian rubber
industry was moved to Germany. Thus, in 1950, the guayule development project in Italy
was officially abandoned [18]. The focus on guayule rubber came back in 1970, with Hevea
rubber prices rose due to the first oil embargo. Two large US tyre producers, Firestone
and Goodyear, showed an interest in developing guayule rubber in Texas and Arizona.
In 1979, the Guayule Rubber Society, was incorporated as a Texas nonprofit organization
to foster and promote the production of natural rubber from the guayule shrub. It was
reincorporated as the Association for the Advancement of Industrial Crops (AAIC) in
December 1988 [18].

Mexico never stopped its research on guayule in Saltillo and, in 1976 new experimental
tyres were manufactured. In 1977, the US National Academy of Sciences published a report
showing the importance of this crop. One year later, it was followed by The Native
Latex Act, “a bill to amend the Public Works and Economic Development Act of 1965
to authorize a program of research, development, and demonstration of guayule rubber
(GNR) production and manufacture as an economic development opportunity for the
southwestern States” [16,20].

In the 1990s, the interest shifted from crude GNR to latex (GNRL). Until then, the
focus was on dry rubber obtained by a solvent extraction process, for tyres production.
With the development of an extraction process in latex form at the US Department of
Agriculture-Agricultural Research Service (USDA-ARS) [21], a water-based emulsion was
obtained and new applications became possible: dipped latex gloves or condoms. The
major interest of GNLR is its low protein content and therefore its non-allergenic or
hypoallergenic properties [4]. In 1999, Yulex company was created, focusing on guayule
latex. In 2008, the U.S. Food and Drug Administration (FDA) approved the use of GNRL
for the manufacture non-allergenic gloves. At the same time, in Europe, the Realizing the
Economic Potential of Renewable Resources-Bioproducts from Non-food Crops (EPOBIO)
project (2005–2007), aimed to “design new generations of bio-based products derived from
plant raw materials” [22].

The Production and Exploitation of Alternative Rubber and Latex Sources (EU-
PEARLS) project, a continuation of the EPOBIO project, was launched in 2008 to study
the development, exploitation and sustainable use of guayule and Kazakh dandelion,
aiming at investigating the cultivation of the two crops in four countries: The Netherlands,
Germany, France and Spain. Furthermore, in 2011, the first European study on guayule
entitled “Agronomic evaluation of guayule cultivation in two northern Mediterranean
areas” was presented at the AAIC meeting [18]. The EU-PEARLS project ended in 2012
with car tyres produced by Apollo Vredestein (The Netherlands), and medical gloves
produced by CIRAD and its subcontractor CTTM (France) [23]. In 2013, Yulex entered a
joint venture with Versalis and Pirelli in Europe, for the construction of an industrial plant
in the southern EU, including testing GNR for tyres. Unfortunately, that plant was never
built for economical reasons [19]. In the same year, Bridgestone announced its interest
in GNR and its co-products. In 2015, first tyres made entirely of GNR were produced by
Bridgestone [24]. At the same time, Cooper Tires and Panaridus developed plantations in
Arizona and tyres were produced [25]. Today, several universities and research centers
(USDA/ARS, University of Arizona and Ohio State University in the U.S., CIRAD in
France, Keygene and Wageningen University in The Netherlands, University of Bologna
in Italy etc..) and companies such as Bridgestone, Cooper Tires, Energyene, GuaySS, and
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the new start-up, GuaTecs, are working on guayule, in domains ranging from genetics and
agronomy to the production of rubber and latex (Figure 2).

3. Botanical Description, Geographical Distribution and Cultivation Practices
3.1. Botanical Description

Guayule, Parthenium argentatum A. Gray [26], is a semi-arid perennial shrub, native to
the Chihuahan desert in Mexico, that reaches a height of 0.3–0.9 m in the wild [27]. The
genus Parthenium, member of the Asteraceae family (Table 1), encompasses 17 species with
gray-green and silvery sheen leaves, but guayule is the only one that produces a significant
quantity of natural PI [28].

Table 1. Most representative molecules in guayule resin.
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Guayule flowers are arranged in heads or capitula. These heads are about 5 mm in
diameter and contains five rays, producing one seed each, and a flower disk, producing
pollen. When the seed germinates, we can see first a short primary stem, terminating in a
long slender taproot. The cotyledons (first leaves) are circular and few millimeters. The
primary stem grows and becomes dark red if exposed to sunlight, or green if not. The first
leaves are closely crowded, ovate and green-gray, satiny sheen. In the field, they can reach
a length of 7–8 cm and a width of 1.5 cm. The first inflorescence may occur during the
first 6 months. The root develops in a strong tap root system extending in many strong
lateral roots that can reach 1 to 2 m. From these lateral roots, “adventitious shoots”, called
“retoños”, can expand especially on the thin-soiled, rocky slopes where the seedling growth
is difficult [13] (Figure 3).
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Guayule has much inherent genetic variability: plants with chromosomes numbers
from 2n = 36 to 100 are known [16]. The guayule types 2n = 36 reproduce sexually with
pollination [16]. It can be both wind and insect pollinated [15]. The others, “apomicts”,
reproduce without requiring double fertilization: the embryo of the seed arises from a
non-fertilized nucleus and grows genetically identical to the parent. Hybrids with useful
characteristics can be developed [16].

3.2. Geographical Distribution

Native plants can live up to 30–40 years or more [16]. They can be found in the
Mexican states of Zacatecas, Coahuila, Chihuahua, San Luis Potosí, Nuevo León, Durango
and in the US states of New Mexico and Texas, in the areas next to the Big Bend [11,15,16].
The altitude of these areas varies from 610 m to 3500 m above sea-level. The plant tolerates
little rain: an annual rainfall of 250 mm to 380 mm is enough. It resists to temperature
higher than 40 ◦C and can withstand temperatures below −15 ◦C [3,13].

3.3. Cultivation

Guayule cultivation practices have been reviewed by Whitworth and Whitehead [14].
Guayule is adapted to hot desert environments and to sites with different soils (shallow,
stony, calcareous and friable) and with relatively low concentrations of nutrients, but it
grows best in well-drained soils and cannot tolerate waterlogging [16]. Some studies about
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the impact of irrigation have shown that rubber content decreases with irrigation amount,
except with subsurface drip irrigation, where rubber yields are increased with irrigation
amount, because the biomass increases too [29]. In the U.S, California, Arizona, New
Mexico and Texas are suitable growing areas. Countries near the Mediterranean Sea, like
France, Spain, Italy, Greece, Turkey, Israel and Morocco are suitable too [30]. Several other
countries have also conducted guayule crop trials such as Argentina [31], Australia [32]
and South Africa [33].

The first step of cultivation consists of collecting the seeds. They can be removed from
the plant easily by hand or by mechanical means. Several vacuum harvesters have been
developed, from the Intercontinental Rubber Company’s, to the Bridgestone/Firestone’s
one, powered by an electric generator, mounted on a high-profile tractor. Once collected,
it is important to break seed dormancy. An example of protocol to promote germination
under acute osmotic stress, with a conditioning process follows. Seeds are left imbibing
under aerobic conditions in a medium containing: 25% polyethylene glycol (MW 8000),
10 mmol gibberellic acid, 0.05% potassium nitrate, and 0.1% Thiram adjusted to pH 8.0 with
a saturated solution of calcium hydroxide. They are then treated at 25 ◦C in continuous
light for three to four days and air dried [14].

Seedling transplants are then produced in greenhouses. They are transferred in fields
using typical transplanting systems. Direct seedling, cheaper, has also been successful.
Mechanized techniques have been adapted for all aspects of guayule cultivation and Ray
proposed to reduce the cost by clipping the plant instead of digging hole [34].

4. Distribution and Biosynthesis of Polyisoprene and Resin
4.1. Distribution of Polyisoprene and Resin in the Shrub

PI and/or resin are found in different sections of the stems, branches, roots, leaves
and flowers. On average, there are 8% of P and 10% of resin in the plant (dry weight of
wild shrub, older than 24 months). For Lloyd and Jasso de Rodriguez, two thirds of the PI
are in the stems and branches, and one third in the roots. The leaves contain little or none
PI [13,35,36]. Stem has 6.1% resin followed by roots (5.9%), branches (5.0%), leaves (3.0%),
and flowers (3.1%) (dry weight of each part) [37].

NR is contained in thin-walled cells, the parenchyma cells, located in the bark and
the pith [3]. (Figure 4) It is suspended in the cell sap in the form of an emulsion, and this
emulsion rapidly degrades upon contact with air [16]. Resin is accumulated in the resin
canals in parenchyma tissue and in pith [38]. (Figure 5 [39]) For Hammond, it is principally
in the bark of stems and roots, and only a little part can be found in the leaves [15]. Upon
wounding, it exudes as pale-yellow tears [13]. The number of resin canals and epithelial
cells increases yearly and thus the amount of PI and resin in the plant [38,40]. Some studies
about the morphological changes of the guayule shrub over time, as well as PI and resin
accumulation, try to define the best harvesting time [41].
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a b c

500 µm 500 µm 20 µm

Figure 5. (a). Longitudinal section of a guayule branch (resin in red inside a canal, bark in blue)/(b). Cross section of
guayule bark (resin in red, bark in blue)/(c). Particles of polyisoprene in parenchyma cells (polyisoprene in red) [36].

4.1.1. IPP as Central Precursor Unit

PI in guayule is cis-1,4-polyisoprene, except for the first added monomers which
are trans-1,4-polyisoprene, in the case of Hevea and thus probably also in the case of
guayule, based on known similar biosynthetic routes [12,42]. The constituent monomer is
isopentenyl pyrophosphate (IPP). It is synthesized from the mevalonate (MVA) pathway
or from the 2-C-methyl-D-erythritol-4-phosphate (MEP) pathway [43]. Both syntheses
originate from sucrose produced by photosynthesis in the leaves and translocated to the
stem [44]. They lead to farnesyl pyrophosphate (FPP), the main basic precursor, formed
with dimethylallyl pyrophosphate (DMAPP) and two IPP in trans-configuration. Several
IPP-units in cis-configuration are added to FPP to form the polymer. The two pathways also
lead to fatty acids, monoterpenes, sesquiterpenes, diterpenes, triterpenes and tetraterpenes
too [45,46]. All of these compounds are synthesized in the epithelial cells and then stored
in the resin ducts [47] (Figure 6).

Sucrose

Pyruvate

MVA pathway MEP pathway

Acetyl-CoA

Acetoacetyl-CoA

Hydroxymethylglutaryl-CoA (HMG-CoA)

Mevalonate (MVA)

Phosphomevalonate (MVAP)

Diphosphomevalonate (MVAPP)

1-deoxy-D-xylulose 5-phosphate (DXP)

2-C-methyl-D-erythritol 4-phosphate (MEP)

4-(cytidine 5'-diphospho)-2-C-methyl-D-erythritol (CDP-ME) 

2-phospho-4-(cytidine 5'-diphospho)-2-C-methyl-D-erythritol (CDP-MEP)

2-C-methyl-erythritol 2,4 cyclodiphosphate (MECDP)

1-hydroxy-2-methyl-2-butenyl 4-diphosphate (HMBPP)

Isopentenyl pyrophosphate (IPP) Dimethylallyl-pyrophosphate (DMAPP)

Farnesyl pyrophosphate (FPP)Geranylpyrophosphate (GPP) Geranylgeranylpyrophosphate (GGPP)

Fatty acids

Tryacylglycerols Cis-1,4-polyisoprene
Sesquiterpenes & 

Triterpenes
Monoterpenes

Diterpenes & 
Tetraterpenes

+IPP +IPP

Figure 6. Biosynthesis of polyisoprene and resin compounds.

4.1.2. Biosynthesis of Polyisoprene

The biosynthesis of the polymer is catalyzed by a membrane-bound cis-prenyl trans-
ferase, named rubber transferase (EC 2.5.1.20), part of the monolayer membrane that
surrounds cytosolic rubber particles. Polymerization takes place within the membrane
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monolayer boundary between nonpolar rubber particles and the aqueous medium. It
involves three steps: initiation, polymerization, and termination [48].

Guayule PI remains inside the vacuoles, for storage, till plant death. The epithelial
cells around resin canals are therefore bifunctional cells: they are first dedicated to the
biosynthesis and then they are remodeled to allow PI particles accumulation [38]. PI
seems like a “dead-end product” and it was suggested that it acts to prevent damage to
the photosynthetic apparatus under conditions of cold temperature, high light or other
environmental stimuli [38].

5. Chemical Composition of Extractables
5.1. Polyisoprene

PI in Hevea and guayule contains essentially cis-1,4 units (Figure 7), unlike the synthetic
one. In fact, synthetic polyisoprene results from the polymerization of the 2-methylbuta-
1,3-diene. Four polyunsaturated microstructures (1,2; 3,4; cis-1,4, trans-1,4) are formed, the
most interesting configuration being cis-1,4. Even if the Ziegler-Natta catalysis allows to
reached high percentage of cis-1,4 units, natural polyisoprene in NR remains irreplaceable
for some applications, like plane and truck tyres [2].
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PI with high Mw (1,000,000 g/mol) and with low Mw (<1,000,000 g/mol) is formed
in guayule stems, branches and roots [36,49]. A water-based process allows to recover PI
chains up to 3,000,000 g/mol [50]. Natural PI chains can be ended by linked phospholipids,
fatty acids and their derivatives. They could potentially stiffen the structure [51].

5.2. Resin

Resin, contained in all parts of the plant, is a mixture of compounds, generally defined
as the acetone extractables. Insoluble wax and higher alcohols are often put apart [52]. Resin
contains mostly terpenes and lipids, but also several molecules belonging to other classes
of compounds. The following have been reported: monoterpenes (α-pinene, camphene,
β-pinene, α-phellandrene, β-phellandrene, sabinene, β-myrcene, limonene, terpinolene,
β-ocimene, cadinene, dipentene, bornyl acetate) [52–54], sesquiterpenes esters (guayulins
A, B, C, D), sesquiterpene alcohols [51–53], triterpenes (argentatins A, B, C, D, E, F, G,
H) [55,56], alkaloids (guayulamines A, B) [57], organic acids (cinnamic acid) [58], phytos-
terols [55], triacylglycerols (fatty acids: palmitic, stearic, arachidic, myristic, oleic, linoleic,
linolenic) [50,51], flavonoids, flavonoid glycosides [59], and carotenoids [53]. A patent
directly tackles the separation of the isoprenic constituents of guayule by liquid-liquid
partitioning [60].

A few studies are focusing on leaves [61,62]. Authors have also extracted an essential
oil from the leaves (~2% dry weight) which is mainly a mixture of monoterpenes (α-pinene,
16.7%, camphene, 1.2%, β-pinene, 13.6%, sabinene, 6.5%, β%-myrcene, 2.5%, limonene,
5.9%, terpinolene, 9.2%, β-ocimene, 2.1%), and of sesquiterpenes (39.5%) (Figure 8, Table 2).
In the seeds, about 25% of oil (fatty acids: linoleic, 19%, palmitic, 2.5%, stearic, 1.5% oleic,
2%) and 35% of proteins has been found [63,64].
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Table 2. Summary of the extraction processes.

Process Advantages Disadvantages

Flotation Process Simple, first process
Water-based process

Bad quality rubber/lot of resin
Important losses

Sequential Extraction
Semi-batch mode

Good extraction yield
Resin removed by preliminary step

Petrochemical solvents in large quantities

Simultaneous Extraction One pot extraction
Good quality rubber Petrochemical solvents in large quantities

Supercritical CO2 process
Selective extraction of PI

One pot extraction
Little quantity of co-solvent

Expensive process
Special processing conditions

Latex process
PI with high molecular mass

Water-based process
Continuous process

Difficult to extract in the latex form

5.3. Solid Residues

Guayule bagasse –the solid left after the extraction of PI and resin- is mainly composed
of polysacchrarides (holocellulose, 73%; α-cellulose, 43%; pentosane, 16%), lignin, 29%;
proteins and oligofructosaccharides (levulins and inulin) [52,65,66]. Estilai et al. [40] and
Banigan et al. [52] give the detailed composition of amino acids in the bagasse, which
contains also 18% of crude fibers and 1% of sucrose.

6. Processes to Extract Dry Rubber and Latex
6.1. Industrial Processes

There are two major types of processes for guayule’s PI extraction: processes that
extract PI in a coagulated state, the aim being to obtain dry rubber (for tyres for example)
and processes that extract PI in the emulsion form (latex for gloves dipping for example).

The main processes to obtain dry rubber are: flotation (aqueous process), sequential
extraction (solvent process), simultaneous extraction (solvent process), and more recently
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supercritical-CO2 (with co-solvents). To extract PI in the emulsion form, an aqueous process
was developed and improved progressively (Figures 9 and 10).
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6.1.1. Flotation

The oldest method to extract rubber is flotation. It was the first industrial process
used in the early 1900s, in the Mexican pilot plant at Saltillo, Coahuila, operated by the
Centro de Investigación en Química Aplicada (CIQA). The wild shrubs are parboiled in
hot water, for half an hour. This allows removing leaves and coagulating the rubber in
the cells. The plants are then ground in a hammermill and pulped in a Bauer mill, using
a water solution with sodium hydroxide to open cells. Milling and softening steps with
water are also done in the reverse order. The mixture is then decanted in a tank, until
the woody tissue takes-up water, sinks to the bottom, and the resinous rubber floats in
what are called “worms”. These worms are skimmed from the top. They usually contain a
high proportion of resin. To get rid of the resin, the small masses of gum are treated with
an alkaline solution or with alcohol, preferably under high temperature [67]. Rubber is
then dried and rolled into rubber sheets. Lawrence and Delafond patented two similar
processes with advanced milling techniques [68,69]. They were used by the Intercontinental
Rubber Company (ICRC) from 1920 until 1940. Some issues have been raised-up with the
process use:

• The treatment with caustic alkali brings a reduction in the acetone soluble content
(resin) in the rubber, but the rubber is deteriorated by the long-continued agitation. It
loses “nerve”, becoming softer and plastic [70,71].

• The usual method of disposing of this bagasse is to burn it as fuel but, because of
the residual rubber, it is an expensive fuel and it implies a great loss to the manufac-
turer [72].

• Shrubs are harvested and then usually left for a time, which varies greatly, in the sun.
This drying negatively affects the quality and the yield of rubber extraction [73,74].

• A lot of rubber is still trapped in the bagasse, but a prolonged grinding in view of
increasing the yield reduces the tensile-elongation properties of the rubber and makes
it softer and thus more liable to retain fiber and other foreign matter [75].
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Some recent discoveries on the final GNR product in the plant helped to create
improvements. The resin is adhesive [76], and its presence in the final rubber induces early
and rapid degradation during processing and storage [77]. Rubber is present in the form of
a colloidal suspension in the plant. It must be completely and correctly coagulated [78]. A
lot of improvements were proposed:

• Improvement to clean the raw material: extraction of the rubber with a mixture of
acetone, amyl oxyhydrate, methyl oxyhydrate, and alcohol while heating. The resin,
oil, and wax can be then separated from solvents by distillation [79]. Another option
is to distillate water and essential oil from the obtained rubber [80].

• Improvement of the grinding method: replace the rubs or grinds by a suitable com-
minuting cut. The main advantage of the process is that it makes possible the use of
continuously operating machines.

• Elimination of the resin with a solvent before the original process. The crude woody
material can be treated preliminarily with a volatile solvent in which the resin is
soluble while the rubber is insoluble (acetone, ethyl alcohol, methyl alcohol), made
a much-shortened grinding operation possible, and the particles of rubber display a
greater tendency to cohere together than to adhere to other materials [70,81,82].

• Improvement of the separation of the rubber stuck in bagasse: decreasing the specific
gravity of the rubber particles, by making them lighter and thus increasing their
buoyancy in separating fluid, by adding petroleum-distillate.

• To avoid rubber deterioration, the shrub can be treated with a preservative or stabiliz-
ing agent which will stabilize or preserve the rubber: immersion in a tank containing
a solution of 1% of dimethyl-paraphenylenediamine [71].

• Improvement of the liberation of the rubber by exposing the shrub to suitable gaseous
agent, which penetrates the cells and raises enough pressure to expand instantaneously,
like an explosion [74].

This flotation process had quite a few problems, even with the above improvements,
so a few different advanced techniques have been developed to overcome such concerns.

6.1.2. Sequential Extraction

Sequential extraction is the oldest solvent process. It has been evaluated in a semi-
batch mode at USDA/ARS. After being defoliated, air-dried plants are grounded into little
flakes. These are processed through two extraction steps. First, they are extracted with
acetone, for removing the resin and then with cyclohexane, for removing GNR. It can be
by immersion, gravity percolation or counter current percolation. The solvents are then
evaporated. Buchanan patented a sequential solvent process with the action of compressive
and shear forces and solvent, being first acetone and then hexane [80]. In this process, a lot
of solvent is used and not recycled.

Some improvements have thus been developed:

• Improvement in solvent use: Firestone chose to add a portion of recycled miscella
solvent system [83].

• Improvement of pretreatment, chopping and grounding of the plant up to suffi-
cient shear to rupture cell walls and to form agglomerates that can be handled by
percolation [84].

6.1.3. Simultaneous Extraction

In the simultaneous extraction process, the entire plant, including leaves, is initially
broken down in size into small pieces with a double stage hammer mill. A solvent is added,
usually hexane/acetone (75/25), forming an azeotropic mixture. The extraction lasts 1 or
2 h. The rubber and resin are then separated by adjusting the ratio between the polar and
nonpolar solvent. Particules are removed by filtration or centrifugation. However, this
process presents also some weak points, particularly the fact that solvents are expensive,
unless recycled [73].

Some recent improvements have been generated:
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• Fractionating rubber by molecular weight using solvents [85].
• Use of different solvents: Bridgestone/Firestone developed a continuous processing

using simultaneous extraction with pentane-acetone azeotrope, known as “Simultane-
ous Extraction and Rubber Fractionation” (SERF) [86].

• Texas A&M University has developed a process based on a batch-mixing screw press-
ing extraction [87].

6.1.4. Supercritical CO2 Process

The plant is first defoliated and then processed into very small pieces. These are
contacted with compressed carbon dioxide in the supercritical state with hexane as co-
solvent (5000 to 10,000 psi and 60–100 ◦C for less than an hour) [84].

Cornish has found that the rubber extraction is extremely sensitive to the hexane
concentration in the extractor in the course of the extraction cycle. Rubber is only extracted
at significant rates when the hexane concentration is extremely high. This team proposed a
process using an expanded hexane solvent, rather than a supercritical carbon dioxide one
with hexane as co-solvent, with a solvent/feedstock ratio of 2:1 or 3:1 by weight [88]. Worth
noting that when using acetone or ethanol as co-solvents under mild supercritical CO2
extraction conditions (solvent and CO2 weight flow rate ratio 1:15; temperature 33–50 ◦C;
pressure 3000–4500 psi) Punvichai et al. [89] found suitable conditions for selective extrac-
tion of PI-free resin components. Therefore, supercritical or pressurized CO2 could be used
for the cascade extraction of the valuable guayule components by playing with processing
conditions in a single extraction tank.

6.1.5. Latex Process

Instead of extracting the PI under dry rubber form, it can be extracted as an emulsion.
Spence was the first to propose a latex process [85]. Plants are directly processed upon
harvest. They are crushed and milled in a buffer solution (pH > 7.2) to prevent PI coagu-
lation, by maintaining the hydrogen ion concentration close to the plant itself. A diluted
latex dispersion is formed, then filtered and put in settling tanks where the fine particles
(biomass, sand), are separated. By using centrifugation, a concentrated latex (GNRL; 40%
of PI) can be prepared. Eventually a heating and acidifying step allows to obtain coagulated
rubber (GNRL) [85]. Like previous processes, some improvements have since been made:

• Improvement of centrifugation: a continuous process using a centrifugal separator
to concentrate dilute rubber dispersion in such a way that little or no pasty or firmly
coagulated rubber is formed in the bowl to avoid interfering with the efficiency of
separation [86].

• Improvement of the cleaning of the product: by cleaning the latex with polar and
non-polar solvent (simultaneously or sequentially) or by freezing the latex, or drying
the latex to obtain dry rubber [87].

• Improvement of grinding shrub: grinding plants by rotary shearing [50].
• Improvement of latex stabilization: in order to stabilize the latex, grinding of the plants

can be made in a buffer containing ammonium hydroxide (or potassium hydroxide,
sodium colehydroxide, sodium bicarbonate) and an antioxidant, such as sodium
sulfite (or butylated hydroxytoluene, butylated hydroxyanisole) [90].

In all cases authors give useful information, like how to defoliate the shrub [91], to
recycle the wastewater [92], to treat the resulting biomass [93] or even how to harvest [94].
The table below summaries the advantages and disadvantages of the different processes.

6.2. Analytical Methods

The different industrial processes were adapted for analysis of PI content in the plant
and for analysis of PI extractable as latex. Solvent methods are used to assess the PI con-
tent in the plant. Researchers choose between an adapted sequential method, accelerated
solvent extraction (ASE) (three 20-min cycles at 40 ◦C with acetone and three 20-min cycles
at 120◦C with cyclohexane or hexane) [95,96] or a simultaneous extraction, 5 h Soxhlet
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extraction with pentane: acetone (82:18 v/v) [97]. In both cases, the solvent is usually evap-
orated, and quantification is performed gravimetrically. However Salvucci [96] describes
the determination of the resin content by UV absorption directly on the acetone extract,
and of the PI content by High Performance Liquid Chromatography (HPLC) coupled to
evaporative light scattering (ELS) on the cyclohexane extract, after ASE extraction. Instead
of using solvent processes, Suchat and al. [98] and others [99–101] proposed Near infrared
spectroscopy (NIRS), a non-destructive method, for quick determination of PI and resin
content in the plant. This method is based on vibration properties of organic molecules.
Chemical bonds can be used to retrieve the chemical composition. The calibration was
performed with the ASE method, and attempts are made through measuring directly on
the branch, to avoid the biomass grinding step, towards a fast routine technique [102].

To quantify the rubber extractable as latex, Cornish and al. [99] developed a “Waring
blender method” and “Oster blender method” in the same vein as the corresponding
patent [84].

7. Proposed Applications for Guayule-Derived Products

Depending on the used process, products and co-products are different: dry rubber
GNR or latex GNRL, resin, leaves (if the plant has been defoliated) and bagasse (Figure 11).
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7.1. Polyisoprene

GNRL could be used for manufacturing numerous medical supplies [103]. Being
non-allergenic this latex is a suitable feedstock for surgical tools or examination gloves [4].
These last supplies are made by dipping a form inside tanks containing stabilized and
formulated latex [104]. Balloons may also be manufactured with this technique [105].

Tyres and mechanical parts are made with high molecular weight dry rubber, after a
vulcanization step [99,101,102]; synthetic neoprene can be replaced by dry natural rubber
in surf wetsuit. Low molecular weight guayule rubber has also found applications: rubber
hydroxylated by hydroboration/oxidation has been used as powder coatings [106].

7.2. Resin

A lot of applications have been proposed for guayule resin. The whole resin can
be used as a wood preservative, against damage by Teredinidae and Limnoria sp., and
particularly, against the very destructive Coptotermes termite species [107,108]. Resin shows
a prooxidant activity, and it is especially interesting because prooxidants (or peptizers) are
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ordinarily toxic synthetic products [53]. It can also be used in the formulation of coatings
and paints, bringing good properties (abrasion resistance, gloss, drying time, and water
resistance) [11,53].

Resin can also be fractionated into different classes of molecules, each having specific
properties. Volatiles monoterpenes are similar to those used in the industry of cosmetics
and perfume [109].

Argentatins A and B have antimicrobial activities [110] and can also play a role in
cancer treatment [111]. Argentatin A is cytotoxic against K562, MCF-7, PC-3, HCT-15 and
U251 human cancer cell lines and against proliferating lymphocytes at a concentration of
25 µM, and it also shows a higher potency on prostate cancer cells. It has no cytostatic
nor genotoxic effects on lymphocytes at the same concentration. Argentatin B is cytotoxic
against the same human cancer lines as argentatin A, but not on proliferating lymphocytes
at a concentration of 25 µM. This compound is shown to be better to treat cancer than the
currently used ones, which generally induce second malignances [112].

Guayulins A and B have been shown to possess biological properties and to have a
key role in the defense of the plant. They actually act as biological triggers in the synthesis
of lychnostatine and paclitaxel, which are agents used in breast cancer treatment [113,114].

Wax has similar physicochemical properties as carnauba wax [115], but the total
amount of wax is low to be applicable for commercial purposes, unless large quantities
become available [52]. Today the main natural source of terpenic resin is the wood and
pulp (paper) industry, although having a different chemical composition.

7.3. Leaves

Leaf extracts have a high phenolic content and antioxidant activity. They represent a
rich source of bioactive compounds, including terpenoids discussed in Section 7.2, inter-
esting for the nutraceuticals and pharmacological areas, but also, simply, as animal feed,
being present on the bush all year round [52,116].

7.4. Bagasse

The large amount of bagasse resulting from GNR or GNRL extraction process can be
directly used for soil amendments. Moreover, by thermochemical conversion, it can also be
made into gaseous and liquid fuels [58,117,118], or granular activated carbon [106,116].

8. Economic Considerations

Global natural rubber (NR NRL from Hevea) production reached to 13.7 million tons
in 2018, Asia being the first producer with about 88%, of which 93% was produced by
smallholders [119,120]. It is anticipated that the Hevea trees cannot support alone the
growing demand. Indeed, this crop suffers several constraints affecting production and
price stability: a growing demand from the China and India; the South-American leaf blight
disease (Microcyclus ulei), potentially capable of displacing and destroying Hevea plantations
in South-East Asia, whereas they are already under attack by another leaf disease due to
another fungus (Pestalotiopsis). Furthemore, Hevea grows in tropical and equatorial areas
with high rainfall, and these are not extensible—unless contributing to deforestation—and
even shrinking with the development of oil palm and global warming [121,122].

The current market price (June 2020) of Hevea rubber (NR) is around 1.12 EUR/kg [123]
and that of Hevea latex (60%) is less than 1 EUR/kg (around 1.10 USD/kg) [124].

These prices are too low to cover the agronomical and extraction costs. Producing
guayule rubber will not be profitable as long as the Hevea rubber and latex prices remain
at the current level. There is a need to modify the economical equation in order to reach
profitability and sustainability.

While state subsidies can change the economical equation, a better sustainable way
needs to be found. A look at the companies’ strategies, through their communications,
websites, publications, and patents, show several routes [125]:
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• Some of them try to reduce production costs by investing in the agronomical practices
and extraction process in order to increase the yields. Using varietal selection in order
to increase field yield for example.

• Others try to sell manufactured products (like gloves or tyres) rather than raw-
materials (latex or rubber) because the last make generally a small part of the end-
product price. This is vertical integration.

• Another route is to focus on high-value market, here the latex market rather than
the rubber one, for producing non-allergenic latex for high value medical gloves,
for example.

• The last way is a kind of horizontal integration by valorizing all coproducts: latex,
rubber, resin, bagasse . . . The bio-refinery path: relying on different products and
markets, in order to cover the production cost.

For sure a mixture of all these routes can be even more profitable and sustainable for
building this new production chain, guayule products not being marketed today as far as
we know.

9. Nagoya Protocol

The Nagoya Protocol on Access to Genetic Resources and the Fair and Equitable
Sharing of Benefits Arising from their Utilization (ABS) is an international agreement,
adopted on October 2010 in Nagoya, Japan [126]. One hundred and twenty three (123)
countries have ratified this agreement, including Mexico. The US haven’t up to now. The
two main objectives are to protect biodiversity and to share the benefits arising from the
use of a country genetic resources. Therefore, it is compulsory to declare the industrial use
of guayule seeds to the country of origin. In the present case if the seeds originate from
natural stands in the US, no need to declare, but if they are coming from natural stands in
Mexico, an agreement with this country has to be edited.

10. Future Trends

Guayule is therefore a promising plant for development to complement current pro-
duction of natural polyisoprene (NR and NRL), and to extract resin, given the wide range
of above detailed potential uses. Firms can lean on numerous patents and existing pro-
cesses, on the implication of numerous stakeholders, in particular in Europe, where natural
rubber is on the critical material list of the EU, and in full agreement with its new global
sustainable strategy. However, efforts have to be made on co-product valorization to be
competitive with currently marketed rubber and latex products (Figure 12).
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