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Abstract: Self-assembling peptides and carbon nanomaterials have attracted great interest for their
respective potential to bring innovation in the biomedical field. Combination of these two types of
building blocks is not trivial in light of their very different physico-chemical properties, yet great
progress has been made over the years at the interface between these two research areas. This concise
review will analyze the latest developments at the forefront of research that combines self-assembling
peptides with carbon nanostructures for biological use. Applications span from tissue regeneration,
to biosensing and imaging, and bioelectronics.

Keywords: self-assembly; peptides; amyloids; carbon dots; graphene; carbon nanotubes; fullerene;
nanostructures; biomaterials; hydrogels

1. Introduction
1.1. Self-Assembling Peptides

Supramolecular systems based on self-assembling peptides have become a very pop-
ular topic of investigation for multidisciplinary research [1,2]. There are many reasons
that render these building blocks very attractive. First of all, amino acids feature a very
large chemical diversity that has been further extended with the introduction of numerous
non-natural derivatives; thus, making it possible to virtually encode any kind of functional
group into a peptide [3,4]. Secondly, their preparation can be conveniently attained by a
variety of methods, with the modular solid-phase synthesis standing out for simplicity,
also for the non-expert, as well as ease of purification [5]. Thirdly, short peptide sequences
can exert part of the functionalities displayed by complex proteins, thus, allowing for
their biomimicry using much simpler, and often more robust, molecules [6]. Fourth, the
choice of encoding a desired function within a supramolecular architecture opens the
door to smart systems that respond to external stimuli with assembly/disassembly cy-
cles, with consequent on/off switching of the encoded function. This bioinspired feature
is very attractive for biomedical applications [7,8], spanning from the development of
smart antimicrobials [9], to advanced vehicles for therapeutics [8,10] and protein [11]
delivery. The additional advantages of inherent biodegradability and biocompatibility
render self-assembling peptides ideal building blocks also for vaccine development [12],
imaging [13,14], biomaterials design [15], wound healing [16], and cancer therapy [17,18].

Self-assembling peptides are often derived from amyloids, which have been recog-
nized as important biotechnological tools, besides their relevance in physiological and
pathological contexts [19]. Amyloid proteins and peptides display a typical cross-β struc-
ture with molecular backbones being perpendicular to the long axis of the fibrils and inter-
acting with each other through ordered hydrogen bonding, while amino acid side-chains
typically engage in steric zippers of a hydrophobic nature [20]. Among the amyloid-derived

Molecules 2021, 26, 4084. https://doi.org/10.3390/molecules26134084 https://www.mdpi.com/journal/molecules

https://www.mdpi.com/journal/molecules
https://www.mdpi.com
https://orcid.org/0000-0003-1367-7603
https://orcid.org/0000-0001-6089-3873
https://doi.org/10.3390/molecules26134084
https://doi.org/10.3390/molecules26134084
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/molecules26134084
https://www.mdpi.com/journal/molecules
https://www.mdpi.com/article/10.3390/molecules26134084?type=check_update&version=1


Molecules 2021, 26, 4084 2 of 21

short peptides, the most popular building block used for self-assembly is diphenylala-
nine [21]. This minimalistic building block with a strong self-association propensity into
nanotubes (Figure 1) was identified through a reductionist approach from the amyloid
β-peptide sequence [22]. Since then, a large variety of derived motifs have been used to
design self-organizing derivatives [23]. Several reviews have appeared in the last year on
self-assembling short peptides for biomedical applications [24,25], especially drug deliv-
ery [26,27] and tissue engineering [28], also owing to their ability to mimic the extracellular
matrix [29]. More specifically, their use has been reviewed as microgels [30], antimicro-
bials [31], for angiogenesis [32], in gene therapy [33], to treat metabolic syndromes [34] and
gastrointestinal diseases [35], to regenerate bone [36] and conductive tissues [37] such as
nerves [38], to develop bioelectronics [39] and vaccines [40]. Therefore, in this review we
will not analyze in detail these highly promising systems.
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However, peptide-based systems display also certain limitations; therefore, the re-
search has been very active to develop composite [43] or hybrid [44] nanostructures and
materials with additional components to ameliorate their features and introduce new prop-
erties. Numerous examples have been reported to date and with a great variety of chemical
components, such as polymers [45], polysaccharides [46], nucleic acids [47], inorganic
nanoparticles [48,49], polyoxometalates [50], metal-organic cages [51], and more.

1.2. Carbon Nanomaterials

A specific type of additives that deserves a detailed discussion comprises the family
of carbon nanostructures (Figure 2). They all share the common feature of being composed
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by carbon atoms, which are, in the majority of cases, sp2 hybridized and inter-connected
in a honeycomb lattice [52]. Nevertheless, they can be extremely diverse both in terms
of structure and morphology, thus, in their reactivity and physico-chemical properties.
They comprise 0D fullerenes [53], nano-onions [54], and luminescent nanodots [55]. One-
dimensional carbon nanotubes (CNTs) [56] feature a tubular morphology, while graphene-
based materials [57] can be considered 2D. Other examples include clusters of nanocones
termed nanohorns (CNHs) [58] and nanodiamonds (NDs), which feature a large amount of
sp3-hybridized carbon atoms [59] and are promising for various biomedical uses [60].
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All these diverse carbon nanostructures have been widely studied, yet it is not straight-
forward to predict which is the ideal candidate based on the type of intended application.
This challenge is amplified in biologically relevant contexts, which are characterized by
a high-level of chemical complexity [63–67]. To this end, it is key to study their different
ability to interact with biomolecules and develop a protein corona on their surface [68] that
will influence their ability to elicit an immune response [69,70], as well as their biodegrada-
tion [71,72] and biodistribution [73].

Despite their morphological diversity, they do share certain common features, in-
cluding a low density, high mechanical strength, good electronic conductivity, and they
provide the opportunity to further tailor their properties upon chemical functionaliza-
tion [74]. In addition, carbon nanostructures display a high-surface area and hydrophobic
nature that can be exploited to non-covalently load high levels of bioactive molecules, as
widely applied in drug delivery [75]. As a result, they have attracted great interest for
their innovative potential in areas of unmet clinical need [74,76], such as oncology [77],
infections [78], and tissue engineering [79], especially for conductive nerve [80,81] and
cardiac [82,83] tissues, but also bone [84]. Their potential applications in sensing [85] and,
generally, in clinical applications [86] are also widely studied.

Nevertheless, today there are still concerns regarding possible side-effects from the
use of carbon nanomaterials [87,88], and their great heterogeneity renders the task even
more challenging to assess [89]. A useful approach to address this issue is to develop
unified standards for their classification, which is a complex task that is being tackled by
various committees [90]. A general framework for a reliable risk assessment approach
to develop nanotechnology responsibly is a common objective for societal welfare [91].
Innovative ways for more efficient data management [92] and inclusion of modern in silico
methods, such as machine learning to make the most out of large datasets, hold the key to
tackle this type of unresolved issues [93].
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1.3. Combination of Self-Assembling Peptides and Carbon Nanomaterials

The combination of self-assembling peptides with carbon nanomaterials can provide
a very interesting opportunity to innovate in the biomedical sector, given their highly
diverse properties. On one hand, peptides are ideal components for biomimicry, to exert
bioactivity [94] and favorably interact with water [95]. On the other, carbon nanomaterials’
conductivity and mechanical resilience can provide additional properties to peptide-based
systems [96]. Furthermore, synergy can be created by leveraging on their very different
chemical nature. For instance, one of the main limitations of carbon nanomaterials is their
hydrophobic nature and tendency to aggregate that may be alleviated through chemical
functionalization [97]. Alternatively, the amphiphilic nature of self-assembling peptides
can be convenient to enhance carbon nanomaterials’ dispersibility in water [66,98,99].
Ordered oligoglycines, for instance, were shown to coat oxidized CNTs or GO thanks to
non-covalent interactions between the carboxylic acid groups on the carbon nanomaterials
and the N-terminus of the peptides, with potential applications in conductive tissue
regeneration [100].

In addition, peptides can be used for active targeting [101], cell penetration [102], to
direct biodegradation [103], as fluorescent probes [104], and so on. However, the very
different chemical nature of these two types of components renders their combination quite
a challenge [105], and as a result this area of research is still underexplored. Furthermore, in
the case of self-assembling peptides, it is possible that the presence of carbon nanomaterials
can have detrimental effects on their supramolecular behavior. This represents a further
challenge for exploiting their interaction in useful ways. In certain cases, the inhibitory
effect can be useful, for instance to target fibrillation of pathological amyloids [67,106].
In this concise review, we will, thus, delineate how self-assembling peptides and carbon
nanomaterials can indeed join forces to innovate in the biomedical sector, and we will focus
on the very latest research efforts of the last few years in this inspiring area.

2. Research on the Interaction between Self-Assembling Peptides and Nanocarbons

Despite the fact that carbon nanomaterials are a large group that comprises many
different types of structures and morphologies as shown in Figure 2, the majority of
recent studies that combine them with self-assembling peptides concerns graphene-based
materials, and, to a lesser extent, CNTs and carbon dots. Over the years, research pertaining
to the design of nanostructures and self-assembling building blocks has achieved great
advances, so that we have witnessed a progressive shift from 2D [107] to 3D-architectural
complexity [108]. This section will describe the latest developments in this area, dividing
the most recent reports based on the type of nanocarbon, and following a progression
from 0D materials (i.e., fullerenes and carbon dots) to 1D components (i.e., CNTs), to
the 2D graphene-based materials (e.g., graphene, graphene oxide or GO, and reduced
graphene oxide or rGO). In some cases, more than one carbon nanostructure has been
combined with self-assembling peptides in multi-component systems [109–111]. Recent
examples are reported in Table 1, following the same progressive order from 0D to 1D and
2D carbon nanomaterials.

Table 1. Recent examples of studies on the interaction between self-assembling peptides and carbon nanostructures.

Carbon Nanostructure Peptide Material Application Ref.

Fullerene Aβ(1—40), Aβ(1—42) Solution Amyloidosis
inhibition [112]

Fullerene Aβ(1—42) Solution Amyloidosis
inhibition [113]

Fullerene Cyclopeptide nanotube Solution Bioelectronics [114]

Fullerene Fmoc-Phe-Phe Hydrogel Antibacterials [115]

Carbon dots D-Leu-L-Phe-L-Phe Hydrogel Biomaterial,
biosensing [116]
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Table 1. Cont.

Carbon Nanostructure Peptide Material Application Ref.

Carbon dots Aβ(1—42) Solution Amyloidosis
inhibition [117,118]

Carbon dots Aβ(1—42) Solution Biosensing [119]

Carbon dots Biofilm amyloids Solution Antibacterials [120]

Carbon dots RGDAEAKAEAKYWYAFAEAKAEAKRGD Solution Theranostics [121]

Carbon dots, GO 1 AEAKAEAKYWYAFAEAKAEAK Solution Biosensing [111]

Carbon dots, CNTs, GO 1 Aβ33—42 Solution Amyloidosis
inhibition [67]

CNHs, CNTs, GO 1 L-Leu-D-Phe-D-Phe Hydrogel Biomaterial, drug
delivery [66]

CNTs EFK8 Hydrogel Tissue regeneration [98]

CNTs RADA16-I Hydrogel Tissue regeneration [122]

CNTs Boc-β3(R)Phe-β3(R)Phe-OH
Boc-γ4(R)-Phe-γ4(R)Phe-OH

Fibrils Tissue regeneration [123]

CNTs, graphene Trp, Phe Solution Bioelectronics [124]

CNTs, GO 1 C8H16(-CH2-NH-Gly5)2·2HCl Film Tissue regeneration [100]

CNTs, GO 1 Fmoc-Tyr-OH, Fmoc-Tyr(Bzl)-OH Hydrogel Drug delivery [125]

Graphene Phe-Phe Solution Biosensing [126]

Graphene IMVTESSDYSSY Film Biosensing [127]

Graphene HSSYWYAFNNKT
IMVTESSDYSSY Film Biosensing [128]

Graphene YGAGAGAY, EGAGAGAE, RGAGAGAR Solution Biosensing [129]

Graphene LLVFGAKMLPHHGA Scaffold Tissue regeneration [130]

GO 1 Phe-Phe Solution Biosensing [131]

GO 1 Phe-Phe, Tyr-Tyr Solution Theranostics [132]

GO 1 CLVPRGSC, CRGC Solution Biosensing [133]

GO 1 C16CO-KKFF Membrane Antibacterials [134]

GO 1 FEFKFEFK Hydrogel Tissue regeneration [135]

GO 1 AEAKAEAKYWYAFAEAKAEAK Solution Tissue regeneration [136]

GO 1
N3-KKPPPPKGPLGVRGC-CONH2
N3-KKPPPPKGPLGVRGA-CONH2

N3-KKPPPPKAAPFC-CONH2

Solution Biosensing [137]

GO 1 Block copolymer polypeptide
PBLG-b-PDMS-b-PBLG Gel Tissue regeneration [138]

GO 1, rGO 2 VEVKVEVK, FEFKFEFK, FEFEFKFE Hydrogel Tissue regeneration [139]

rGO 2
Boc-Trp-PABA-OMe,
Boc-Phe-PABA-OMe,
Boc-Phg-PABA-OMe

Hydrogel Tissue regeneration [140]

rGO 2 Polylysine, polyglutamate Dispersion Tissue regeneration [141]
1 GO—graphene oxide. 2 rGO—reduced graphene oxide.

2.1. Fullerenes

Fullerenes are hollow, spherically shaped structures with a very interesting affinity for
electrons and their transport that renders them attractive for applications in energy and
photocatalysis [142], as well as photodynamic therapy [143]. In medicine, fullerenes have
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been widely studied as antioxidants [144,145], antimicrobials [146], and vehicles for drug
delivery [147,148]. Fullerenes, and in particular C60, have been studied also for their ability
to interfere with amyloid aggregation [106]. However, fullerenes’ poor solubility in water is
a limiting factor for their biological application, for which more hydrophilic derivatives are
preferred, such as fullerenols that carry hydroxyl groups [149]. A recent study compared in
silico the ability of C60, C60(OH)6 and C60(OH)12 to inhibit the fibrillation of amyloid beta
(Aβ) peptides, concluding that C60(OH)6 led to the best inhibitory performance thanks to
its balanced amphipathic character, which allowed hydrophobic interactions as well as
hydrogen bonding with the peptide backbone [112]. Another hydrophilic C60 derivative,
1,2-(dimethoxymethano)fullerene, was studied for the same purpose as it demonstrated to
be a fibrillation inhibitor for Aβ in silico [113].

Hydrophobic interactions have been used also to allow the encapsulation of C60 within
supramolecular peptide nanotubes formed through stacking of cyclopeptide derivatives
(Figure 3). This type of hybrid nanostructure was envisaged for potential use in drug
delivery or electronic applications. C70 could not be efficiently encapsulated with the
same strategy presumably due to its bigger size [114]. Conversely, when self-assembling
peptide cavitands were used for fullerene encapsulation, both C60 or C70 could be suit-
able guests [150].
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Peptides can indeed be very convenient to enhance fullerenes’ solubility in water
and direct their supramolecular behavior, whilst maintaining their electronic properties
and resulting antioxidant activity, as demonstrated through covalent conjugation [151,152].
Alternatively, a non-covalent approach can be envisaged, for instance by embedding
fullerenes within the hydrogel matrix formed by self-assembling peptides; the resulting
hybrid material could be envisaged for photodynamic antibacterial therapy, because of
the fullerenes’ well-established electronic properties with the additional benefit of the
injectable matrix formed due to the presence of the peptide [115].

2.2. Carbon Dots

Carbon dots are a more recent type of carbon nanomaterials that can be conveniently
prepared through top-down or bottom-up approaches [153], also starting from small
molecules in a green manner [61], and have very promising photoluminescence and
biocompatibility profiles for applications in medicine [154,155]. They are widely studied,
especially for biosensing applications, given their tunable optoelectronic properties [156].

https://creativecommons.org/licenses/by/4.0/


Molecules 2021, 26, 4084 7 of 21

Carbon dots have demonstrated in some cases to have detrimental effects on the
self-assembly of amyloid peptides, although it is possible to turn this phenomenon into
an advantage, for instance by hindering hierarchical bundling of amyloids and stabilizing
instead the formation of individual fibrils to attain a more homogeneous and luminescent
hydrogel (Figure 4) [116].
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Alternatively, they can be used to inhibit pathological amyloid aggregation, although
to this end, GO was shown to be more effective [67], yet clearly the performance could
depend on a plethora of physicochemical properties of the specific nanomaterials of choice,
including not only the size and morphology, but also the type and density of functional
groups as well as the experimental conditions. For instance, dost can be effective for this ap-
plication, as shown for nitrogen-doped carbon dots displaying intense photoluminescence
at 550 nm, when excited at 420 nm, that originated from the n→ π* transition of N-groups.
The amine and imine groups on their surface effectively chelated Cu divalent cations,
thus, preventing Cu(II)-induced Aβ aggregation as well as the amyloid aggregation in the
absence of copper. Moreover, irradiation of the dots with a blue LED generated radical
oxygen species that oxidized the amyloid peptide, thus, providing yet another means to
inhibit its aggregation [117]. This type of approach could be further improved through
the carbon dots’ functionalization with an aptamer for specific targeting, and through
preparation from different precursors to attain red-light responsiveness, for better tissue
penetration in vivo (Figure 5) [118].

Graphene carbon dots have been proposed as imaging agents to monitor amyloid
fibrillation. One advantage is that they display tunable emission that depends on the excita-
tion wavelength. In one study, excitation at 400 nm was shown to be particularly favorable
to yield intense emission at 500 nm that was quenched by the presence of the amyloid β

peptide monomer, whilst not by its fibrils. The authors ascribed the phenomenon to the
ability of amyloid β, only in the monomer state, to favorably interact with the graphene
quantum dots for an excited-state electron energy transfer that resulted in luminescence
quenching [119]. However, it is worth noting that amyloids present intrinsic fluorescence
that is independent from the peptide sequence [157]. It has been ascribed to the refolding
from helical to β-sheet structures and it covers the whole visible region (400–650 nm),
finding potential applications for bioimaging in vivo [14].
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to chemically and irreversibly denature Aβ peptides for effective inhibition of neurotoxic amyloid aggregation. Reproduced
with permission from Chung, Y. J. et al., ACS Nano [118], © 2021 American Chemical Society.

Amyloids occur in a variety of pathologically-relevant contexts that go well beyond
neurodegenerative diseases, and are recurrent also in prokaryotes [158]. For instance,
Staphylococcus aureus mature biofilms are rich in amyloids, and graphene quantum dots
were shown to effectively disaggregate them, possibly acting on the nuclei and altering
their structure; thus, hindering further elongation into fibrils [120].

Alternatively, amyloid peptides can be bound to carbon dots to attain nanostructured
materials for theranostics. As an example, the peptide sequence RGDAEAKAEAKY-
WYAFAEAKAEAKRGD was chosen as it contained (1) the RGD bioactive motif to target
cancer cells, (2) the YWYAF motif for selective binding onto graphenic surfaces, and (3)
the EAK motif for self-assembly into nanofibers. In this manner, the peptide elongated
nanostructures bound to graphene quantum dots that were probed in vitro for the targeting
and imaging of cancel cells [121].

Finally, carbon dots have been combined with GO and peptide nanofibers for the
biosensing of hydrogen peroxide. In this case, the peptide sequence was designed to
provide aromatic binding sites for both the dots and GO. This approach served to provide
further stability to the ternary system, as well as an additional layer to hamper GO aggrega-
tion and favor the adsorption of electrolytes for electrochemical sensing and the diffusion
of reagents [111].

2.3. Carbon Nanotubes (CNTs)

Carbon nanotubes feature a tubular morphology and can display one, two, or more
graphitic walls [159]. Depending on how the graphene sheet is rolled into the tubular
structure, different chirality and electronic properties arise [160]. High-purity sorted CNTs
find a myriad of innovative applications, especially in sensing [161], nanoelectronics [162],
and even implantable biosensors [163].

Interestingly, CNTs can be spun into macroscopic fibers with various degrees of CNT
alignment, hence, varying electromechanical properties [164]. Their extraordinary proper-
ties in terms of conductivity, low density, high tensile strength, and so on, rendered them
very attractive components for the development of innovative flexible, and even wearable,
electronics [165]. Furthermore, convenient and green protocols have been developed to
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functionalize CNT fibers in the gas phase, with virtually no waste production and the
possibility to fine-tune their hydrophilicity for use in water or ionic liquids, as needed for
the intended application [166].

The development of biohybrids based on self-assembling biomolecules and CNTs is
gaining momentum [167]. In particular, the similar anisotropic morphology of CNTs and
peptide fibrils can favor the formation of hybrid materials, whereby the two components
are intimately connected, and the resulting hydrogels display enhanced mechanical proper-
ties relative to the systems without CNTs [66,98]. Furthermore, CNTs’ dispersibility can be
enhanced through non-covalent coating by self-assembling peptides that typically display
an amphipathic nature [168]. Sometimes new properties, such as a self-healing behavior,
can emerge from such favorable interactions [66]. The binding of amyloid peptides onto
the CNTs’ surface is governed by several factors, including CNT curvature as shown by
molecular dynamics’ studies [169]. The interactions between aromatic amino acids, such as
tryptophan and phenylalanine, which are recurrent residues in self-assembling peptides,
have been studied by molecular dynamics for their ability to yield stable supramolecu-
lar hybrid materials [124]. Alternatively, self-assembling peptides can also be covalently
anchored onto the CNT’s surface, in this manner, upon the addition of free peptides,
supramolecular dendritic structures were obtained, for potential applications in tissue en-
gineering [123].

There are several potential applications for these systems, including smart materials
that release their cargo upon application of specific stimuli, such as near-infrared light irra-
diation that exploits CNT photo-thermal energy conversion [125]. Other uses of this type
of materials include tissue regeneration, as shown on peripheral nerves, with promising
levels of myelination when coupled with electrical stimuli (Figure 6) [122]. Alternatively,
aggregation-induced emission of self-assembling peptide derivatives that also act as CNT
dispersants could find potential applications in sensing [99], especially if suitable conju-
gation strategies are adopted to maximize the performance of the resulting systems for
optical detection [170]. Furthermore, CNTs have been proposed for photoacoustic imaging
in vivo, which could be applied to tumor tissues through their conjugation with targeting
moieties, such as cyclic Arg-Gly-Asp to target integrin proteins that were overexpressed by
cancer cells [171].
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2.4. Graphene-Based Materials

Graphene-based materials come in different form and size and their classification has
been reviewed [172]. Graphene’s unique physicochemical properties, high conductivity
and tensile strength, and low density have attracted great interest for biological applica-
tions [173,174]. As can be seen from Table 1, graphene oxide is possibly the most studied
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type of derivative to generate biomaterials scaffold, in light of its higher dispersibility in
water relative to graphene. Conversely, for biosensing and bioelectronics applications,
graphene is preferred for its superior electron conductivity.

De novo design of peptide sequences for optimized adsorption and self-assembly
onto the graphene’s surface is a challenging task, since the binding energy is determined
by cooperative effects that are not simply the sum of each amino acid contribution [175].
Compared to polyaromatic units, such as pyrene that can engage in efficient and ordered
π–π stacking, peptides display weaker binding onto graphene, yet they are being studied
for their ability to self-organize onto graphene and modify its electronic properties for
sensing applications [128]. In particular, self-assembled diphenylalanine nanotubes are
widely investigated and can form onto the surface of graphene, despite the fact that binding
of the peptides onto the carbon nanomaterial’s surface does alter the hydrogen bonding
pattern of the assemblies [126]. When self-assembling peptide gelators and graphene oxide
are successfully combined together, the mechanical properties of the resulting materials
are improved [66,138].

2.4.1. Sensing Applications

Glycine–alanine repeating units proved useful in the design of self-assembling pep-
tides that could form stable coatings onto exfoliated graphite for biosensing applications,
as demonstrated through inclusion of biotin for streptavidin detection (Figure 7) [129]. In
another work, for the same purpose, the peptide sequence IMVTESSDYSSY was used for
its ability to bind to graphenic substrates forming a self-assembled monolayer, and was
mutated to display biotin [127]. However, typically these are proof-of-concept studies,
while the most studied self-assembling peptide for more advanced sensing applications
is diphenylalanine, which yields nanotubes, as previously shown in Figure 1. For in-
stance, aligned semiconducting peptide nanotube–graphene oxide composites allowed to
enhance the surface-enhanced Raman spectroscopy (SERS) relative to GO alone, allowing
the nanomolar detection of glucose and nucleobases [131].
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GO was also combined with diphenylalanine-peptide nanotubes to develop a sensor,
in this case using a graphite electrode, due to the conductivity of the components. Subse-
quent inclusion of a single-stranded DNA sequence complementary to a target microRNA
allowed for its detection through changes in impedance in the biosensor (Figure 8) with
a remarkably wide linear range (10 fM–1.0 nM) and low sensing limit (8 fM) [176]. This
study was designed for the quantification of microRNA-192, which is a useful target for
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oncological studies, as it is downregulated in cancer cells, of which it inhibits proliferation,
migration and invasion, and promotes apoptosis [177].
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In another study, azido-peptides were grafted onto GO flakes and subsequent peptide
assembly led to the quenching of the nanomaterial’s inherent fluorescence. The peptide
sequence was designed to display a target motif that could be cleaved by matrix met-
alloproteinases (MMP-2). When tested in cell culture, these enzymes secreted by cells
could be detected and quantified, since their enzymatic activity led to the disassembly
of the nanomaterial and to the consequent switching-on of the fluorescent signal [137].
A similar concept was also developed for thrombin biosensing. In this case, GO flakes were
decorated with gold nanoparticles and self-assembling peptide-displaying cleavable sites
for the enzyme. As a result, in the presence of thrombin, the absorbance of the nanomaterial
varied and allowed for the spectroscopic detection of the enzyme [133].

2.4.2. Energy-Harvesting Systems for Bioelectronics

The piezoelectric activity of diphenylalanine nanotubes has been exploited also to
develop energy-harvesting systems for bioelectronics to generate charge when pressed.
To this end, they are usually grown vertically aligned through evaporation of a saturated
solution with a seed of molecules onto a substrate, and controlled polarization of the
peptides can be attained by applying an electric field (Figure 9) [178]. Moreover, horizontal
alignment onto GO flexible substrates can be achieved, thanks to a difference in wettability
and an applied electrical field [179].

2.4.3. Biomaterials for Wound Healing and Tissue Regeneration

There is growing interest in the conjugation of antimicrobial peptides with antibac-
terial graphene-based materials [180], for instance for potential applications in wound
healing. To this end, one-pot ring-opening copolymerization of lysine and leucine N-
carboxyanhydride into self-assembling polypeptides was used as a simple strategy to yield
self-assembling antimicrobials that were also conjugated to graphene to yield hierarchical
structures [181]. Antibacterial membranes were developed by combining a self-assembling
palmitoyl tetrapeptide with GO flakes [134]. Self-assembling diphenylalanine was also re-
ported to exert antimicrobial activity through bacterial membrane disruption [182], and was
studied in combination with GO flakes for potential applications in nanomedicine [132].
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Applications of peptide–graphene supramolecular systems are wide, and they could
be envisaged also for the regeneration of conductive tissues thanks to the electronic proper-
ties imparted especially by the carbon nanostructure [140]. To this end, reduced graphene
oxide flakes were grafted with bioactive peptides to yield layer-by-layer supramolecular
scaffolds held together by electrostatic interactions. The scaffolds allowed for enhanced
adhesion and neurite outgrowth in PC12 cells cultured with electrical stimulation [141].

This type of material has been envisaged also for intervertebral disc repair, as the
GO acted as nanofiller to reinforce the hydrogel formed by the self-assembling FEFKFEFK
sequence. Interestingly, at pH = 4 and a low concentration of peptide, electrostatic interac-
tions were attractive and the viscous modulus of the hydrogel was increased. However, at
a high concentration of peptide, electrostatic interactions can be absent or repulsive, and
the elastic modulus was decreased. At pH = 7, there was an increase in elastic modulus
at all concentrations, as hydrophobic interactions dominated over the electrostatic ones,
which were removed upon conditioning with culture media [135]. The same peptide was
also tested, together with another two sequence variant, for self-assembly in the presence
of graphene-based materials as nanofillers to provide scaffolds that were tested for the
culture of stem cells. Moreover, in this case, the intimate interaction between peptides and
nanocarbon flakes were key determinants for the viscoelastic properties of the final systems,
with a positive effect arising from hydrophobic interactions and variable outcomes arising
from electrostatic forces [139].

Inorganic–organic bio-hybrids have been developed for tissue regeneration too. For
instance, the self-assembling peptide AEAKAEAKYWYAFAEAKAEAK was used to pro-
vide nanofibers which, combined with GO flakes, favored the nucleation and growth of
hydroxyapatite crystals for bone tissue regeneration [136]. Recently, 2D sheets arising from
the self-assembly of the LLVFGAKMLPHHGA peptide sequence were combined with
GO and hydroxyapatite to yield porous and light-weight scaffolds for the reconstruction
of bones [130].

Hydrogels obtained from resilin-like polypeptides also displayed enhanced mechani-
cal resilience upon inclusion of GO flakes [183], as did those formed from a heterochiral
tripeptide [66]. Alternatively, graphene can be used as a nanofiller for supramolecular
hydrogels arising from the self-organization of peptide derivatives, as shown for a pseu-
dopeptide, yielding biomaterials with a thermoresponsive and thixotropic behavior [184].

2.4.4. Drug Release

In certain cases, a very interesting supramolecular behavior can arise from the inter-
action between self-assembling peptides and graphenic surfaces. Racemic crystals from
biomolecules, such as self-assembling phenylalanine, were found to maintain a straight

https://creativecommons.org/licenses/by/4.0/
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geometry when adsorbed onto a flat surface; conversely, enantiopure analogues underwent
twisting [124]. This type of phenomenon could be exploited for the enantioselective drug
adsorption and release, as shown for ibuprofen and a self-assembling phenylalanine deriva-
tive that formed right-handed helical nanoribbons on the surface of GO. UV-irradiation
could then be used as a trigger for drug release, following the switching of helicity to
left-handed (Figure 10) [185].
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3. Conclusions

The combination of self-assembling peptides and carbon nanostructures is a research
area undergoing significant expansion. The very different chemical nature of these two
components represents a technical challenge that requires a wide skillset to efficiently con-
jugate them in stable systems. However, it also represents an opportunity for a qualitative
leap in the biomedical field, if the advantages of each component are put to good use,
ideally creating synergy. While in the past the inclusion of carbon nanostructures, and
especially graphene, was mainly studied with the aim to simply enhance the mechanical
stability and resilience of peptide gels, in recent years a great progress towards more
complex applications has been made in the biomedical field.

In particular, the electronic properties of peptide assemblies have attracted great
attention also for energy-harvesting and conversion, leading to innovative approaches in
the field of bioelectronics and biosensing where carbon nanostructures are already well-
known for their excellent performance. The vast majority of these studies focus on the
simple diphenylalanine building block, but it is anticipated that extending the chemical
diversity of peptide sequences will allow to better benefit from these biomolecules and
their potential (bio)activities. However, a challenge lies in the identification of general
trends to predict the physicochemical properties and supramolecular behavior of a large
variety of self-assembling peptides. This class of biomolecules is well-known for its great
chemical diversity which, combined with the inherent flexibility of biomolecules, renders
prediction of their behavior particularly challenging. We anticipate that machine learning
methods will become key for the de novo design of self-assembling peptides that favorably
interact with carbon nanomaterials, thanks to the increasing growth of large datasets that
are being generated for these compounds worldwide.

It is clear that, thus far, graphene-based materials represent the most studied nanocar-
bon type to develop systems that interface them with self-assembling peptides, followed
by carbon nanotubes, and, more recently, carbon dots. This latter type of nanocarbon is
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clearly on an ascending trajectory for future applications, thanks to the small-size, tunable
luminescence, and possibility for green synthesis, all of which make it highly promising
for biomedical applications. Considering the emerging fluorescent properties of amy-
loids [14,186], one can envisage further opportunities to innovate in the biomedical field
from the optical applications that combine these two components into multifunctional
theranostic systems for multimodal imaging. Clearly this type of application is particularly
challenging to develop as it requires both interdisciplinary and multidisciplinary skills,
spanning from chemistry to engineering and biology. Therefore, financial and networking
support is vital to sustain the free exchange of knowledge between scientists of different
backgrounds that approach this exciting area of research, to allow for progress that will
benefit the society as a whole.
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