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Abstract: This paper is a continuation of previous work and shows the enhancement of the surface
plasmon resonance effect in a tapered optical fiber device. The study investigated liquid crystal cells
containing a tapered optical fiber covered with a silver nanolayer, surrounded by a low refractive
index liquid crystal in terms of the properties of light propagation in the taper structure. Silver
films with a thickness of d = 10 nm were deposited on the tapered waist area. Measurements were
performed at room temperature; liquid crystal steering voltage U from 0 to 200 V, with and without
any amplitude modulation with a frequency of f = 5 Hz, and the wavelength λ ranged from 550
to 1200 nm. A significant influence of the initial arrangement of liquid crystals molecules on light
propagation was observed. Three types of liquid crystal cells—orthogonal, parallel, and twist—were
considered. During the measurements, resonant peaks were obtained—the position of which can
also be controlled by the type of liquid crystal cells and the steering voltage. Based on the obtained
results, the best parameters, such as highest peak’s width reduction, and the highest SNR value were
received for twisted cells. In addition, the present work was compared with the previous work and
showed the possibility of improving properties of the manufactured probes, and consequently, the
surface plasmon resonance effect. In the presented paper, the novelty is mainly focused on the used
materials as well as suitable changes in applied technological parameters. In contrast to gold, silver is
characterized by different optic and dielectric properties, e.g., refractive index, extension coefficient,
and permittivity, which results in changes in the light propagation and the SPR wavelengths.

Keywords: surface plasmon resonance; silver layer; tapered optical fiber; optical fiber device; liquid
crystal device

1. Introduction

Surface plasmon resonance (SPR) sensors are widely used to analyze human fluids
such as blood, urine, as well as to detect vitamins, e.g., B3, K1, A [1–4], proteins [5], also,
for chemical analyses [6,7], and environmental screening especially for contamination from
biological toxins and pathogens [8,9]. Contrary to typical sensors, the main advantage
of optical probes is that they are cheap, neutral for the tested environment, do not need
reference electrodes, and are not affected by electromagnetic interference [10].

Fiber optic plasmonic sensors (FOPS) are probes based on the generation of plasmons
that use thin metal films and nanostructures [11]. To allow a guided wave to interact with
the sensing medium, an optical fiber geometry should be modified [7]. Consequently,
several types of probes can be mentioned among the FOPS due to their geometry. The first
one is based on modifications placed on the optical fiber face and includes angle-polishing,
mirrors, and tips [12–14]. The second one is the modification of a side surface including
side polishing, etching, bending, tapering, and making hetero-cores [15–19]. In this paper,
the tapered optical fiber (TOF) was investigated and only this modification will be taken
into consideration.
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From a sensory point of view, the highest impact on sensitivity and utility of surface
plasmon resonance (SPR) sensor types have overlays and a probe geometry [20,21]. Ba-
sically, tapers are simple devices, however, their theoretical description and fabrication
are very challenging, especially regarding repetitive properties [22]. The manufacturing
process is based on the uniform stretching of a fiber over a high-temperature burner [23,24].
As a result of this process, different types of tapers can be obtained: punctual (without
a uniform waist area), short, or long (with a short or long uniform waist area) [23,25]. It
was proven that even a small elongation and a change in the angle of incidence increased
the sensitivity. For sensors applications, the best results are obtained for tapered optical
fiber probes which contain a long-tapered waist area between two tapered transition re-
gions enabling coupling and transformation of power from or to a nontapered taper with
small insertion losses known as the adiabatic shape [26]. Since tapers and SPR sensors
can be manufactured from different types of optical fibers, higher sensitivity is typically
attributed to single-mode fibers with a lower refractive index [11,21]. The TOF scheme
with a uniformly tapered waist is presented in Figure 1.
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Figure 1. Optical fiber-based SPR probe with a uniform waist area sandwiched between two tapered
transition regions, where: Ω is the tapered fiber angle; R is the diameter of the untapered fiber; r is
the diameter of the tapered waist area; θ0 is the angle of ray incidence; α and β are the angles with
the fiber axis (from \alpha to \beta).

During elongation, the change occurs in the geometry (parameters R, Ω) of the taper
transition region (1 and 2), as well as in the tapered waist diameter from 2R to 2r. All
these parts play a significant role during light propagation. The purpose of taper transition
region 1 is to reduce the ray incidence angle with the normal to the core-cladding interface
from θ0 to θ1 or from α to β along the tape boundary [27]. If the adiabaticity condition of
the taper is met, most of the optical power travels inside the fiber with an angle close to
critical. As a result, the penetration depth of the evanescent field increases to almost the
maximum value [28,29]. Taper transition region 2 returns the angles of these rays to their
initial values.

It is well known that decreasing the core diameter influences the increasing number
of reflections per unit of any ray. However, a larger number of reflections increase the
peak width what is highly undesirable. On the other hand, a smaller diameter of the
tapered waist provides sensitivity enhancement. Thus, changing the profile transition
regions and maximizing the ratio compensates for this disadvantage [29,30]. In Figure 1,
for visualisation of changes taking place in the fiber light, reflections as rays are presented.
A detailed description of light traveling through the graded-index single-mode taper fiber
as a Gaussian shape beam is presented in the previous literature [31].

As mentioned earlier, the type of covering material has a significant influence on
the probe sensing parameters: sensitivity, detection accuracy, and signal-to-noise ratio
(SNR) SNR = δλres

∆λ0.5
where: δλres is the resonant dip shift resolution; ∆λ0.5 is the resonant

dip width measured at a 0.5 peak height. To obtain the best SPR sensor, all these factors
should be as high as possible [32]. In the case of metallic covers, the mentioned parameters
depend on the value of dielectric permittivity ε of the metal used. Metals have a complex
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dielectric constant of ε = εr + iεi. The real part εr is related to the number of reflections and
the imaginary part εi is responsible for the absorption. The SPR spectrum is very sensitive
to the values of both components where the sharpness of the resonant dip is related to the
εr/εi ratio. When this ratio increases, a dip sharpness also increases [33]. Moreover, the type
of cover used determines the spectral regime on which the probe will be operating. Table 1
includes parameters of typical metals used to cover the SPR probes. There are various
metals that respond to an SP wave as well as the electromagnetic coupling relationship [34].

Table 1. Permittivity parameters of typical metals used to overlay the SPR probes.

Metal εr + iεi * εr/εi * Probes Operating Wavelength Range

Au −11.36 + 1.23i 9.23 VIS [35,36]
Ag −18.22 + 0.48i 37.9 VIS [37,38]
Cu −12.46 + 0.65i 19.2 VIS-IR [39,40]
Al −43.42 + 15.40i 2.82 UV-NIR [41,42]
Bi −23.441 + 2.18i 10.7 UV-NIR [43,44]
Pd −15.27 + 15.17 1.01 NIR-IR [45,46]

* Dielectric permittivity calculated for a 632.8 nm wavelength for all materials.

Figure 2 presents a schematic diagram of the liquid crystal cell (LCC) with a differ-
ent initial molecule arrangement: orthogonal, parallel, and twist corresponding to the
taper/fiber longitudinal axis. Other technological aspects of cell preparation can be found
in a previous publication [31].
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Figure 2. LCCs types with a sputtered metallic layer in the tapered area, in relation to the mesogens arrangement inside the
cell. The black block shows samples of resonant peaks obtained for LCCs: orthogonal, parallel, and twist.

Besides the traditional metal or bimetal overlay [47], some optical fiber SPR sensors
use an additional high refractive index (RI) layer of metal oxides or other double-layer
materials. It was proven that materials having high RI, such as TiO2, ZnO, ITO, InN,
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In2O3, and Ta2O5, improve the probe reliability and sensitivity and increase long-term
stability [48].

For the purpose of the research, the tapered optical fibers probes and liquid crystal
(LC) mixture 3092A (with RIs at T = 25 ◦C equal to ne = 1.5062; no = 1.4507) were used
as an external sensing medium [31]. Due to their birefringence, liquid crystals are used
as an external cladding which allows the effective RI to be changed around the taper.
As observed in the previous works, the initial mesogens arrangement has a significant
influence on the resonant wavelength dip location [31]. In addition, a certain steering
voltage range used to orient LC molecules U from 0 to 40 V allows changing the location of
the resonant peak.

This paper presents the effect of a thin silver layer deposition on the tapered waist area.
The choice of silver as an overlay was dictated by its high εr/εi ratio (Table 1), compared
to the previously used Au material [31], therefore, an improvement in the results was
expected [35,49]. A layer thickness of d = 10 nm was established during preliminary
measurements. Furthermore, in the research, a comparison to the results obtained for
gold layers [31] is included. The main parameters that were under consideration are
resonant wavelength, peaks width, absorption, calibration plots, and SNR. In addition,
the photos from the polarizing microscope are presented together with the corresponding
oscilloscope images.

2. Materials and Methods

Tapered optical fibers were manufactured using the fiber-optic taper element technol-
ogy) system. A detailed description of the FOTET and the manufacturing process is pub-
lished in our previous works [24,50]. The obtained optical fiber tapers were characterized by
the following parameters: length l = 25.0 ± 0.4 mm and attenuation
α = 0.3 ± 0.1 dB @1550 nm for a single-mode fiber. Taper parameters were experimentally
selected to obtain lower insertion losses, the possibility to build thick LCCs, and to reduce
the applied LC steering voltage, as well as the highest sensitivity and influence of the Ag
layer. Silver layers were deposited by using the EM SCD500 (Leica, Wetzlar, Germany)
sputtering coater with the following parameters: chamber pressure p = 10−2 mbar and
current I = 32 mA. Preliminary measurements showed that the thickness of silver layers (in
contrast to the gold ones with thickness of d = 30 nm) had to be reduced. In subsequent
studies, the thickness was established as d = 10 nm. The construction of the cell and the full
specification of the materials used to manufacture the LCC is described in the following
papers [24,31,50]. The obtained LCCs were filled with the LC mixture 3092A (∆n = 0.056;
∆ε = 0.49). As mentioned earlier, the resonant wavelength peak depends on the LCC
type, therefore, in this research, the three types of cells manufactured and taken under
investigation were: orthogonal, parallel, and twist.

3. Results and Discussion

To achieve the spectral characteristics, a measuring system setup was built and con-
tained the supercontinuum—broadband light source SuperK EXTREME (NKT Photonics,
Birkerød, Denmark) which operates on the wavelength range of VIS-NIR (400–2400 nm),
optical spectrum analyzer (OSA) AQ6373B (Yokogawa, Tokyo, Japan) with a detection
range of 350–1200 nm. The electric signal necessary for steering LCC was generated by the
function generator DG1022Z (RIGOL, Beijing, China). The scheme of the measurement
system is presented in Figure 3.
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Figure 3. Measuring system setup used for spectral investigations.

The measurements were carried out at room temperature with various steering voltage
U from 0 to 200 V, without modulating the output signal and with amplitude modulation
(AM) with a frequency of f equal to 5 Hz and 100% depth. The range of the steering voltage
was the same for all LC types from 0 to 200 V. Based on the transmission spectra and
images from the polarizing microscope, we can state that the threshold steering voltage
is around 40 V for cells without a metallic layer and 20 V for cells with silver. It should
be mentioned that the voltage needed to reorient molecules around the taper is much
higher and is approximately equal to 180–200 V for which we obtained full reorientation of
molecules. A wavelength λ range from 550 to 1200 nm was taken into account. Over this
range, boundary conditions of TOF production and the additional cladding prevent waves
propagation for all kinds of the presented cells. The spectral analysis was conducted for
cells with three various molecules’ initial orientations. The results in Figure 4 present the
spectral characteristics and the influence of the applied steering voltage U obtained for LC
cells. In all graphs, the highest power (yellow color) corresponds to the spectra obtained
for a bare optical fiber taper in the air, the blue color (below yellow) corresponds to spectra
obtained for a tapered fiber covered with silver layer measure performed in the air, and the
lowest power (green color) is the noise level of OSA.

Firstly, as it can be observed, in contrast to gold, the silver layers cause a slightly higher
decrease in the power transmitted in the tapered optical fiber (w/o LC) in relation to the
given transmission in the bare taper. Moreover, in the case of the orthogonal and parallel
cell, filling LCC causes higher attenuation in the whole wavelength range. For orthogonal
cells, the maximum power is the lowest and does not exceed −50 dBm. For twisted cells,
the obtained power is the highest and reaches its maximum at −30 dBm. An increase in
attenuation for silver layers is probably caused by a higher extinction coefficient and the
oxidation of silver [51]. The silver oxide formed by the oxidation process is characterized
by different optical properties than the pure metal. Based on the literature [52], oxidation
results in an increase in the absorption of visible light and a decrease in transmittance. It
is well known that the oxidation phenomenon occurs as soon as silver is exposed to air
and especially to water, which makes it difficult to yield a proper result. Moreover, during
aging, the LC absorbs water due to a high dipole momentum. This results in a higher
attenuation and deterioration of the probe [53].

In Figure 4a–c, for all cases, resonant dips occurred without the applied electric field.
According to the expectations, for all cases, the resonant wavelengths dips shift in relation
to the peaks obtained for tapers covered with gold layers. For the following types of cells:
orthogonal, parallel, and twist, the resonant dips were established as 719 nm, 845 nm, and
886 nm, respectively. Increasing the steering voltage U in the range of 0–60 V (orthogonal
cell) and 0–20 V (twisted cell) causes a slight red shift, however, further increase caused the
disappearing of these peaks. In the case of the parallel cell, a blue shift is observed.
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Figure 4. Optical power spectra obtained with 3092A-filled LCC with silver-covered TOF. Spectra in the left column were
obtained for the voltage U from 0 to 200 V for LCC types: orthogonal (a), parallel (b), twist (c) without modulation. Spectra
in the right column were obtained for cells under U = 0 and 200 V Hz for LCC types: orthogonal (d), parallel (e), twist (f)
with signal modulation f = 5 Hz. Measurement provided at room temperature.

Figure 4d–f presents spectra obtained for U = 0 and 200 V with AM 100% depth with
frequency f = 5 Hz, thus a dynamic response of cells can be observed. An interesting
phenomenon is that in the case of the parallel and twisted cell, there is a lack of modulation
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for the short wavelengths range of 560–700 nm and 560–850 nm, respectively. This leads
to the conclusion that for the shorter wavelengths for this type of cell, the difference
between the RI of LC and TOF is too small, and it is harder to observe changes in the power
during the switching ON/OFF. The operating wavelength range for all LCCs is similar
to each other and, approximately, all cells operated in the whole measuring spectrum.
The orthogonal cell, due to a higher attenuation for a longer wavelength, is barely at the
detecting border.

The absorptions plots were also calculated and are presented in Figure 5a–c for
orthogonal, parallel, and twisted cell types, respectively. According to the obtained results,
the resonant dip of the orthogonal cell had the highest absorption (99%). In the case
of other cells, the received absorption is higher than that obtained for cells with gold
layers and equals 95% and 90%, respectively (for the gold layer—80%, 90%, and 70%,
for orthogonal, parallel, and twist, respectively). Power oscillation is an important issue
that makes it harder to measure the resonant peaks shifts (δλres), however, it does not
obscure the changes that are taking place which can be significantly observed in Figure 5.
The deposited nano-metallic layer has high electric conductivity which causes an increase
in charge density on the surface and oscillation of LC mesogens which results in a high
fluctuation. To make possible the estimation of δλres, the fitting cure was added, thus,
obtained results should be taken as an approximation. Parameter δλres in Figure 5 is an
average value of the resonant peaks shift obtained between single voltage values: from 0 V
to 20 V, from 20 V to 40 V, etc., and the values in the brackets correspond to steering voltage
ranges which were considered to calculate δλres for each LC cell type. Received δλres for
cells: orthogonal, parallel, and twist covered with silver layers were 2.6 nm, 0.4 nm, and
5.2 nm, respectively. In comparison to the same cells with gold layers, the δλres increased
about 1 nm (δλ

orthogonal
res = 2.35 nm; δλtwist

res = 3.6 nm; δλ
parallel
res = 0 nm). As one can see

for parallel cells, the resonant wavelength decreases with the increase in voltage, which
is different from the other two cases. In the authors opinion, blue shift implies that the
effective RI around the taper slightly decreases which could be caused by the parallel
(longer axis) arrangement of molecules and their higher anchoring to the surface.
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The above results were used to estimate the differences in the obtained resonant
dips. In Tables 2 and 3, the following parameters are compared: type of LCC (orthogonal,
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parallel, twist), metal coverage (Au and Ag), λres—resonant wavelength, ∆λ0.5—resonant
dip width measured at 0.5 peak height, and SNR. In addition to, δλresAg-Au—resonant
dip shift between peak Ag and Au, as well as δλ0.5—peak width difference between
Ag and Au were calculated. It should be mentioned that due to the specific shape of
the obtained spectra to the peak height calculations, lower power levels as a Pmax of
peaks (look at the Figure in Tables 2 and 3) were taken into consideration. In the case of
orthogonal and parallel cells, dips obtained without applied elective field (U = 0 V) are
compared. It can be observed that for a parallel cell, two peaks are obtained (for U = 0 V
and U = 200 V), thus; both were taken into consideration and additional parameters were
estimated: ∆λres (0–200 V)—the difference between peaks obtained for 0 and 200 V, and
∆λ0.5 (0–200 V)—the difference in width of peaks obtained for 0 and 200 V. The results
contained in Tables 2 and 3, corresponding to the LCC with gold, were taken or calculated
based on a previous paper [31].

Comparing results from Tables 2 and 3, it can be observed that the resonant peaks
received for probes with Ag layers shifted approximately about 56.1 nm (calculated only
for U = 0 V). In the case of the parallel cell, the additional parameter ∆λres (0–200 V) shows
that for both cases λAg (0–200 V) and λAu (0–200 V), the difference between their peaks λ (0
V) and λ (200 V) is almost the same, and it is equal to approximately 37 nm.

Table 2. Resonant dips comparison of the orthogonal and twisted cells.

Orthogonal Cell Twisted Cell

Au Ag Au Ag

λres λres (0 V) = 665.8 nm λres (0 V) = 719.0 nm λres (0 V) = 831.4 nm λres (0 V) = 886.8 nm
δλres

Ag-Au δλres Ag-Au (0 V) = 53.2 nm δλres Ag-Au (0 V) = 55.4 nm

∆λ0.5 ∆λ0.5 (0 V) = 64.3 nm ∆λ0.5 (0 V) = 33.2 nm ∆λ0.5 (0 V) = 47.6 nm ∆λ0.5 (0 V) = 15.4 nm
δλ0.5 δλ0.5 Ag-Au (0 V) = 33.1 nm→−51.5% * δλ0.5 Ag-Au (0 V) = 32.2 nm→−67.6% *
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Table 3. Resonant dips comparison of the parallel cell.

Parallel Cell

Au Ag

λres

λres (200 V) = 749.7 nm λres (200 V) = 807.2 nm
λres (0 V) = 786.0 nm λres (0 V) = 845.6 nm

∆λres (0–200 V) = 36.3 nm ∆λres (0–200 V) = 38.4 nm

δλres
Ag-Au

δλres Ag-Au (200 V) = 57.5 nm
δλres Ag-Au (0 V) = 59.6 nm

∆λ0.5

∆λ0.5 (200 V) = 31.9 nm ∆λ0.5 (200 V) = 16.2 nm
∆λ0.5 (0 V) = 28.9 nm ∆λ0.5 (0 V) = 12.2 nm

∆λ0.5 (0–200 V) = 3 nm ∆λ0.5 (0–200 V) = 4 nm

δλ0.5
δλ0.5 Ag-Au (200 V) = 15.7 nm→−49.2% *
δλ0.5 Ag-Au (0 V) = 16.7 nm→−57.8% *
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SNR 0.00 ** 0.033

* Peaks width reduction in relation to Au layer. ** δλres—this parameter could not be estimated.

The next parameter under consideration is peak width. For both Au and Ag, the
widest peak is obtained for the orthogonal cells. According to the literature [2,25], for
silver covers, the width of resonant peaks measured at a height of 0.5 should be decreasing,
which is observed. The maximum reduction has been received for a twisted cell, and it
amounted to 67%. Interestingly, the calculated difference ∆λ0.5 (0–200 V) for a parallel
cell shows that an increase in the electric field also causes an increase in the peak width.
SNR is the last compared parameter and it was estimated by using data from Figure 5 and
Tables 2 and 3. For all LCC types with silver films, the SNR value was higher than for LCC
with gold films, and the highest value was obtained for a twisted cell.

In the next step, calibration plots for cells with 3092A LC and taper covered by silver
layer were made. Figure 6 presents the obtained results. Plots were calculated for the same
wavelength value λ = 700 nm. In the case of LCCs with gold layers, the correlation value
(R2) was equal to 0.82, 0.92, and 0.0013 for, orthogonal, twist, and parallel, respectively [31].
Comparing the obtained results in the previous work, it can be observed that R2 increased
for orthogonal and parallel cells, however, the twisted cell slightly decreased.
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* Peaks width reduction in relation to Au layer. ** δλres—this parameter could not be estimated. 
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Table 4 contains the results of LCC dynamic characteristics and photos performed
on the polarizing microscope (Olympus, Tokyo, Japan). The dynamic response measure-
ments were performed in the measuring system containing an oscilloscope together with a
detector as an optical analyzer (Figure 7).

Table 4. Dynamic characteristics of LCC and photos from the polarizing microscope.
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As observed in Table 4 (first column), the dynamic response changes between cells 
with/without a metal layer. In the case of LCC without a metallic layer, together with 
increasing the electric field, the measured voltage (LCC response from the detector) 
decreased. In contrast, the LCC with a metallic layer behaves quite differently and 
together with increasing the steering electric field, the measured voltage increases. This 
dependence is also visible at spectral measurements. The answer to this phenomenon can 
be observed in the images on the right in Table 4 (last column) (images for steering voltage 
U = 200 V). In the case of LCC without a deposited metal layer, an increase in the steering 
electric field for a certain range causes such a setting of the average LC director for which 
the RI value of LC is equal to the RI of the taper, causing reduced visibility of the tapered 
fiber in the LCC (see image in Table 4 for voltage U = 200 V). The metallic layer for 
deposition allows the increasing difference in RI between LC and TOF. As can be seen in 
the images obtained for cells with Ag and U = 200 V, the tapered fiber is continuously 
visible. Moreover, dynamic response, in the case of LCC in metallic, is characterized by 
high fluctuations. As was mentioned earlier, the deposited metallic layer causes 
increasing charge density on the surface. This phenomenon may be accompanied by 
ionization of LC and influences the ON/OFF switching times. The metallic layer 
significantly reduces the switching ON time, but on the other hand, ionization causes an 
increase in the relaxation time. Switching OFF time LCC with the metal layer is much 
longer than for LCC without a layer. 

As is commonly known, various surfaces have a different impact on the LC 
molecules’ arrangement [54]. It is well established that mesogens nearest to the surface 
are anchored and can change the order of a few molecular layers. Analyzing the photos 
obtained without an applied electric field (U = 0 V), it can be observed that in both cases, 
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Figure 7. Dynamic response measuring system.

The measurements were performed for LCC with/without deposited metal films, for
steering voltage U from 0 to 200 V and AM with f = 1 Hz. The results are presented only
for one LCC type. A switched-on state should be interpreted as a state in which the electric
field between LCC electrodes is E > 0 V. Switching ON time is the time it takes the plot
obtained for U = 200 V to reach 90% of its height from its minimum value and switching
OFF time is the time it takes to reach 10% of its height from the maximum. Table 4 presents
the dynamic characteristics of LCC with and without a metal layer and images from the
polarizing microscope.

As observed in Table 4 (first column), the dynamic response changes between cells
with/without a metal layer. In the case of LCC without a metallic layer, together with
increasing the electric field, the measured voltage (LCC response from the detector) de-
creased. In contrast, the LCC with a metallic layer behaves quite differently and together
with increasing the steering electric field, the measured voltage increases. This dependence
is also visible at spectral measurements. The answer to this phenomenon can be observed
in the images on the right in Table 4 (last column) (images for steering voltage U = 200 V).
In the case of LCC without a deposited metal layer, an increase in the steering electric field
for a certain range causes such a setting of the average LC director for which the RI value of
LC is equal to the RI of the taper, causing reduced visibility of the tapered fiber in the LCC
(see image in Table 4 for voltage U = 200 V). The metallic layer for deposition allows the
increasing difference in RI between LC and TOF. As can be seen in the images obtained for
cells with Ag and U = 200 V, the tapered fiber is continuously visible. Moreover, dynamic
response, in the case of LCC in metallic, is characterized by high fluctuations. As was
mentioned earlier, the deposited metallic layer causes increasing charge density on the
surface. This phenomenon may be accompanied by ionization of LC and influences the
ON/OFF switching times. The metallic layer significantly reduces the switching ON time,
but on the other hand, ionization causes an increase in the relaxation time. Switching OFF
time LCC with the metal layer is much longer than for LCC without a layer.

As is commonly known, various surfaces have a different impact on the LC molecules’
arrangement [54]. It is well established that mesogens nearest to the surface are anchored
and can change the order of a few molecular layers. Analyzing the photos obtained without
an applied electric field (U = 0 V), it can be observed that in both cases, around the tapered
fiber n-director deformations (yellow circles) occur. This means that some areas around
the fiber are characterized by a different arrangement of LC molecules than the molecules
in the bulk. In this region, the effective refractive index (RI) is not identical to the other
part of the cell. In the case of LCC without a metal layer, deformation is uniform (the
same color on the whole length) in contrast to the taper covered with a metallic layer
where deformation is heterogeneous. It can be assumed that the obtained glass surface
of the tapered fiber (without covering) is uniform and clear, and mesogens are attached
regularly by hydroxyl ions OH-. Silver is mechanically unstable, has low adhesion to
glass, and has a natural tendency to form discontinuous islands. Moreover, depositing
the metal layer by sputtering may be unregular or delaminate on the nanoscale, which is
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why inequalities are visible in the image. Deformation of n-director is highly undesirable
because the evanescent field interacts with different effective RI in the tapered waist area. It
should be mentioned that the extraordinary RI of 3092A is much higher than the fiber and,
consequently, effective RI may be increased which may result in interrupting the SPR effect.
In addition, black dots are visible on the upper images (in the red circles)—after-effects of
the short circuit, however, if they are small and occur at a considerable distance from the
tapered fiber their influence is negligible. Further images obtained for electric voltage U =
100 V show that surface-anchored mesogens are partially ordered and only their thin layer
around is irregular. As was mentioned earlier, increasing the steering voltage up to 200 V
causes ordering of the whole volume of LC molecules and vanishing deformation around
the taper.

4. Conclusions

The performed research on the influence of a deposition thin silver layer on the tapered
optical fiber surface and closed inside the LC cell allowed for the following conclusions to
be drawn:

1. The resonant peaks shifted approximately about 55 nm in relation to the peaks
obtained for gold layers. For the orthogonal and twisted cells, a red shift of the
resonant dip was observed and they occurred at 720 nm and 887 nm, respectively. For
the parallel cell, a blue shift was observed and the peak occurred at 845 nm.

2. The peaks width reduced to at least 50%, while SNR together with δλres increased.
The widest peak was obtained for the orthogonal cell.

3. The highest resonant peak absorption occurred for the orthogonal cell and equaled
99%. For the other two cases, absorption equaled a minimum of 90%.

4. Dynamic characteristics of LCC—with and without a metal layer—showed that the
metallic layer caused a fluctuation, as well as an extension of the relaxation time.

This paper shows that most of the measured parameters of the constructed system
have been improved. Consequently, the observed SPR effect was enhanced in relation to
the previous work, however, it still requires further investigation to use these structures in
real applications. It should be mentioned that during the measurements, some issues and
additional effects occurred such as oxidation of the Ag layer, oscillation of LC mesogens,
and signal overlapping. However, the obtained device has a high application potential,
e.g., as a tunable filter for the chosen wavelengths. Furthermore, it could be used as a
temperature, magnetic, and/or electric field sensor.
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22. Zakrzewski, A.; Pięta, A.; Patela, S. Simple method for manufacturing and optical characterization of tapered optical fibres.
Opto-Electron. Rev. 2016, 24, 216–222. [CrossRef]

23. Lakomski, M.; Guzowski, B.; Wozniak, A. Fabrication of ultra-long tapered optical fibers. Microelectron. Eng. 2019, 221, 111193.
[CrossRef]
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