Supporting Information for Publication

Synthesis and evaluation of novel iminosugars prepared from natural amino acids

Alejandro Puet,¹ Gema Domínguez,¹ F. Javier Cañada² and Javier Pérez-Castells^{1*}

Figure S2: ¹³C-NMR (100 MHz, CDCl₃) of 1a.

Figure S3: ¹H-NMR (400 MHz, CDCl₃) of *tert*-butyl (S)-allyl(1-(methoxy(methyl)amino)-1-oxopropan-2-yl)carbamate.

Figure S4: ¹³C-NMR (100 MHz, CDCl₃) of tert-butyl (S)-allyl(1-(methoxy(methyl)amino)-1-oxopropan-2-yl)carbamate.

Figure S5: 1H-NMR (400 MHz, CDCl3) of 2a.

Figure S7: 1H-NMR (400 MHz, CDCl3) of 3a.

Figure S11: ¹³C-NMR (100 MHz, CDCl₃) of **4a**.

.

Figure S12: 1H-NMR (400 MHz, CDCl3) of tert-butyl (S)-(3-hydroxy-1-(methoxy(methyl)amino)-1-oxopropan-2-yl)carbamate.

Figure S13: ¹³C-NMR (100 MHz, CDCl₃) of tert-butyl (S)-(3-hydroxy-1-(methoxy(methyl)amino)-1-oxopropan-2-yl)carbamate.

Figure S14: 1H-NMR (400 MHz, CDCl3) of 1b.

Figure S15: ¹³C-NMR (100 MHz, CDCl₃) of **1b**.

Figure S16: 1H-NMR (300 MHz, CDCl₃) of tert-butyl (S)-allyl(3,8,8,9,9-pentamethyl-4-oxo-2,7-dioxa-3-aza-8-siladecan-5-yl)carbamate.

Figure S17: ¹³C-NMR (75 MHz, CDCl₃) of *tert*-butyl (S)-allyl(3,8,8,9,9-pentamethyl-4-oxo-2,7-dioxa-3-aza-8-siladecan-5-yl)carbamate.

Figure S18: 1H-NMR (400 MHz, CDCl3) of 2b.

Figure S19: ¹³C-NMR (100 MHz, CDCl₃) of **2b**.

Figure S20: ¹ H-NMR (40) MHz. C	DCl ₃) of 3b .
---	----------	-----------------------------------

Figure S21: ¹³C-NMR (100 MHz, CDCl₃) of **3b**.

Figure S22: ¹H (400 MHz CDCl₃) bidimensional NOESY of 3b.

- '4.50 '4.45 '4.40 '4.85 '4.80 '4.25 '4.20 '4.15 '4.10 '4.05 '4.00 '3.95 '3.90 '3.85 '3.80 '3.75 '3.70 '3.65 '3.60 '3.55 '3.50 '3.45 '3.40 '3.85 '3.80 '3.25 '3.20 f1 (ppm)

Figure S24: 1H-NMR (400 MHz, CDCl3) of 4b.

Figure S26: ¹H (400 MHz CDCl₃) bidimensional NOESY of 4b.

Figure S29: ¹H (400 MHz CDCl₃) bidimensional NOESY of 5a.

Figure S30: ¹H-NMR (400 MHz, CDCl₃) of **5b**.

Figure S31: ¹³C-NMR (100 MHz, CDCl₃) of **5b**.

Figure S32: ¹H (400 MHz CDCl₃) bidimensional NOESY of 5b.

Figure S33: 1H-NMR (400 MHz, CDCl3) of tert-butyl (15,45,65,75)-5-hydroxy-7-(hydroxymethyl)-4-methyl-3-azabicyclo[4.1.0]heptane-3- carboxylate.

Figure S34: ¹³C-NMR (100 MHz, CDCl₃) of *tert*-butyl (15,45,65,75)-5-hydroxy-7-(hydroxymethyl)-4-methyl-3-azabicyclo[4.1.0]heptane-3- carboxylate.

Figure S37: 1H-NMR (400 MHz, CDCl₃) of tert-butyl (1S,4S,5R,6S,7S)-5-hydroxy-7-(hydroxymethyl)-4-methyl-3-azabicyclo[4.1.0] heptane-3-carboxylate.

Figure S38: ¹³C-NMR (100 MHz, CDCl₃) of *tert*-butyl (15,45,5R,65,7S)-5-hydroxy-7-(hydroxymethyl)-4-methyl-3-azabicyclo[4.1.0] heptane-3-carboxylate.

Figure S40: ¹³C-NMR (100 MHz, MeOD) of **6b**.

Figure S41: ¹H-NMR with water suppression (500 MHz, D₂O) of PNP-galactose, mixture of PNP-gal with galactosidase after 1 hour and mixture of PNP-gal, galactosidase and **6b** after 12 hours of enzymatic reaction respectively.

Figure S42: 1H-NMR (400 MHz, CDCl₃) of tert-butyl (1S,4S,5R,6S,7R)-5-hydroxy-7-(hydroxymethyl)-4-methyl-3-azabicyclo[4.1.0]heptane- 3-carboxylate.

Figure S43: ¹³C-NMR (100 MHz, CDCl₃) of tert-butyl (15,45,5R,65,7R)-5-hydroxy-7-(hydroxymethyl)-4-methyl-3-azabicyclo[4.1.0]heptane- 3-carboxylate.

Figure S44: ¹H-NMR (400 MHz, MeOD) of 6c.

Figure S45: ¹³C-NMR (100 MHz, MeOD) of **6c**.

Figure S46: ¹H (400 MHz MeOD) bidimensional NOESY of 6c.

Figure S47: ¹H-NMR (400 MHz, CDCl₃) of **7**.

Figure S48: ¹³C-NMR (100 MHz, CDCl₃) of 7.

Figure S49: ¹H-NMR (400 MHz, MeOD) of di-tert-butyl (1R,4S,5S,6S,7S)-5-hydroxy-4-(hydroxymethyl)-3-azabicyclo[4.1.0]heptane-3,7- dicarboxylate.

Figure S50: ¹³C-NMR (100 MHz, MeOD) of di-tert-butyl (1R,4S,5S,6S,7S)-5-hydroxy-4-(hydroxymethyl)-3-azabicyclo[4.1.0]heptane-3,7- dicarboxylate.

Figure S51: ¹H (400 MHz CDCl₃) bidimensional NOESY of di-*tert*-butyl (1*R*,4*S*,5*S*,6*S*,7*S*)-5-hydroxy-4-(hydroxymethyl)-3-azabicyclo[4.1.0]heptane-3,7-dicarboxylate.

Figure S53: ¹³C-NMR (100 MHz, D₂O) of **10a**.

Figure S54: ¹H-NMR (400 MHz, CDCl₃) of *tert*-butyl (1*S*,4*S*,5*S*,6*S*,7*S*)-4-(((*tert*-butyldimethylsilyl)oxy)methyl)-5-hydroxy-7- (hydroxymethyl)-3azabicyclo[4.1.0]heptane-3-carboxylate.

Figure S55: ¹³C-NMR (100 MHz, MeOD) of *tert*-butyl (1*S*,4*S*,5*S*,6*S*,7*S*)-4-(((*tert*-butyldimethylsilyl)oxy)methyl)-5-hydroxy-7- (hydroxymethyl)-3azabicyclo[4.1.0]heptane-3-carboxylate.

Figure S56: ¹H-NMR (400 MHz, MeOD) of *tert*-butyl (1*S*,4*S*,5*S*,6*S*,7*S*)-5-hydroxy-4,7-bis(hydroxymethyl)-3-azabicyclo[4.1.0]heptane-3- carboxylate.

Figure S57: ¹³C-NMR (100 MHz, MeOD) of *tert*-butyl (1*S*,4*S*,5*S*,6*S*,7*S*)-5-hydroxy-4,7-bis(hydroxymethyl)-3-azabicyclo[4.1.0]heptane-3- carboxylate.

Figure S58: 1H-NMR (400 MHz, MeOD) of 11a.

Figure S59: ¹³C-NMR (100 MHz, MeOD) of **11a**.

Figure S61: ¹³C-NMR (100 MHz, CDCl₃) of 8.

Figure S62: ¹H-NMR (400 MHz, CDCl₃) of (1*R*,4*S*,5*S*,6*S*,7*R*)-3-(*tert*-butoxycarbonyl)-5-hydroxy-4-(hydroxymethyl)-3-azabicyclo[4.1.0]heptane-7-carboxylic acid.

Figure S63: ¹³C-NMR (100 MHz, CDCl₃) of (1*R*,4*S*,5*S*,6*S*,7*R*)-3-(*tert*-butoxycarbonyl)-5-hydroxy-4-(hydroxymethyl)-3-azabicyclo[4.1.0]heptane-7-carboxylic acid.

Figure S64: 1H-NMR (400 MHz, D2O) of 10b.

Figure S65: ¹³C-NMR (100 MHz, D₂O) of **10b**.

Figure S66: 1H-NMR (400 MHz, CDCl3) of 9.

Figure S67: ¹³C-NMR (100 MHz, CDCl₃) of 9.

Figure S68: 1H-NMR (400 MHz, MeOD) of tert-butyl (15,45,55,65,7R)-5-hydroxy-4,7-bis(hydroxymethyl)-3-azabicyclo[4.1.0]heptane-3- carboxylate.

Figure S69: ¹³C-NMR (100 MHz, MeOD) of tert-butyl (15,45,55,65,7R)-5-hydroxy-4,7-bis(hydroxymethyl)-3-azabicyclo[4.1.0]heptane-3- carboxylate.

Figure S72: ¹H (400 MHz MeOD) bidimensional NOESY of **11b**.

Table S1: Measured constant coupling from products derived from L-serine.

	3b	4b	7	10a	11a	8	28	10b	9	25b	11b
J _{8a-8b}	10.0	10.4		12.2				10.7	11.5	7.6	11.9
J _{8a-4}	2.9	2.7		8.5	6.4			5.4	5.7	7.6	5.1
J _{8b-4}	2.9	2.7		1.5	1.7			5.4	5.7	7.3	3.0
J ₄₋₅				4.4	5.5			0	1.4		10.1
J ₅₋₆			1.8					5.5	8.8	8.9	7.6
J ₆₋₇	4.4	8.6	4.1	4.6	5.6	6.2	6.2	5.9	8.9	9.1	8.9
J ₆₋₁		8.6	9.3				8.0	8.3	8.9	9.1	8.9
J ₇₋₁	4.4	8.6	4.1	4.6	5.6	8.5	8.0	8.4			8.4
J _{1-2a}	1.9	3.2			8.3		8.0	8.7	5.3		9.6
J _{1-2b}	0	0		0	2.4		2.5	6.4	0	0	5.0
J _{2a-2b}	13.5	13.4		13.5	13.7		14.5	14.7	14.2	14.1	14