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Abstract: In the hydrochloride of a pyrazolyl-substituted acetylacetone, the chloride anion is
hydrogen-bonded to the protonated pyrazolyl moiety. Equimolar co-crystallization with tetraflu-
orodiiodobenzene (TFDIB) leads to a supramolecular aggregate in which TFDIB is situated on a
crystallographic center of inversion. The iodine atom in the asymmetric unit acts as halogen bond
donor, and the chloride acceptor approaches the σ-hole of this TFDIB iodine subtending an almost
linear halogen bond, with Cl···I = 3.1653(11)Å and Cl···I–C = 179.32(6)°. This contact is roughly
orthogonal to the N–H···Cl hydrogen bond. An analysis of the electron density according to Bader’s
Quantum Theory of Atoms in Molecules confirms bond critical points (bcps) for both short contacts,
with ρbcp = 0.129 for the halogen and 0.321 e Å

−3
for the hydrogen bond. Our halogen-bonded adduct

represents the prototype for a future class of co-crystals with tunable electron density distribution
about the σ-hole contact.

Keywords: halogen bond; hydrogen bond; single-crystal XRD; DFT calculation; QTAIM

1. Introduction

Starting with his first publications in the 1920s, Linus Pauling took a never-ceasing
interest in both theoretical [1,2] and experimental [3,4] insights in chemical bonds. This
fascination is reflected by his famous textbook The Nature of the Chemical Bond [5] and
peaked in him being awarded the Nobel prize in chemistry in 1954 “for his research into the
nature of the chemical bond and its application to the elucidation of the structure of complex
substances” [6]. Pauling achieved the aforementioned experimental elucidation of chemical
structures predominantly by X-ray methods, e.g., single-crystal X-ray diffraction (SCXRD).
In The Nature of the Chemical Bond, Pauling also recognized the strongly electrostatic nature
of hydrogen bonds.

A halogen’s ability to form favourable interactions with nucleophiles is called a
halogen bond [7]. Similar to hydrogen bonds, they form between an electron donating and
an electron accepting site; in the case of halogen bonds the halogen is the electron accepting
partner (Figure 1) [7,8].

Figure 1. The halogen X exhibits an electron deficient site (red, δ+) in direction of the σ-bond to R.
The nucleophile Y can interact with this positively charged region via its lone pair, thus forming a
halogen bond.

By definition, the halogen is the donor of the halogen bond. Because of the localization
of the electron deficiency on the opposing site of the σ-bond to R it is called the σ-hole [9].
First crystallographic evidence for a halogen bond was given by the Hassel group in 1954:
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they described the 1:1 adduct of 1,4-dioxane with Br2 [10]. Although the term halogen
bond was not used until introduced by Dumas et al. in 1978, this short O···Br contact of
approx. 2.71 Å paved the way for forthcoming research regarding the character of these
interactions. Since then, halogen bonds have been studied and utilized extensively in
various fields including macromolecular and supramolecular chemistry, theory concerning
chemical bonds and crystal engineering.

More recently, halogen bonds and related interactions have gained increasing attention
from theory [11–14], and the σ-hole model has also been supported by experimental
charge density studies [15–19]. In view of their occurrence in various fields, including
macromolecular and supramolecular chemistry, halogen bonds have also been applied in
the design of extended solids, i.e., in crystal engineering [20]. It has also been shown that
molecules with enforced intramolecular hydrogen bonds to a halogen bond donor form
stronger halogen bonds to adjacent halides [21].

For the design of extended structures, we often employ heterobifunctional molecules.
Their different sites can selectively interact to form well-ordered assemblies, mostly based
on coordinative bonds [22]. As our ditopic molecules usually exhibit functional groups
with nitrogen lone pairs, e.g., nitriles [23,24], pyridines [25] or pyrazoles [26,27], they may
alternatively engage as nucleophiles in halogen bonds (Figure 2) [28].
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Figure 2. Chemical structures of heterobifunctional molecules utilized by our group for crystal
engineering exhibiting nitrogen lone pairs.

We have recently shown that pyrazolyl substituted acetylacetones are heterobifunc-
tional molecules suitable for the construction of well-ordered bimetallic coordination
polymers [27]. In this study we do not report metal coordination but rather hydrogen and
halogen bonds with a hydrochloride. We discuss the synthesis and characterization of
3-(3,5-dimethyl-1-phenyl-1H-pyrazol-4-yl)acetylacetone (HacacPhPz, 1) and the cocrystal
formed by its hydrochloride with tetrafluorodiiodobenzene (TFDIB) 2, a popular building
block in crystal engineering [20].

2. Results and Discussion
2.1. Experimental Crystal Structures

We will first address the heterobifunctional molecule HacacPhPz itself. Like our
previous reported compounds, it is obtained by the reaction of the appropriate substituted
hydrazine derivative, e.g., phenylhydrazine, with tetraacetylethane [26,27,29]. HacacPhPz
(1) crystallizes in the orthorhombic space group Pbca with Z = 16 and Z′ = 2; one of the
independent molecules is shown in Figure 3.

Figure 3. Displacement ellipsoid plot [30] of one molecule in the asymmetric residue of 1 (80%
probability, C bonded hydrogens omitted). Selected intramolecular distances and angles (Å, °):
O1–C2 1.311(2), O2–C4 1.278(2), C2–C3 1.395(3), C3–C4 1.424(3), C2–C3–C8–C9 85.7(2), N1–N2–C11–
C16 28.6(2).
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Like most acetylacetones substituted in 3-position, 1 predominantly exists as the enol
tautomer in solid state as well as in solution (Figure S3).

In the crystalline solid at 100 K, the enol hydrogen is clearly localized and is detected
as local electron density maximum in a difference Fourier map (Figure 4). This assignment
is corroborated by the C–O and C–C bond lengths in the acetylacetone moiety: in the case of
the first molecule in the asymmetric residue depicted in Figure 4, O1–C2 (1.311(2)Å) is sig-
nificantly longer than O2–C4 (1.278(2)Å), and in the carbon backbone C2–C3 (1.395(3)Å)
is shorter than C3–C4 (1.424(3)Å).

Figure 4. Difference Fourier contour map [30] of the acetylacetone moiety in both molecules contained
in the asymmetric residue of 1. Contour lines are drawn at 0.2 e Å

−3
(red: positive difference, green:

negative difference, blue: zero lines).

In the following comparison, references are accompanied by their CCDC refcodes. Un-
substituted acetylacetone (refcode LIWPIQ [31]) crystallizes as the enol in the orthorhombic
space group Pnma with the crystallographic mirror plane perpendicular to the least squares
plane through the molecule, running through C3 and the hydrogen attached to it. For rea-
sons of symmetry, disorder of the enol H with half occupancy is enforced. Boese et al. noted
that a stable refinement of the structure could be conducted in the non-centrosymmetric
subgroup Pna21, with two local electron density maxima for the disordered enol H; oc-
cupancies resulted as equal within error. The interatomic C–O (1.2909(13)Å) and C–C
(1.4028(16)Å) distances in unsubstituted acetylacetone represent average values of the
bond lengths found in 1. The C=O bond distance for the keto group in 1 (1.278(2)Å)
is slightly longer than corresponding distances in small ketones such as methyl ethyl
ketone (MEK, LASLAU [32], 1.2128(19)Å) or pentanone (ZEJFEZ01 [33], 1.216(4)Å). In
contrast, the C–C bond adjacent to the keto side in 1 (1.395(3)Å) is shorter than in the non-
conjugated compounds (1.485(2)Å for LASLAU, 1.493(5)Å for ZEJFEZ01). We terminate
our comparison with the literature by referring to a very recent article by Martinez et al. [34]
in which the authors could correlate the enol H position, i.e., acetylacetone tautomerism
with the presence of halogen bonds.

An overlay of both molecules in the asymmetric unit (Figure 5) reveals that the inde-
pendent residues do not adopt the same conformation. Their planar subunits acetylacetone,
pyrazolyl and phenyl subtend different dihedral angles.

Figure 5. Overlay plot [30] of both molecules in the asymmetric residue in 1 (black: molecule
1 as shown in Figure 3, red: molecule 2 under symmetry operator −x,−y,−z; C bonded
hydrogens omitted).

In the packing in 1, no particularly close directional interactions occur. Acetylacetone
moieties and phenyl substituents aggregate in separate regions; C–H···O interactions of
approx. 2.5 Å represent the shortest intermolecular contacts.
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In order to probe the influence of the N-substitution on the ability to form halogen
bonds, co-crystallization of 1 with TFDIB was attempted. We have not been able to isolate
any adduct, presumably due to steric congestion about the nucleophilic N1, but this site
was still expected to be accessible by a proton. Therefore, hydrochloric acid was added
and crystals of the solid HacacPhPz ·HCl · 0.5 TFDIB (2) were obtained. This product
crystallizes in the monoclinic space group P21/c with Z = 4, i.e., with a TFDIB moiety on
a crystallographic centre of inversion (Figure 6).

Figure 6. Displacement ellipsoid plot [30] of 2 (80% probability, C bonded hydrogens omitted).
Selected intramolecular distances and angles (Å, °): I1···Cl1 3.1653(11), Cl1···N1 2.970(2), I1···Cl1···N1
73.99(4), C17–I1···Cl1 179.32(6), Cl1···H1N–N1 172(3). Symmetry operation: a = 1− x,−y, 1− z.

The chloride anion Cl1 bridges two protonated H2acacPhPz+ cations to a central
TFDIB moiety via two roughly orthogonal short contacts. The first interaction involves a
classical N–H···Cl hydrogen bond, with a donor···acceptor distance of 2.97 Å; additional
geometric details have been compiled in the caption of Figure 6. We recall that Pauling
has emphasized the strongly electrostatic nature of hydrogen bonds as early as 1939. In
the second short contact, the chloride ion acts as halogen bond acceptor: in agreement
with σ-hole theory [7,8], it approaches the iodine atom in the direction opposite to the C–I
bond; the arrangement Cl1···I1–C17 is almost linear. Only a few examples of this kind
have been described to date [35–40], and Table 1 provides an overview of the most relevant
geometry parameters.

Both linear and roughly orthogonal interactions are known for interhalogene ions.
According to the popular VSEPR (Valence Shell Electron Pair Repulsion, aka Gillespie-
Nyholm) interpretation [41,42] a linear disposition for two bonding partners and three lone
pairs can be expected in formal 10 valence electron species such as the central iodine in I3

–

or the recently described ClF2
– ions [43]. In contrast, for a formal 8 electron moiety such

as ClF2
+ [44] or all the examples given in Table 1 in which a Cl– anion formally employs

two out of four lone pairs, one for accepting the hydrogen bond and one as a nucleophile
towards iodine, a bent arrangement can be predicted.
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Table 1. Comparison between important distances and angles in 2 and literature known compounds
with a similar structure motif.

Cl

I H
N

R

Compound d(I···Cl)/Å d(Cl···N)/Å ∠(C–I···Cl)/◦ ∠(I···Cl···N)/◦

2 3.1653(11) 2.970(2) 179.32(6) 73.99(4)
BEXPOL [35] 3.211 3.085 177.81 111.72
JAQNAR [36] 3.331 3.137 169.49 92.01
RUWVUB † [37] 3.223 3.133 172.72 106.15
RUWWIQ † [37] 3.102 3.103 179.00 111.33
VIDHEY [38] 3.489 3.124 169.32 71.89
WOQRIF [39] 3.422 2.989 160.38 77.60
JULRIU [40] 3.122 3.003 176.41 90.99
JULSAN [40] 3.240 3.033 171.83 101.30

† For multiple hits in the same structure their average value was calculated and is presented here.

2.2. Theoretical Evaluation of the Halogen Bond

The Hirshfeld surface [45] about the chlorine anion is shown in Figure 7 and clearly
reflects the short contacts mentioned above as red contact regions.

Figure 7. Hirshfeld surface [46] around Cl1 mapped with dnorm; regions marked in red represent
directions of short, those in blue of long contact distances.

Additional insight concerning the electron density distribution in 2 was obtained
via a single point calculation, followed by an analysis of the resulting electron density by
Bader’s Quantum Theory of Atoms in Molecules [47]. Figure 8 shows a trajectory plot of
the gradient of the electron density from a similar view direction as the Hirshfeld surface
in Figure 7; both the classical N–H···Cl hydrogen bond and the Cl···I halogen bond are
associated with essentially linear bond paths and (3,−1) critical points (bcps).

Table 2 summarizes relevant characteristics of the electron density in the bcps of the
short contacts and its derived properties.
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Figure 8. Atomic basins [47,48] in 2; intramolecular bond paths and the conventional hydrogen
bond are shown as solid black lines, the halogen bond and non-classical hydrogen bonds as dashed
black lines.

Table 2. Short contacts with properties of their bond critical point (bcp) (3,−1) in 2 and experimental
data from LAVNUU [49].

Bond I1···Cl1 in 2 Cl1···H1N in 2 Cl···H in LAVNUU [49]

ρ/e Å
−3 0.129 0.321 0.28

∇2ρ/e Å
−5 1.184 1.785 0.6

bond path length/Å 3.1654 2.0680 2.11
G/a. u. 0.0110 0.0300 0.018
G/ρ/a. u. 0.58 0.63 0.44
V/a. u. −0.0097 −0.0415 −0.030
E/a. u. 0.0123 −0.0115 −0.012

We are not aware of experimental charge density studies on I···Cl halogen bonds and
therefore cannot compare ρbcp for I1···Cl1 to other structures of the same class but we have
encountered similar values for the shortest Cl···Cl contacts investigated by high resolution
X-ray diffraction [49,50]. Geometric and electronic parameters of the classical N–H···Cl
hydrogen bond may be compared to the situation in bis(2-chloropyridinium) tetrachlorido-
zincate; for the latter compound, the electron density was established experimentally [51].
Table 2 shows that the calculated properties for the hydrogen bond in 2 and our previ-
ous experimental observations for a contact of similar geometry match well, albeit the
experimental values are obviously associated with appreciable standard uncertainties.
In addition to distance criteria and ρbcp, energy densities in the bond critical point have
proven useful to categorize short contacts. Only the hydrogen bond is associated with a
negative total energy density E, the sum of the (positive) kinetic energy density G and the
(negative) potential energy density V. The halogen bond, in contrast, is characterized by a
small positive Ebcp, typically encountered for weak closed shell interactions [52].

The Laplacian of the electron density in the region of the short contacts is depicted in
Figure 9. A slight polarization of the Cl– anion towards the hydrogen can be perceived. The
iodine atom is associated with two well visible valence charge concentrations perpendicular
to the σ and the halogen bond.
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Figure 9. Laplacian of the electron density in 2; positive values in blue, negative values in red,
contours at ±2n · 10−3 a. u. (0 ≤ n ≤ 20).

The short contact between the chloride anion and the iodine atom of the fluorinated
aromatic ring does not only reflect the geometry of a σ-hole interaction but also matches
the electrostatics of such a contact: Figure 10 shows the electrostatic potential for 2. The
positive region on the iodine atom opposite to its covalent bond to the ring carbon atom is
clearly visible.

Figure 10. Electrostatic potential for 2, mapped on an isosurface of electron density ρ = 0.05 a. u. [48];
red areas are associated with a positive value (0.480 a. u.), cyan areas with negative values
(−0.0675 a. u.) and green areas with an ESP (0.115 a. u.).

3. Conclusions and Outlook

Hydrogen bonds and halogen bonds contribute to the structure of crystalline 2. This
balance does not come by accident and may become a useful motif in crystal engineering.
Hydrochlorides and -bromides of a wide range of basic compounds are readily available.
The interaction of their halide anion X– with a halogen bond donor represents a rarely
exploited way to tune and investigate both the geometry and the charge density of halogen
bonds. The formation of a classical hydrogen bond between the protonated site and X– will
often occur, and the halide engaged in this interaction can be expected to act as a good halo-
gen bond acceptor, both with respect to its electronic and steric properties. The possibility
to vary the parent base, the hydrogen halide, and the halogen bond donor molecule makes
this approach attractive for the systematic study of halogen bonds. In favorable cases, the
crystalline products will not only allow conventional structural studies and theoretical
calculations but can also become the target of experimental charge density studies.

4. Experimental Section
4.1. Computational Details

Prior to the single point calculation, C–H and N–H distances were idealized to values
consistent with results from neutron diffraction [53]. The single point calculation was
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performed with Gaussian [54]; the MIDIX basis set [55] was used. In the calculation
complete residues were taken into account and therefore a slightly expanded asymmetric
unit was used. It comprised the residues depicted in Figure S5, i.e., a full rather than a
half TFDIB molecule. The electron density associated with the single point calculation
was analyzed with AIMAll [48] and Multiwfn [56] and interpreted according to Bader’s
QTAIM [47]. The kinetic energy density G and the ratio between kinetic energy density
and electron density, G/ρ in the bcp, were derived as suggested by Abramov [57], and the
potential energy density V was obtained according to the local virial theorem [58,59].

4.2. Materials and Methods

All chemicals were used without further purification. Magnetic resonance spectra
were measured using a Bruker Avance II UltrashieldT11 plus 400 instrument (400 MHz,
referenced to SiMe4). Infrared spectra were recorded using a Nicolet Avatar 360 E.S.P.
spectrometer in potassium bromide windows. Elemental analyses were performed using
a Heraeus CHNO-Rapid VarioEL. 3,4-Diacetylhexane-2,5-dione (tetraacetylethane, TAE)
was prepared according to known procedures [26,29,60]. Intensity data was collected with
a Bruker D8 goniometer equipped with an APEX CCD area detector and an Incoatec mi-
crosource (Mo-Kα radiation, λ = 0.71073 Å, multilayer optics). Temperature was maintained
by using an Oxford Cryostream 700 instrument, Oxfordshire, UK. Data was integrated
with SAINT [61] and corrected for absorption by multi-scan methods [62]. The structures
were solved by intrinsic phasing [63] and refined by full matrix least squares procedures
against F2, as implemented in SHELXL-18. Crystal data, data collection parameters and
refinement results have been compiled in Table S1. CIFs have been deposited under CCDC
No. 2086575 (1) and 2086574 (2). Powder diffraction experiments were performed on flat
samples at room temperature using a STOE STADI P diffractometer with Guinier geometry
(Cu-Kα1, λ = 1.54059 Å, Johann germanium monochromator, STOE image plate detector
IP-PSD, 0.005° step width in 2θ).

4.3. Synthesis of 3-(3,5-Dimethyl-1-phenyl-1 H-pyrazol-4-yl)acetylacetone, HacacPhPz, 1

TAE (0.991 g, 5.0 mmol, 1.0 eq.) was dispersed in absolute ethanol (50 mL) under
N2 atmosphere and heated to reflux. When all TAE was dissolved, phenylhydrazine
(0.49 mL, 5.0 mmol, 1.0 eq.) was added dropwise and the solution was kept at reflux for
an additional 5 h. The solvent was removed under reduced pressure yielding a yellow
oil. Column chromatography (silica, n-pentane/EtOAc, 3:1, v:v; R f = 0.71) yields a pale
yellow solid. Yield: 523 mg (39%). Colorless plate-shaped crystals suitable for SCXRD
were obtained after recrystallization from n-hexane. 1H NMR (CDCl3, 400 MHz): δ 16.89 (s,
1H), 7.51–7.42 (m, 4H), 7.41–7.33 (m, 1H), 2.18 (s, 6H), 1.94 (s, 6H). 13C{1H} NMR (CDCl3,
100 MHz): δ 192.83, 148.73, 139.94, 138.16, 129.27, 127.63, 124.68, 115.34, 104.20, 23.87, 12.33,
11.52. CHN: anal. calcd. for C16H18N2O2: C: 71.1%, H: 6.7%, N: 10.4%; found: C: 70.6%,
H: 6.6%, N: 10.2%. HRMS-ESI (m/z): [M + H]+ calcd. for C16H19N2O2

+: 271.14410; found:
271.14409. mp: 63.5 °C. While some similarities can be derived from the simulated and
experimental powder pattern, phase purity could not be confirmed (Figure S1).

4.4. Synthesis of HacacPhPz ·HCl · 0.5 TFDIB, 2

HacacPhPz (13.6 mg, 0.05 mmol, 2.0 eq.) and TFDIB (10.1 mg, 0.025 mmol, 1.0 eq.)
were dissolved in CHCl3 (0.25 mL) each. The two solutions were combined and placed in a
bigger vial containing aq. HCl (0.91 mL, 5.4 M) for slow vapor diffusion. Colorless crystals
were obtained after slow evaporation of the solvent at room temperature. Yield: 13.4 mg
(76%). The powder pattern of ground 2 does not match the simulation of the experimentally
established single crystal structure (Figure S1, bottom). In order to investigate whether 2
decomposes upon grinding, a moist pH-indicator paper was placed in the head space of a
bulk sample of 2. The color change of this indicator within several hours proved the release
of a gaseous acid, most likely HCl. We do, however, not observe complete loss of HCl and
re-generation of the constituents 1 and TFDIB but formation of an unknown crystalline
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product (Figure S2). On the scale of single crystals rather than ground powder, the loss of
HCl is slower, in agreement with the matching microanalytical data.

Supplementary Materials: The following are available online, Figure S1: Simulated and experimen-
tal powder patterns of 1 (top) and 2 (bottom), Figure S2: Experimental powder patterns of 2 and
simulated patterns of 1 and TFDIB [64], Figure S3: 1H (top) and 13C{1H} (bottom) NMR spectra of 1
measured in CDCl3 (*) at room temperature, Figure S4: HSQC (red) and HMBC (green) NMR spectra
of 1 measured in CDCl3 (*) at room temperature, Figure S5: Structure fragment used for the single
point calculation discussed in the main text, Section 2.2, Table S1: Crystal data and refinement results
for SCXRD data for 1 and 2 measured at T = 100 K, Table S2: Topological properties of interactions
at their bond critical point (3,−1) of 2.
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