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Abstract: This study evaluates the kinetic hydrate inhibition (KHI) performance of four quaternary
ammonium hydroxides (QAH) on mixed CH4 + CO2 hydrate systems. The studied QAHs are;
tetraethylammonium hydroxide (TEAOH), tetrabutylammonium hydroxide (TBAOH), tetramethy-
lammonium hydroxide (TMAOH), and tetrapropylammonium hydroxide (TPrAOH). The test was
performed in a high-pressure hydrate reactor at temperatures of 274.0 K and 277.0 K, and a concen-
tration of 1 wt.% using the isochoric cooling method. The kinetics results suggest that all the QAHs
potentially delayed mixed CH4 + CO2 hydrates formation due to their steric hindrance abilities. The
presence of QAHs reduced hydrate formation risk than the conventional hydrate inhibitor, PVP,
at higher subcooling conditions. The findings indicate that increasing QAHs alkyl chain lengths
increase their kinetic hydrate inhibition efficacies due to better surface adsorption abilities. QAHs
with longer chain lengths have lesser amounts of solute particles to prevent hydrate formation. The
outcomes of this study contribute significantly to current efforts to control gas hydrate formation in
offshore petroleum pipelines.

Keywords: kinetic hydrate inhibition; ammonium hydroxides; formation rate; induction time; mixed
gas hydrates

1. Introduction

For over a century, the global increase in energy demand, due to economic progress,
has predominantly been satisfied by hydrocarbon-based fossil fuels. Crude oil, natural gas,
and coal, now provide over 80% of the primary energy supply worldwide [1]. Among the
stated fossil fuels, natural gas is considered the most abundant and more eco-friendly and
is known to emit fewer amounts of greenhouse gases [2].

The distribution of natural gas reserves differs geographically according to the physical
locations worldwide. Natural gas reservoirs enriched with carbon dioxide (CO2) can be
found in several parts of the world, especially in the South-East Asian region. Countries
such as Indonesia, Malaysia, and Thailand, are renowned for their high-carbon natural gas
reserves [3,4]. In Malaysia, gas reserves of over 70 and 87 moles per cent CO2 respectively
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exist in the K5, and J7 fields situated offshore of Sarawak [5,6]. The CO2 content of natural
gas not only reduces its energy content (calorific value) but also increases its refining
costs as well [7,8]. Also, the presence of CO2 in natural gas causes various issues, such as
severe problems of flow assurance and pipeline integrity due to gas hydrate formation and
corrosion, especially in deep-water wells [7,9].

Gas hydrates are crystalline solids in which gas molecules are shielded and stabilized
by Van der Waal’s forces in hydrogen-stricken water molecules [3,10–15]. The formation
of gas hydrates is the main flow-assurance challenge in the offshore oil and gas sector,
contributing to severe blockages during the process of hydrocarbon output to pipeline
transport and refining facilities in all fields [16,17]. To minimize such losses, a new disci-
pline known as flow assurance engineering has emerged [18–20]. Flow assurance becomes
more significant as oil and gas exploration and field development progress into deeper
water (500 m), where longer pipelines in hostile operating environments are prone to gas
hydrate formation [21]. Deepwater production faces various technical challenges, such as,
(1) lower operating temperatures inside hydrate formation regions and (2) inconsistent
production profiles due to factors such as gas composition, pressure, temperature, and oil
and liquid content over the lifespan of the field [19,22,23].

Techniques such as water exclusion, chemical suppression, heat circulation and depres-
surization, are the main methods widely used to prevent gas hydrate deposits in offshore
pipelines [24,25]. Nonetheless, in most offshore situations, the most feasible solution for
deepwater gas pipelines, is the chemical suppression technique, mainly because of its
practicability and cost-efficiency [26,27]. Thermodynamic hydrocarbon inhibitors (THIs)
and low-dose hydrate inhibitors (LDHIs) are the chemical hydrate suppression methods
available. THIs are organic solvents that can create a connection between hydrogen and
water, thus, lowering the liquid-vapor hydrate equilibrium (HLVE) temperature. Mean-
while, LDHIs include two types: kinetic hydrate inhibitors (KHIs); typically consisting
of surfactants, which are water-soluble polymers and, anti-agglomerates (AAs) [28–30].
KHIs unlike THIs, do not alter hydrate nucleation structures and their phase boundary
conditions. In comparison, AAs in general, do not inhibit the formation of hydrate, but
rather, they create a transmittable slurry that prohibits the aggregation of hydrate crystals
from forming superior plug-in structures that obstruct pipelines [31].

Water-soluble polymers such as polyvinyl pyrrolidone (PVP) and polyvinyl capro-
lactam (PVCap), are the most widely used KHIs. Karaaslan et al. [32] claimed that PVP
and polyoxyethylene (PEO) are KHIs; however, they contain cancerous materials that have
significant human health and safety implications when utilized. Also, PEO’s influence on
hydrate mitigation is relatively less than PVP [32].

The petroleum industry generally uses both THIs and KHIs with different chemical
constituents in varying amounts, which leads to high costs of operation when used in
larger quantities. These limitations have drawn much attention from both industry and re-
searchers to find efficient compounds that could provide dual-functional hydrate inhibition
impact. Quaternary ammonium salts are green compounds with excellent thermal stability
in nature, which are tailor-made for task-specific applications and especially for gas hydrate
inhibition. Li et al. [33] first introduced quaternary ammonium compounds salts as gas hy-
drate inhibitors. They reported that tetramethylammonium chloride (TMACl) could inhibit
hydrates better than imidazolium-based ionic liquids. Another study by Tariq et al. [34] con-
firmed that quaternary ammonium compounds exhibit both thermodynamic and kinetic
hydrate inhibitory potentials.

Recently, Khan and co-workers have worked extensively on the evaluation of quater-
nary ammonium compounds as thermodynamic hydrate inhibitors for CH4, CO2, and their
mixed gas hydrates [4,6,8,9,11,25,27,35–42]. Their results show that quaternary ammonium
hydroxide (TMAOH) best inhibits hydrate formation by reducing the hydrate dissociation
temperature by 2.1 K [6]. Although the thermodynamic hydrate inhibition of quaternary
ammonium compounds has been studied extensively, their KHI behavior is still not fully
understood. Also, the effect of quaternary ammonium compounds on high CO2 content
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natural gas system is not well understood, thus, requiring investigations that could be
useful to manage hydrate formation challenges in high CO2 natural gas production fields
and around the globe [4,6,35,42].

Therefore, this present study investigated the kinetic hydrate inhibition influence of
quaternary ammonium hydroxides on three (3) different CH4 + CO2 mixed gas systems.
The KHI measurements taken include the total gas consumed, induction time, and initial
rate of hydrate formation in the binary mixed gas-hydrate systems of 30% CH4 + 70% CO2,
50% CH4 + 50% CO2, and 70% CH4 + 30% CO2 using the isochoric constant cooling method.
Experiments were carried out at simulated pipeline pressures between 3.50 to 7.50 MPa at
temperatures of 274.0 and 277.0 K. The test was performed at two different experimental
temperatures to allow the evaluation of the subcooling effect. The subcooling temperature
is the difference between the hydrate equilibrium temperature (Teq) and the experimental
temperature (Tex) as described in methodology section later. The kinetic inhibition results
of the QAHs were also compared to a commercial kinetic hydrate inhibitor (PVP) to confirm
their potentials as adequate replacements for the conventional gas hydrate inhibitors in
the industry.

2. Results and Discussion
2.1. Influence of QAHs on Induction Time of Mixed Gas Hydrates

Figure 1 presents the measured induction time results for the tested QAHs + mixed
gas hydrate systems under the studied experimental conditions. The findings for the QAHs
tested are also compared with PVP tested at 274.0 K experimental temperature. From
Figure 1, the induction time for all the QAH systems examined can be seen to increase
compared with the pure water system. The induction time for the lower subcooling
conditions (277.0 K) was less than that for, the higher subcooling temperature (274.0 K). A
potential reason for this observed behavior is the presence of a higher subcooling difference
(∆T 9 K), which enhances the metastable (hydrate forming) region, resulting in shorter
induction times. This behavior was also reported in earlier studies, which indicate that
sufficient subcooling temperature is required for efficient nucleation [43,44]. Also, in
a subcooling temperature system, the hydrate nucleation and formation behavior has
been proven to be controlled by the activation barrier of the system [45]. Thus, at higher
subcooling temperature there is a large negative entropy of activation which causes the
hydrate to form faster and grow more compared to systems at lower subcooling [45].
The induction time results suggest that all of the QAHs considered were able to work as
kinetic inhibitors.

Figure 1. Cont.
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Figure 1. Influence of 1 wt% QAHs on induction times of mixed gas hydrates at different experimental temperatures for (a)
70% CH4 + 30% CO2, (b) 50% CH4 + 50% CO2, and (c) 70% CH4 + 30% CO2, and comparison with the commercial inhibitor
(PVP). The solid lines represent pure water.

The kinetic hydrate inhibition strength of the studied QAHs increased by increasing
their alkyl chains. QAHs with chain lengths above two (TPrAOH and TBAOH) exhibited
the best hydrate inhibition impact due to their increased hydrophobic activity arising from
their cation functionality. The increased hydrophobic nature of TPrAOH and TBAOH
causes an improved barrier between the gas-liquid interfaces [46,47], reducing the dis-
solution of gas into the bulk liquid phase. On the other hand, the ability of QAHs to
delay hydrate formation is similar to PVP. This confirms the weakness of PVP at high
subcooling conditions [48]. Therefore, using QAHs as high subcooling conditions could
provide similar hydrate nucleation delays as PVP.

2.2. Influence of QAHs on Relative Inhibition Performance of Mixed Gas Hydrates

For a better understanding of the inhibition strength of the QAHs, the estimated
RIPinduction time values at both temperatures are presented in Figure 2. In Figure 2, the
RIP values of the mixed gas + QAHs systems exhibited relatively less inhibition strength
compared with pure CH4 and CO2 hydrates in literature [3]. This behavior is observed
perhaps due to the presence of relatively higher subcooling temperature differences in the
mixed gas conditions tested in the work. For instance, the subcooling of pure systems [3]
was found between 7.0–9.0 K, whereas in mixed gas cases, it varied between 9.50–10.50 K.
In comparison to those of the pure gas hydrates CH4 and CO2, the values of RIPinduction time
for the QAHs considered indicate that they offer comparable inhibition to that of the
commercial inhibitor PVP and show their ability to worked in relatively higher subcooling
conditions. The RIPinduction time data also show the influence of subcooling. At the higher
subcooling temperature of 274.0 K, the RIPinduction times values of the QAHs are observed to
be higher than at 277.0 K. This is due to the large negative entropies of activation generated
at, the higher temperature [45].
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Figure 2. Influence of 1 wt% QAHs on relative inhibition power (RIP) of mixed gas hydrates at different experimental
temperatures for (a) 70% CH4 + 30% CO2, (b) 50% CH4 + 50% CO2, and (c) 70% CH4 + 30% CO2, and comparison with
commercial inhibitor (PVP).

2.3. Influence of QAHs on Initial Formation Rate of Mixed Gas Hydrates

The initial rate of hydrate formation in 1 wt% QAH-mixed gas systems at test tem-
peratures of 277.0 K and 274.0 K are recorded in Figure 3. The influence of subcooling
temperature was evident, as the initial rate of hydrate formation was high at 274.0 K
compared to 277.0 K. The rate of hydrate formation was inhibited with increasing QAHs
chain length. In the hydrate nucleation and growth process, the amount of gas disbanded
in the liquids stage can help. Often, the rate of gas dissolution as a result of mass transfer
depends on the surface tension of the liquid phase [49–51]. The surface tension of QAHs
decreases with increasing alkyl chain, according to Kartikawati et al. [52], which inhibits
the rate of gas dissolution to form more hydrates. This better kinetic inhibition impact
occurs because of the increasing free energy at the gas-liquid interfaces in the presence
of QAHs with longer chain lengths. In the case of TBAOH [52], there is an increase in
the surface adsorption to the hydrate nucleus crystals, which aids in providing a better
inhibition effect.
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Figure 3. Impact of 1 wt% of QAHs on initial mixed gas hydrate formation at different experimental temperatures for (a)
70% CH4 + 30% CO2, (b) 50% CH4 + 50% CO2, and (c) 70% CH4 + 30% CO2, and comparison with the commercial inhibitor
PVP. The solid lines represent pure water.

The gas chromatography (GC) analysis performed for all the mixed gas samples was
basically to test which guest molecules are highly consumed during hydrate formation.
It was observed that the amount of CO2 in the gas mixtures was significantly decreased
compared to its initial composition before hydrate formation. This means that CO2 hydrates
are formed more than CH4.

2.4. Influence of QAHs on Consumption of Mixed Gas Hydrates

The amount of gas uptake in the presence or absence of QAH systems is shown in
Figure 4. The results for the mixed gas systems show that the QAHs were able to decrease
the amount of gas consumed into hydrates. Increasing the QAHs alkyl chain length further
decreases the mixed gas uptake (moles consumed). This can be attributed to its surface-
active nature of the QAHs, this causes the QAHs to adequately adhere to the gas-liquid
interface, causing hydrate inhibition. This confirms the performance of TBAOH solutions
as the best QAH in all tested systems.
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Figure 4. Effect of 1 wt% QAHs on gas uptake by mixed gas systems at different temperatures for (a) 70% CH4 + 30% CO2,
(b) 50% CH4 + 50% CO2, and (c) 70% CH4 + 30% CO2, and comparison with the industrial inhibitor PVP. The solid lines
represent pure water.

As reported previously, the studied QAHs possess strong THI influence for CH4,
CO2, and different binary mixed gas systems. This study discusses the kinetic impact of
QAHs on binary mixed CH4 + CO2 gas hydrates. The results in this work and form our
previous studies [5,53,54] show that these QAHs works effectively as dual-functional gas
hydrate inhibitors. Their THI impact decreases with increasing alkyl chain because of
poor hydrogen bonding affinity, thus TMAOH exhibits the best thermodynamic inhibition
impact [53]. On the other hand, the kinetic hydrate inhibition effects of QAHs is increased
with alkyl chain length due to their higher hydrophobicity. For this reason, QAHs should
have optimal alkyl chain lengths, such as with ethyl (C2H5) or propyl (C3H8) molecules.
This will achieve greater dual functionality, providing adequate hydrogen bonding while
increasing surface adsorption at the gas-liquid interface. QAHs can provide sufficient steric
obstacles in various ways, leading to the delayed nucleation of hydrates. We further recom-
mend that the effect of other quaternary ammonium compounds (QAC) and ionic liquids
should be tested for binary gas mixture for better data comparison and understanding.

2.5. QAHs Molar Concentration Effect on Hydrate Formation

The understanding of the molar concentration effect of the studied QAHs on their
hydrate inhibition impact would provide significant insights for their applicability. Consid-
ering the concentration limit (2 wt%) for KHIs application in the industry, additives with
excellent hydrate inhibition effect at less molar concentration are mostly desired. This is
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because, there would be less amount of the additive in the produced water or natural gas
system, thus, making gas processing and produce water treatment easy and free from com-
plex complications. The molar concentration of QAHs is controlled by their molar masses
(Table 1). The equivalent molar concentration of the studied QAHs at 1 wt% are; TMAOH
(0.002 mol%), TEAOH (0.0012 mol%), TPAOH (0.0009 mol%), and TBAOH (0.0007 mol%),
suggesting that the amount of moles of the QAHs reduces in the solution with increasing
QAHs chain length. Based on the findings in the work, the hydrate inhibition effect of the
QAHs is enhanced with increasing chain length (in wt%). Interestingly, the QAHs with
longer chain length inhibits hydrate formation with less molar concentration. This finding
affirms that the best performing QAHs KHIs (TPAOH and TBAOH) can mitigate hydrate
formation with less amount of solute particles in the system. If the TMAOH molar concen-
tration is normalized to 1, then the relative molar concentration of TEAOH is 0.62, TPAOH
is 0.45 and TBAOH is 0.35. This implies that 0.35 moles of TBAOH can mitigate hydrate
formation more than 1 mole of TMAOH. Thus, QAHs with longer chain lengths have less
amount of solute particles to prevent hydrate formation. However, further investigations
are needed to fully understand the impact of QAHs equivalent molar concentrations on
hydrates nucleation and crystallization.

Table 1. Details of chemicals employed.

Chemical Purity (wt%) MW
(g mol−1) Formula Supplier

Water Deionized 18.02 H2O Self-prepared
Mixed gas (30% CO2 + 70% CH4) 99.00% 24.43 - Gas Walker Sdn Bhd
Mixed gas (50% CO2 + 50% CH4) 99.00% 30.02 - Gas Walker Sdn Bhd
Mixed gas (70% CO2 + 30% CH4) 99.00% 35.62 - Gas Walker Sdn Bhd
Tetrabutylammonium hydroxide 99.00% 259.47 TBAOH Merck Millipore
Tetraethylammonium hydroxide 99.00% 147.26 TEAOH Merck Millipore

Tetrapropylammonium hydroxide 99.00% 203.36 TPrAOH Merck Millipore
Tetramethylammonium hydroxide 99.00% 91.15 TMAOH Merck Millipore

Polyvinylpyrrolidone 99.00% 160,000 PVP Merck Millipore

3. Materials and Methods
3.1. Materials and Sample Preparation

The chemicals employed in this study are described in Table 1. All of the compounds
tested were used without further purification. The required concentrations of the QAHs
in all the samples were prepared with deionized water. An HR-250AZ analytical balance
with a precision of ±0.1 mg (AD Company, Japan) was used for the accurate weight
measurements of specimens. Several reported hydrate-based kinetics studies are measured
in mol% [55,56]. However, the equivalent concentration in mol% and wt% of inhibitors
exhibit a significant difference in their inhibition trends which could affect their inhibition
impact analyses using either concentration unit [57,58]. In most cases, both concentration
units result in an opposing inhibition impact or trend of discussion. However, in most
industrial applications, wt% is preferable and widely used. Since this work is focused
on industrial applications, using wt% was the appropriate concentration unit to provide
relevant results interpretation that will contribute more towards practical field testing
of QAHs.

3.2. Experimental Set-Up and Kinetic Measurement

A stainless-steel high-pressure cell reactor was used to run all the kinetic hydrate tests
in this work.

The test apparatus consists of a high-pressure cell of 650 mL in volume, which op-
erates effectively between 253–523 K, with a maximum operating pressure of 20 MPa.
Further details of the experimental set-up and the operating procedure can be found



Molecules 2021, 26, 275 9 of 15

elsewhere [11,42,59–61]. Figure 5 shows the schematic and the actual experimental set-up
used in this study.

Figure 5. Experimental set-up used in this study: (a) schematic; (b) Image of the actual setup.

3.3. Kinetic Measurements of Gas Hydrate Inhibitors

An isochoric constant cooling system was used in all the kinetic testing assessment. All
the QAHs solutions were prepared with deionized water for a 1 wt% solution of each QAH
and PVP (commercial KHI). The mixed gas systems used in this work are 30% CO2 + 70%
CH4, 50% CO2 + 50% CH4, and 70% CO2 + 30% CH4. Table 2 summarizes the experimental
conditions used in this study. The KHI performance was evaluated based on the retardation
of nucleation (induction time), inhibition of crystal growth rate, or total gas uptake. The
complete details of the kinetics measurement and KHI evaluation procedures adopted can
be found in our earlier publications [4,5,42,54]. To conduct the experiments, the cell was
cleaned to remove contaminants, then 100 mL of the desired QAHs solution was loaded into
the cell. The cell was then immersed in the water bath and vacuum. The required mixed
gas system was injected into the cell to the required experimental pressure. Then the system
was left to stabilize for about 3 h at the initial testing conditions. The hydrate formation
test was initiated by reducing the system temperature to the experimental temperature
shown in Table 2. The stirrer was switched on at 400 rpm and the data logging program
begun simultaneously to initiate the experiment. The hydrate formation was confirmed by
observing a sharp increase in the system temperature and a simultaneous decrease in the
pressure as described in Figure 6. When constant pressure is attained in the hydrate cell
(for about five hours), the testing was terminated and considered complete.

Table 2. Details of KHI experimental conditions encountered in gas transmission lines for various
gases with or without aqueous QAHs solutions.

Mixed Gas Composition Temperature (K) Pressure Range (MPa)

30% CO2 + 70% CH4 274.0 and 277.0 7.50
50% CO2 + 50% CH4 274.0 and 277.0 6.50
70% CO2 + 30% CH4 274.0 and 277.0 5.0
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Figure 6. A typical Time versus pressure and temperature plot to indicate the induction time and gas uptake during hydrate
formation in a constant cooling method.

3.3.1. Induction Time Measurement

The induction time (tinduction) describes the inhibitor’s ability to delay hydrate nu-
cleation process before visible hydrate growth occurs [62,63]. It is the time required to
form a detectable hydrate phase volume [64–66]. Nevertheless, the induction period is
often defined as a probabilistic phenomenon because of the non-stochiometric existence of
hydrate formation. Therefore, both tests have been replicated at least twice, and the mean
values were reported.

The induction time in this study is calculated according to the isothermal processes as
reported in the literature [5,42,53] and from Figure 6 as shown in Equation (1):

tinduction = thydrate − tstart (1)

where tinduction refers to the time taken for hydrate nucleation to occur, tstart is the system’s
initial condition prior to the beginning of the experiments, and thydrate is the point at which
measurable hydrate were observed, evident by a rapid decrease in pressure as shown in
Figure 6. The significant rise in the temperature peak further indicates the formation of
hydrates owing to the exothermic nature of hydrate formation. In Figure 6, the initial
pressure decreases between tstart and thydrate show the induction time ‘tinduction’ before gas
consumes at the nucleation of gas hydrate, this defines the area of catastrophic hydrate
formation (see Figure 6).

3.3.2. Relative Inhibition Performance

The relative inhibition performance technique proposed by Koh et al. [67] was used
to effectively compared the hydrate inhibition impact of the QAHs. The method was
used to account for the kinetic system-dependency effect of the tested inhibitors. The
relative inhibition performance (RIPinduction time) factor was estimated using Equation (2).
RIPinduction time values 0 correspond to a superior hydrate inhibitory performance:

RIPinduction =
induction timeinhibitor − induction timewater

induction timewater n
(2)

where n is the number of QAHs tested in this work.
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3.3.3. Gas Chromatography (GC) Analysis of Mixed Gas Hydrates

Owing to the guest cage density with each product, the final gas composition of
the mixed gas system was observed to differ from the initial composition during the gas
hydration process. To solve this issue, a gas chromatography (Perkin Elmer Clarus 580,
Shelton, CT, USA) was used to determine the amount of gas remaining in the reactor after
hydrates were completely formed. The gas chromatography findings are used to measure
the amount in moles of the mixed gas present (referred to as ‘f ’ in Equation (3) below).
Also, in the presence and absence of QAHs, the gas chromatography values indicate the
composition of mixed gas hydrates consumed during the hydrate formation process.

3.3.4. Total Mixed Gas Uptake

During the hydrate formation cycle, the level of gas absorbed during hydrate forma-
tion can be determined using the real gas equation, which estimates the difference between
the number of moles of gas as shown in Equation (3) [68–70]:

∆nH =
V
R

[(
P
zT

)
f
−
(

P
zT

)
0

]
(3)

where V is the system gas phase volume, R is the universal gas constant, P and T is the
system pressure, and Temperature, respectively, z is the compression factor calculated from
the Peng-Robinson state equation [71,72]. The subscripts 0 and f are the amounts of moles
of gas at time zero and complete hydrate formation, respectively.

3.3.5. Initial Formation Rate

The initial formation rate of hydrate shows precisely how rapidly it is formed. By
finding the plot gradient of measured moles of initial methane consumed during the hy-
drate formation process versus the time elapsing before hydrate formation, as described by
Partoon et al. [73], the initial hydrate formation rate is determined Equation (4) as follows:

dn
dt

= kgas

(
nHf − nHo

)
(4)

where kgas is the hydrate formation rate constant, nHf are the total moles of gas uptake at
any time f, and nHo is the moles of gas uptake at time zero.

4. Conclusions

In the present work, the kinetic behavior of QAHs has been evaluated for different
binary CH4 + CO2 mixed gas hydrate systems at percentage proportions of 70:30, 50:50,
and 30:70 of CH4 + CO2. Kinetically, all the studied QAHs inhibit the formation of mixed
gas hydrates by increasing the hydrate formation induction time and decreasing the initial
rates of hydrate formation. However, the reduction in gas uptake during hydrate formation
is evident in all the systems studied. The trend of kinetic inhibition is found to depend
on the type of gas system involved. Due to the different interactions between QAHs
molecules and the gas molecules. The hydrate inhibition is more efficient with high CO2
hydrates compared to CH4 hydrates systems. However, the QAHs with longer alkyl chains
(TPrAOH and TBAOH) gave better inhibition than those with shorter chains (TMAOH
and TEAOH). TPrAOH and TBAOH exhibited superior kinetic inhibition performance
overall for all systems, which is comparable to the commercial inhibitor PVP. All the
QAHs systems studied reduced the initial hydrate formation rates more than PVP at 274 K,
especially at 1 wt%. On the other hand, PVP performed reasonably well compared to the
QAHs with shorter alkyl chains (TMAOH and TEAOH) in delaying hydrate formation.
Slowing down hydrate nucleation and growth by disrupting the activity of water and
gas dissolution via adsorption, together with lowering the subcooling temperature, are
the possible mechanisms for the kinetic hydrate inhibition observed in all the studied
systems. Therefore, applying these efficient dual-functional gas hydrate inhibitors in
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offshore transmission pipelines could provide a viable solution to the problems associated
with gas hydrate formation in the industry.
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Nomenclature
Abbreviation Description
QACs Quaternary Ammonium Compounds
QAHs Quaternary Ammonium Hydroxides
CO2 Carbon dioxide
CH4 Methane
AAs Anti-agglomerates
GC Gas chromatography
HLVE Hydrate liquid vapor equilibrium
KHIs Kinetic hydrate inhibitors
LDHIs Low-dosage hydrate inhibitors
∆nH Gas uptake in hydrate phase (moles)
PEO Polyethylene oxide
PVCap Polyvinyl caprolactum
PVP Polyvinyl pyroledinium
RIPinduction Relative inhibition performance
TMACl Tetramethylammonium chloride
THIs Thermodynamic hydrate inhibitor
TMAOH Tetramethylammonium hydroxide
TPrAOH Tetrapropylammonium hydroxide
TBAOH Tetrabutylammonium hydroxide
tinduction Induction time (min)
TEAOH Tetraethylammonium hydroxide
V Gas-phase volume
P Pressure
R Gas constant
z Gas compressibility factor
T Temperature
C2H5 Ethane
C3H8 Propane
∆T Subcooling temperature
subscripts
f Final
k Rate constant
0 Time zero
H Hydrates
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Units
K Kelvin
MPa Megapascal
wt% Wight percent
mmol/mol Millimoles of gas per moles of water
min Minute
Mol/min Moles per minute
mL Milliliters
rpm Revolutions per minute
h Hours
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