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Abstract: The absence of magic numbers in bosonic 4He clusters predicted by all theories since 1984
has been challenged by high-resolution matter-wave diffraction experiments. The observed magic
numbers were explained in terms of enhanced growth rates of specific cluster sizes for which an
additional excitation level calculated by diffusion Monte Carlo is stabilized. The present theoretical
study provides an alternative explanation based on a simple independent particle model of the
He clusters. Collisions between cluster atoms in excited states within the cluster lead to selective
evaporation via an Auger process. The calculated magic numbers as well as the shape of the number
distributions are in quite reasonable agreement with the experiments.

Keywords: Van der Waals bonds; helium clusters; Auger evaporation; magic numbers; cluster
supersonic jets

1. Introduction

Van der Waals interatomic bonds are the weakest in nature and, unlike covalent bonds,
are isotropic, Thus the atomic clusters of heavy rare gases tend to grow in close-packed
icosahedral shapes, with magic numbers determined by pure geometrical constraints [1].
Not so for 4He clusters: in view of their liquid and generally superfluid state, magic
numbers would seem to be unlikely. Although some evidence of magic numbers in 4He
clusters not corresponding to special geometries has been reported as early as 1983 [2],
theoretical studies of cluster energies have indeed failed to provide any evidence for magic
numbers. Several calculations based on different Monte Carlo methods [3–7] that the
binding energy per atom ε(N) of small 4He clusters, and in general for boson clusters [8], is
a smooth monotonic function of the atom number N. Nevertheless, high-resolution matter-
wave diffraction experiments by Brühl et al. [7,9] have shown that the abundance ρ(N) of
4He clusters formed during a free jet supersonic expansion into vacuum from a cryogenic
source is not monotonously decreasing for increasing N, as expected from the behavior of
ε(N), but shows a series of maxima at certain magic numbers. The numbers N = 10, 14, 26,
44, ... at which maxima occur [9] do not correspond to any of the geometric magic numbers
for the heavier rare gas clusters nor of the possible magic numbers of the ions formed
in the detection process. It is however interesting that, in case of stronger polarization
forces exerted by an ion on the surrounding He atoms, close-packed arrangements and
therefore geometrical magic numbers are favored. Note that ionization occurs after the
free jet clusters have reached thermodynamic equilibrium and cannot alter the number
distribution. see, e.g., [10]. Rather they could be explained on the basis of a thermodynamic
equilibrium model for the growth of the clusters [7]. Each time a new collective state with
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quantum numbers (n,l), obtained from a dedicated diffusion Monte Carlo calculation, is
bound, a sudden jump in the 4He cluster partition function Z(N) occurs. As a consequence
the equilibrium constant K(N) for the aggregation process 4HeN−1 + 4He↔ 4HeN, which
is given by the function Z(N)/Z(N − 1), exhibits sharp peaks at N = Nnl in good agreement
with the experimental magic numbers. Thus, the enhanced growth of the magic number
clusters reconciles the apparent disagreement with the predicted monotonous behavior of
the binding energy per atom.

2. Theory

The present theory provides an alternative explanation by accounting for the role of
the elementary processes of evaporation occurring in a supersonic cluster beam with a
very high speed-ratio as in the matter wave experiments [9]. It is assumed that the final
asymptotic cluster size distribution is a result of two sequential processes. First the clusters
grow rapidly and, as a result of the energy of recombination, are internally hot; then, in a
next step they cool down to their final temperature by evaporation of atoms [11–13].

Note that all these theories are based on thermodynamics and predict only a gradual
dependence of the rate of evaporation on the cluster number size.

Since the densities and the relative velocities of the clusters and single atoms and
consequently their collision probabilities in the final stages of the expansion are compara-
tively small, the kinetics are dominated by unimolecular evaporation of single atoms. As a
result, the hot large clusters are transformed into smaller and cooler clusters until a final
distribution ρ(N) stabilizes at some average temperature (0.37 K for 4He droplets [14]). The
rate equation for the densities ρ(N) can be written as

dρ(N)
dt = −P(N) ρ(N) + P(N + 1) ρ(N + 1)− ∑N′σ(N, N′) ρ(N) ρ(N′)

+∑N′<Nσ(N − N′, N′) ρ(N − N′) ρ(N′)
(1)

where P(N) is the rate of evaporation of a cluster consisting of N atoms and σ(N, N′)
is the probability of coalescence of two clusters of size N and N′. The fission of large
clusters to smaller ones is neglected in Equation (1). The asymptotic steady state conditions
far downstream from the nozzle are obtained by setting dρ(N)/dt = 0. Moreover, for
clusters moving all at about the same speed the relative velocities corresponding to beam
temperatures in the mK range [15] are so low that coalescence processes may be neglected.
Under these conditions ρ(N) is, in a first approximation, inversely proportional to the ratio
of the evaporation P(N).

Next it is assumed that an Auger process, involving two-body collisions, governs
the evaporation of single atoms. As argued in the discussion below, phonon-induced
evaporation is under the present physical conditions much less probable and is not con-
sidered. In the Auger process one bound He atom gains enough energy to leave the
cluster in a collision with another atom, which drops from an initial excited state to a
lower energy state (Figure 1). In order to investigate the basic physics of this process in
boson clusters, a simplified independent particle model is considered in which a small
number (N < 125) of 4He atoms is trapped in a spherical box potential of radius R = R(N)
and depth −V0 ∼= −ε(N). The model shows that the Auger evaporation rate strongly
depends on the presence of bound one-particle states near the vacuum threshold, namely
around those atom numbers at which a bunch of new bound states is created which are
depleted compared to the adjacent cluster sizes. The role of bound states in determining
the size distributions is similar to the analysis by Guardiola et al. [7] and suggests that
Auger evaporation is actually the microscopic mechanism leading to the magic numbers.
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Figure 1. The Auger processes involving the collision of two atoms in the excited one-particle states
Ei and Ej which lead to the emission into a free state Ei’ of either the atom in the state Ei (a) or the
atom in the state Ej (b) with the other atom decaying into a lower state Ej’.

In order calculate the rate of Auger collisions the wave functions of the atoms in-
side the clusters are required and for this reason an independent particle description is
invoked. Although most current models of helium clusters are based on the diffusion
Monte Carlo method (T = 0) and Path Integral Monte Carlo methods (T 6= 0), or related
algorithms, these models suffer from providing little information on the behavior of the
individual constituents. The independent particle method, first introduced to 4He clusters
and implemented via a variational Monte Carlo method by Schmid et al. in 1965 [16]
and further refined by Lewart et al. [17] and Ramakrishna and Whaley [18], has been
revived in connection with theories of Bose-Einstein condensed ultra-cold gases [19]. For
calculating the collision dynamics between two bosons an exchange-symmetric two-atom
wavefunction is required

ψij(r1, r2) =
1√

2(1 + δij)
[φi(r1)φj(r2) + φj(r1)φi(r2)] (2)

where δij is the Kronecker symbol. Since the single particles move freely inside the cluster
they are approximated by a plane-wave representation, ϕj(r) ∝ exp(ikj · r). Then the two-
atom wavefunction can be expressed as a function of the internal coordinate r = r2 − r1
and center-of-mass coordinate rCM = (r2 + r1)/2:

ψij(r1, r2) =
1
N exp(i kCM · rCM) cos(k · r)
=
√

4π
N exp(ikCM · rCM)

∞
∑

n=0
(−1)n(4n + 1)1/2 j2n(kr) Y2n,0(θ)

(3)

where k = kj − ki, kCM = (kj + ki)/2, m* is the atomic effective mass, N a normalization
constant, θ is the angle of r with respect to the conventional z axis. The atom-pair angular
quantum number L ≡ 2n, labelling the m = 0 spherical harmonics YL,0(θ) and the spherical
Bessel functions jL(kr) in Equation (3), is an even integer originating from the composition
of the individual atom angular momenta l1 and l2. If the eigenfunctions of Equation (2)
are expressed via free-particle spherical waves, ϕklm(r) ∝ jl(kr)Yl m(θ, ϕ) and exchange
is neglected, the matrix element

〈
ψij
∣∣kj · ki

∣∣ψij
〉
= 0, which ensures that the expectation

value of the atom-pair internal kinetic energy }2 k2/4m∗ is just (Ei + Ej)/2.
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The coupling leading to Auger processes is essentially given by the He-He interatomic
potential, which is here chosen in the Tang-Toennies (TT) form [20,21] restricted to the first
dipole-dipole dispersion term in the London expansion,

V(r) =

[
A− C6

r6

∞

∑
k=7

(β r)k

k!

]
e−β r (4)

with r =| r2 − r1| the distance between atoms at positions r1 and r2, A = 22.16 a.u., β = 2.388 a.u.,
and C6 = 1.461 a.u. [22]. The transition rate encompassing the two processes of Figure 1 is
expressed as

W(Ei, Ej → Ei′, Ej′) =
2π

}
∣∣ 〈ψi′j′(r1, r2)

∣∣V(r)
∣∣ψij(r1, r2)

〉 ∣∣2g(Ei + Ej − Ej′) (5)

where g(E) is the free-atom density of states. Due to the short range of V(r) as compared to
the cluster diameter, surface effects are neglected.

Since the total energy is conserved (Ei′ + Ej′ = Ei + Ej) and also L is conserved due
to the spherical symmetry of V(r), a diagonal matrix element occurs in Equation (5). Al-
though the TT potential V(r) has no divergence, the Born approximation adopted in the
Fermi golden rule of Equation (5) may not be sufficient due to the size of the repulsive
potential, and distorted waves decaying exponentially for r smaller than the classical
turning-point distance d0 should be used. This complication is avoided by restricting
the integrations in Equation (5) to the range d0 ≤ r ≤ R0, with the minimum distance d0
corresponding to the atomic co-volume b = 4π d3

0/3 = 40 Å3 (excluded volume approxima-
tion) and R0~R(N) the cluster radius, and using wavefunctions constructed on the basis of
free-particle spherical waves.

In the present approximation the confinement due to the finite cluster radius effects
acts through the discretization of energy levels Ej ≡ E(nj, lj) appropriate to the cluster size,
with nj and lj the radial and angular quantum numbers of the j-th level, respectively. An
acceptable approximation for the energy eigenvalues of a spherical box of radius R and
potential bottom −V0 is [23]

E(n, l) ∼= −V0 +
π2}2

8m∗R2 (2n + l − 1)2, (n = 1, 2, 3 . . . ; l = 0, 1, 2, . . .) (6)

It is important to remark that this equation becomes exact for E(n, l)→ 0− (threshold
conditions) [23]. Moreover, by assuming a liquid drop model for the clusters, so that
R = R(N) = 2.22N1/3Ả, it is found that Equation (7) reproduces the threshold (vanishing
eigenvalue) condition for (3He)N clusters (N = 40, 70, 112, 168) as calculated with a density
functional [6] and the same value of c ≡ b(8m∗V0)

1/2/π} = 1.76± 0.03. Since the evapora-
tion probability, as shown below, depends essentially on the threshold quantum numbers,
i.e., on the number of bound states, and much less on their detailed energy distribution,
the following calculations based on the spherical-box model may be compared with the ex-
perimental data. For (4He)N clusters no similar check can be made with density-functional
results. However, Equation (6) provides a good fit of the single-particle levels obtained
from the variational Monte Carlo calculations by Lewart et al. for (4He)70 clusters [18] with
c = 2.47 and a threshold number 2n + l − 1 between 10 and 11. Moreover a convenient
expression for R(N) can be fitted to Pandharipande et al. Green’s function Monte Carlo
results [3]:

R(N) = b1N1/3 +
b2

N1/3 − 1
− 3π}

(8m∗V0)
1/2 (7)

with b1 = 1.88Å and b2 = 1.13Å. With V0 corresponding to the binding energy per atom
for the bulk liquid (7.2 K [7]), an effective mass m* = 3.2 × 4 a.u. is obtained. Here only
values of N above the minimum of R(N) at about N = 7 shall be considered. It should be
noted that V0 is actually a smooth function of N [7]. Assuming a constant V0, however, is
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affecting the amplitude of magic number maxima but essentially not their position, which
is the scope of the present analysis. The effects of a V0(N) fitted to Guardiola et al. result [7]
are discussed in Ref. [24].

The total Auger evaporation rate of one atom from an N-atom cluster is given by

P(N) =
∫

dE ∑
E1,E2,E′2

W(E1, E2 → E, E′2) n(E1)n(E2)[1 + n(E′2)] (8)

where n(E) = [e(E−µB)/kBT − 1]
−1

is the Bose-Einstein occupation number and the chemical
potential µB ≡ µB(T, N) is determined at each temperature from normalization to the atom
number N. In the kinetic regime discussed above, controlled by single-atom evaporation,
ρ(N) ∝ 1/P(N).

It appears from various numerical tests that the integrated evaporation rate, Equation (8),
is rather insensitive to the choice of V0 and m* as long as the number of one-particle bound
states remains the same, thus confirming that the threshold behavior, i.e., the insertion of
new states, rather than the bound state spectrum, determines the stepwise dependence
on N of the evaporation rate. In general terms this is consistent with the thermodynamic
interpretation by Guardiola et al. [7] based on a diffusion Monte Carlo analysis of the
N-dependent partition function, though their calculation refers to a larger temperature
(1.7 K) and to collective excitations with smaller threshold numbers.

The calculations show that the distribution ρ(N) ∝ 1/P(N) remains within the same
order of magnitude for N varying from 10 to 100, whereas the size distribution function
ρexpt(N) of the incident cluster beams, reported by Brühl et al. for different source pres-
sures P0, decreases for increasing N over a few orders of magnitude [9]. The latter were
obtained from the diffraction experiments via multiplication by a Jacobian factor and a
factor correcting for the cluster ionization probability, altogether giving a factor ∝ N−3.
To isolate and identify the magic-number oscillations, the actual ρexpt(N) is divided by
its smoothed version, ρ f it(N), obtained from averaging over the oscillations, actually a
power law, ρ f it(N) ∝ N−α with α ranging from 1.74, for a cluster beam source pressure
P0 = 1.33 bar, to 3.43 for P0 = 1.10 bar. The dependence of the exponent α on P0 clearly
concerns the cluster formation kinetics close to the source, whereas the experiment indi-
cates that the magic number oscillations are practically independent of P0 and are therefore
linked with the kinetics inside the travelling beam.

In Figure 3 the experimental distributions ρexpt(N)/ρ f it(N) as reported by Brühl et al. [9]
are compared with the corresponding theoretical distributions for two different tempera-
tures and α = 3. For a closer comparison at large N the calculated ρ (N) has been replaced
by the Gaussian convolution

ρ∗(N) =
1

N2s
√

π ∑N′ρ(N′) exp

[
− (N′ − N)2

s2N4

]
(9)

in order to reproduce the finite instrumental angular resolution in the cluster number
∆N = sN2, where s ∼= 0.002.

The calculated distributions, plotted in Figure 2b for three different temperatures and
N > 7, appear to reproduce very well all the salient features of the experiments. Some of the
sharp peaks occurring in the calculated distributions are quite dependent on temperature:
those at N = 11 and 21 are prominent at T = 0.37 K, but barely visible at 0.8 K, whereas
the features for N > 40 increase with temperature. This can be interpreted as because
clusters get smaller via more evaporation processes and are therefore favored at smaller
temperatures. Experiments show a gradual switch of intensity from the peak at N = 21 to
that at N = 26 for a decreasing source pressure P0, whereas theory shows a similar effect for
increasing cluster temperature.

The experimental oscillations in cluster abundance at larger N are better seen when
plotted as a function of 1/N (Figure 3a). The calculated distribution for 0.8 K shows four



Molecules 2021, 26, 6244 6 of 8

peaks of comparable intensities: those at smaller N correspond to the experimental peaks
for smaller source pressures, whereas those at larger N correspond to the experimental
peaks at larger source pressures.
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Figure 2. Comparison between (a) the (4He)N cluster size distributions obtained from cluster diffrac-
tion experiments by Brühl et al. [9] for different source pressures P0, and (b) the theoretical distribu-
tions for three different cluster temperatures and for an instrumental angular resolution parameter
s = 0.002. Each experimental distribution is divided by a distribution ρ f it(N) ∝ N−α obtained from
averaging over the magic-number oscillations with α given by a best fit.
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Figure 3. Same as Figure 2 with respect to a linear 1/N scale for a comparison between experiment
and theory (T = 0.8 K only) at large values of N: (a) oscillations in cluster abundance and (b) the
calculated distribution for 0.8 K.

3. Conclusions

The good qualitative agreement between experiment and the calculated 4He cluster
size distribution, although based on a simple free-particle model, provides a convincing
argument in favor of the Auger evaporation mechanism for magic numbers (actually
stability regions) of boson clusters. It is important to note that the Auger evaporation
approach is conceptually similar to Guardiola et al. [6,7] quantum Monte Carlo thermo-
dynamic approach in terms of threshold states, but they are alternative in terms of who is
doing the job: single particle (actually pair collisions) or collective excitations?

Another issue concerning Brühl et al. experiments [9] is cluster formation kinetics. The
observed similarity of peak distributions obtained at different source pressures after divid-
ing out the respective smoothed distribution speaks in favor of in-beam kinetics. According
to the present analysis Auger evaporation appears to be the basic kinetic mechanism for
magic numbers in 4He clusters as generated in supersonic beams.
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