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Abstract: Human skin aging is affected by various biological signaling pathways, microenvironment
factors and epigenetic regulations. With the increasing demand for cosmetics and pharmaceuticals to
prevent or reverse skin aging year by year, designing multiple-molecule drugs for mitigating skin
aging is indispensable. In this study, we developed strategies for systems medicine design based on
systems biology methods and deep neural networks. We constructed the candidate genomewide
genetic and epigenetic network (GWGEN) via big database mining. After doing systems modeling
and applying system identification, system order detection and principle network projection methods
with real time-profile microarray data, we could obtain core signaling pathways and identify essential
biomarkers based on the skin aging molecular progression mechanisms. Afterwards, we trained a
deep neural network of drug–target interaction in advance and applied it to predict the potential
candidate drugs based on our identified biomarkers. To narrow down the candidate drugs, we
designed two filters considering drug regulation ability and drug sensitivity. With the proposed sys-
tems medicine design procedure, we not only shed the light on the skin aging molecular progression
mechanisms but also suggested two multiple-molecule drugs for mitigating human skin aging from
young adulthood to middle age and middle age to old age, respectively.

Keywords: skin aging; oxidative stress; aging progression mechanism; genome-wide genetic and
epigenetic network (GWGEN); systems medicine design; multiple-molecule drug

1. Introduction

Being the largest organ of the human body, the skin shows aging with biological age.
Many people, especially female, like to spend money on cosmetics and pharmaceuticals
regularly for preventing or reversing skin aging. Thus, changes in human skin caused by
aging are important issues for both the pharmaceutical and cosmetic sectors worldwide [1].
Additionally, increasing life expectancy in developed countries reveals advancing age as
the primary risk factor for numerous diseases [2]. Elder people tend to have dryness,
itch, dyspigmentation, wrinkles, as well as benign and malignant tumors on skin. Under
these worse conditions, they would feel sleep deprivation leading to having weakened
immunity and getting infection. Hence, keeping our skin health promotes healthy aging [3].
Furthermore, identifying interventions, which are able to ameliorate skin aging progression,
to delay, prevent or lessen age-related diseases is worth studying.

Human skin provides a primary protective barrier, routinely shielding us from al-
lergens, microbes, and other environmental assaults, including solar ultraviolet (UV)
irradiation, heat, infection, water loss, and injury. Skin aging is a complex process leading
to the decrement of cutaneous functions and structures with time. Impaired epidermal bar-
rier function, decline in resistance to infections and regenerative potential, and impairment
of mechanical properties like loss of extensibility and elasticity are the essential biomarkers
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of human skin ageing [4]. In general, skin aging can be regarded as two different processes.
The first one is intrinsic aging, which is caused by biological age. The second one is extrinsic
aging, which arises from solar UV exposure. The extrinsic factors contain the exposure
under UV radiation and pollution, and poor nutrition resulting in alterations of DNA, RNA
and protein in skin cells. The clinical manifestation of intrinsic aging is characterized by
age spots, laxity, wrinkles, sagging, dryness, itchy, and the lower type I and III fibrillar
collagens leading to dermal atrophy [5].

MicroRNAs (miRNAs) are a group of small noncoding RNAs, owning the post-
transcriptional regulation ability to control gene expression negatively. Meanwhile, they
are found to involve in many biological processes, such as epidermal development, pro-
liferation, differentiation [6–8], inflammatory responses, immune regulation and wound
healing in human skin [9,10]. Although we know that miRNAs might be a key player
in the age-associated change, studies about age-related miRNAs in human skin remain
limited [11]. As for long noncoding RNAs (lncRNAs), they are another type of noncoding
RNA with >200 nucleotides. One review paper has summarized age-related lncRNAs
and elucidated their roles in different aging process [12]. Since lncRNAs have versatile
functions including gene regulation, chromatin structure modulation, genomic imprinting,
cell growth and differentiation, and embryonic development, the dysregulated expression
of lncRNAs may cause age-related diseases and disorders [13]. Recently, lncRNAs are
regarded as potential targets for antiaging therapies [14]. Moreover, the well-known epige-
netic modifications are DNA methylation and histone post-transcriptional modifications,
including methylation, acetylation, ubiquitination, and phosphorylation. The accumulation
of epigenetic alternations may not only contribute to skin aging but also promote malignant
transformation [15,16]. H19, an epigenetic regulatory RNA, has been demonstrated to
positively affect cell growth and proliferation and delay senescence [17]. With epigenetic
silencing on LMNA, which is one of progeroid genes, we could observe a corresponding
malignant transformation [18].

For the purpose of investigating skin aging process, researchers tried to identify the
influence of microenvironment and epigenetic change on skin aging and put focus on some
specific proteins, such as members of the collagen family, or cellular functions. However,
the definitions of young skin and older skin are not fixed, that is, there is no definition of
age range for young people and old people, respectively. Therefore, most studies compared
young and old people with great differences in the research of skin aging progression.
Although these studies proposed plenty of credible skin aging-associated theories and
experimental results, the genomewide molecular progression mechanism of skin aging
was unknown since the restriction of experimental methods and the attention to specific
proteins and cellular functions. Moreover, although pharmacological interventions may
prove to ameliorate the effect of aging on humans, the prohibitive expansion of treating
healthy individuals in clinical trials over a long duration becomes a crucial difficulty in
developing new drugs. On the contrary, repurposing drugs, which have been already
approved for specific diseases, or those have been passed their safety tests but failed against
their original indication, is more feasible than targeting aging itself with new drugs [19–21].

In recent years, pharmaceutical scientists put a lot of efforts into novel drug devel-
opment based on the knowledge of existing drugs [22,23]. By performing in vitro search
for drug discovery, researchers could identify interaction between drugs and targets (e.g.,
genes). However, due to the high cost and time consuming work, we could not conduct
in vitro research most of the time. Instead, virtual screening in silico, selecting possible
candidates first and verifying them in wet laboratory offer alternatives to us [24]. In gen-
eral, docking simulation and machine learning method are considered to be two main
approaches for in silico prediction of drug–target interaction [25]. For docking simulation,
the process would be limited if the 3D structure of the protein is unknown [26]. To deal
with this issue, chemogenomic methods, namely feature-based methods, transform drugs
and targets into sets of descriptors (e.g., feature vector) allowing machine learning models
to make prediction of drug–target interactions [27]. Chen at al. reviewed machine learning
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methods and databases that used chemogenomic approaches for drug–target interaction
prediction [28]. Except for traditional machine learning methods, the deep neural network
has been employed in drug–target interaction prediction as well, such as deep belief neural
networks [29], convolutional neural network [30], and multilayer perceptron [31,32].

In this study, we define different age intervals for each stage of skin aging. We
build the candidate genome-wide genetic and epigenetic network (GWGEN) containing
a candidate protein–protein interaction network (PPIN) and a candidate gene regulatory
network (GRN) by big database mining. Moreover, it can be represented by a binary
matrix. Assisted with microarray data of human skin, the false positives from the candidate
GWGEN are pruned away by the system identification method and system order detection
scheme. By doing so, we obtain real GWGENs of young-adult, middle-aged, and elderly
skin aging as shown in Figures S1–S3, respectively. However, real GWGENs are still
complex. Therefore, we further extract core GWGENs from real GWGWNs by the principal
network projection (PNP) method. Based on the rank of projection values, we could
obtain the core signaling pathways in respect of KEGG pathways to investigate skin aging
molecular progression mechanisms for each stage of skin aging. To identify essential
biomarkers in core signaling pathways, we refer to GenAge [33], which contains genes
involved in human aging progression, and the Connectivity Map (CMap) [34] dataset to
find overlap nodes being drug targets. To explore the potential candidate drugs toward
our identified biomarkers, we trained a deep neural network of drug–target interactions in
advance. By applying it, we could predict potential candidate drugs, which holds higher
interaction probability to the identified biomarker. Afterwards, we designed two filters
considering drug regulation ability and drug sensitivity to narrow down the candidate
drugs. Consequently, we propose two potential multiple-molecule drugs i.e., niridazole,
liothyronine, decitabine, pinacidil, and allantoin for mitigating skin aging from young
adulthood to middle age; allantoin, diclofenac, mepyramine, resveratrol, and azathioprine
for mitigating skin aging from middle age to old age.

2. Results

For the purpose of analyzing molecular progression mechanisms in human skin
aging, extracting core signaling pathways from each core GWGEN becomes an essential
issue. We defined three skin aging stages, including young-adult, middle-aged, and
elderly human skin as shown in Figure 1. The research flowchart in Figure 2 shows how
to construct the candidate GWGEN, real GWGENs, and core GWGENs so as to extract
core singling pathways and investigate molecular progression mechanisms of human
skin aging. By big database mining, the candidate GWGEN containing candidate PPIN
and candidate GRN was constructed. With the help of the corresponding young-adult,
middle-aged, and elderly skin microarray data, we applied system identification and
system order detection methods to the candidate GWGEN for obtaining real GWGENs
shown in Figures S1–S3 (Supplementary Materials), respectively. The Table 1 shows
the number of nodes (e.g., proteins, TFs, miRNAs, and lncRNAs) as well as the edges
standing for the interaction or regulation between two nodes for the candidate GWGEN
and real GWGENs. According to Table 1, compared the nodes in candidate GWGEN to
the nodes in real GWGENs, one could realize that the number of nodes diminish a lot in
real GWGENs, reflecting that the false positives were removed successfully by the system
order detection scheme. Since the real GWGENs were still too complicated to investigate
molecular progression mechanisms of human skin aging, we applied principal network
projection (PNP) method and selected the top-ranked 4000 nodes with significant projection
values that could reflect 85% of the real GWGENs in three stages of skin aging to obtain
core GWGENs (Figure 3a–c), respectively. In addition, for the genes in core GWGENs,
we used the Database for Annotation, Visualization and Integrated Discovery (DAVID)
Bioinformatics Resources version 6.8 to perform enrichment analyses for each stage of
skin aging as shown in Tables S1–S3, respectively. Moreover, for investigating molecular
progression mechanisms of skin aging conveniently, we denoted differential core signaling
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pathways for young adult to middle-aged and middle-aged to elderly skin aging in respect
of KEGG pathways, respectively. Based on skin aging molecular progression mechanisms,
we identified essential biomarkers as drug targets for young-adult to middle-aged and
middle-aged to elderly skin aging, respectively. Exploring candidate drugs toward our
identified biomarkers, we trained a deep neural network of drug–target interaction in
advance. We applied the trained model to predict the candidate drugs holding higher
interaction probability with identified biomarkers. In order to narrow down the candidate
drugs, we design two filters considering drug regulation ability and drug sensitivity. The
more details will be discussed in the following sections.
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Table 1. The table of the total number of nodes and edges in candidate GWGENs and identified real
GWGENs for each stage of skin aging.

Candidate
GWGEN

Young-adult
GWGEN

Middle-aged
GWGEN

Elderly
GWGEN

TFs 1851 464 491 383

TF—protein 429,829 11,715 10,888 10,234

TF—receptor 66,042 1824 1738 1639

TF—TF 27,892 513 468 223

TF—lncRNAs 1600 494 457 473

TF—miRNA 348 84 76 91

lncRNAs 666 593 522 582

lncRNAs—protein 19,520 1944 1902 2286

lncRNAs—TF 1443 88 90 84

lncRNAs—receptor 3018 293 288 366

miRNAs 126 111 99 107

miRNA—protein 45,613 4175 3997 4884

miRNA—receptor 6891 593 707 745

miRNA—TF 3028 782 680 849

Receptors 2388 2372 2366 2387

Proteins 15,347 13,195 13,219 13,213

PPIs 3,185,763 172,558 146,594 97,766

Total nodes 20,378 16,735 16,697 16,672

Total edges 3,790,987 195,063 167,885 119,640
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ing systems biology methods to construct the candidate GWGEN, real GWGENs, core GWGENs, 
and core signaling pathways to find skin aging progression mechanisms for identifying essential 
biomarkers. After obtaining the essential biomarkers, we applied trained a deep neural network of 
drug–target interactions to predict the potential candidate drugs holding higher probability. To 
narrow down the candidate drugs, we considered drug regulation ability by querying the CMap 
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Figure 2. Reseasrch flowchart of systems medicine design for human skin aging. Flowchart of using
systems biology methods to construct the candidate GWGEN, real GWGENs, core GWGENs, and core
signaling pathways to find skin aging progression mechanisms for identifying essential biomarkers.
After obtaining the essential biomarkers, we applied trained a deep neural network of drug–target
interactions to predict the potential candidate drugs holding higher probability. To narrow down
the candidate drugs, we considered drug regulation ability by querying the CMap dataset and drug
sensitivity by referring to the sensitivity dataset from DepMap portal. Consequently, we proposed
two multiple-molecule drugs to mitigate the skin aging from young-adult to middle-aged and
middle-aged to elderly-stage.
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Figure 3. The core genomewide genetic and epigenetic networks (GWGEN). (a–c). (a) The core GWGEN of young-adult
skin. The purple lines denote protein–protein interactions (PPIs). The green lines indicate transcriptional regulations by
TFs and lncRNAs. The black lines represent post-transcriptional regulations by miNRAs. The total number of receptors,
proteins, lncRNAs, TFs and miRNAs are 556, 3166, 136, 134 and 8, respectively. (b) The core GWGEN of middle-aged skin.
The PPIs are in purple. The regulations from TFs and lncRNAs are in green. The black lines stand for the post-transcriptional
regulations by miRNAs. The total number of receptors, proteins, lncRNAs, TFs and miRNAs are 499, 3190, 105, 117 and
10, respectively. (c) The core GWGEN of elderly-stage skin. The PPIs are shown in purple lines; regulations by TFs and
lncRNAs are denoted in green; regulations from miRNAs are in black. The total number of receptors, proteins, lncRNAs,
TFs and miRNAs are 546, 3220, 126, 102 and 6, respectively.

2.1. Differential Core Signaling Pathways from Young-Adult to Middle-Aged Skin Aging

The differential core signaling pathways from young-adult to middle-aged human skin
were selected and analyzed as shown in Figure 4. According to our results, in core signaling
pathways of young-adult skin aging only, receptor ESR1 receives microenvironment factor
FASN to activate the TF SIRT6 through signaling transduction proteins PRR4 and LMNA.
The TF SIRT6 could not only downregulate target gene RBBP8, which was modified by
deacetylation, but also activate TF PARP1 to upregulate target gene XRCC1 to promote
cell proliferation and DNA repair in young-adult skin aging only. The receptor ESR1 also
regulates TF JUN through signaling transduction proteins GOT1 and CHEK2 to regulate
target gene BRCA2 and KPNA2. TF JUN not only activates the target gene BRCA2, which
was modified by phosphorylation, to promote DNA repair, but also downregulates the
target gene KPNA2 to promote cell proliferation, DNA repair and cell cycle in young-adult
skin aging only.
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Figure 4. The core signaling pathways from young-adult to middle-aged skin aging. The green dot lines denote the signaling
pathways in young-adult skin; the green dash lines represent the signaling pathways in middle-aged skin; the green solid
lines indicate the signaling pathways in both stage; the green lines with arrow heads are upregulation (positive regulation);
the green lines with circular heads are downregulation (negative regulation); the black solid lines with arrow heads mean
activating cellular function; the black solid lines with circular heads mean inhibiting cellular function; the selected red
target gene nodes indicate a higher gene expression in middle-aged skin compared with young-adult skin; the selected
green target gene nodes indicate a lower gene expression in middle-aged skin compared with young-adult skin; the blue
background shows young-adult skin; the brown background shows the overlap between young-adult and middle-aged
skin; the skin color background shows middle-aged skin.

Next, in the core signaling pathways of both young-adult and middle-aged skin
aging in Figure 4, the microenvironment factor FASLG was received by receptor FAS
to activate TF E2F7 via signaling transduction proteins DAXX, MAP3K5 and AIFM1 to
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downregulate target gene APAF1 to promote apoptosis and cell-cycle arrest. In the next
pathway, the receptor CXCR2 receive microenvironment factor CXCL1 to regulate TF E2F7,
TF JUN, TF FOXM1 and miRNA MIR26B. First, the TF JUN was activated through signaling
transduction proteins CENPJ and CDKN1A to activate TF FOXM1. As TF FOXM1, which
was modified by phosphorylation, was activated, the target gene CAT was upregulated to
inhibit ROS accumulation in both young-adult and middle-aged skin aging. The miRNA
MIR26B was activated via signaling transduction proteins CENPJ, CDKN1A and AKT1 to
inhibit target gene KPNA2 so as to promote cell proliferation. It is noted that, protein AKT1
was modified by phosphorylation. The TF E2F7 was also regulated by protein AIFM1 to
downregulate target gene APAF1 in both young-adult and middle-aged skin aging.

In the core signaling pathways of middle-aged skin aging only, the TF FOXM1 was also
activated through signaling transduction proteins CENPJ, CDKN1A, CDK4 and DCDC2
when receptor CXCR2 received microenvironment factor CXCL1 in middle-aged skin
aging only as shown in Figure 4. With the activation of FOXM1, the target gene CCNB1
was upregulated to promote cell-cycle arrest and inhibit ROS accumulation. For the
next pathway in middle-aged skin aging only, the microenvironment factor IGF1 was
received by receptor IGF1R to regulate TF FOXO3 via signaling transduction proteins
HMGCS2, ARRB1, PDK1 and AKT1. Additionally, the protein AKT1 and TF FOXO3 were
modified by phosphorylation. The TF FOXO3 downregulates not only target gene SENS3 to
promote DNA damage, apoptosis, and ROS accumulation, but also target gene GADD45A
to promote DNA damage, apoptosis, and ROS accumulation and inhibit cell-cycle arrest in
middle-aged skin aging only.

In summary, when the young-adult skin aging turned into middle-aged skin aging,
DNA repair ability decreases and cell cycle starts to be arrested. Thereby, ROS accumula-
tion increases and further promotes DNA damage and apoptosis in skin cells. Addition-
ally, these molecular progression mechanisms from young-adult to middle-aged might
potentially accelerate skin aging process in elderly skin aging. According to the core
signaling analyses results and considering the overlap nodes between the GenAge and
CMap datasets, we identified AIFM1, CAT, IGF1R, and LMNA as essential biomarkers for
preventing skin aging from young adulthood to middle-age.

2.2. Differential Core Signaling Pathways from Middle-Aged to Elderly Skin Aging

The molecular progression mechanism based on differential core pathways from
middle-aged skin to elderly skin aging is represented in Figure 5. In core pathways of
middle-aged skin aging only, the TNF receptor superfamily member 1 alpha TNFRSF1A
received microenvironment factor TNF to activate TF GATA2 through transduction pro-
teins GABPA and STAT1 to upregulate target gene MMP9 so as to inhibit collagen stability
and skin homeostasis in middle-aged skin aging only. Note that STAT1 was modified
by phosphorylation. In the next pathway, the microenvironment factor NGF was ac-
cepted by neurotrophic receptor tyrosine kinase1 NTRK1 and then transmitted the signal
through transduction proteins EME1, HSPB1, NEDD9 and CPNE2 to activate TF ETS1.
TF ETS1 could downregulate target gene ERRFI1, which was modified by hypermethy-
lation, through activating miRNA MIR573 to promote homeostasis in middle-aged skin
aging only.

Next, we focus on the core pathways of both middle-aged and elderly skin aging. In
the first pathway, the receptor NTRK1 receives the microenvironment factor NGF and then
transmits the signal through transduction proteins KPNA2, KAT5, CST2 and HRAS to
activate TF GATA2. The protein KAT5 was modified by phosphorylation. After GATA2
was activated, target gene BCL2 was upregulated to inhibit cell-cycle arrest and apoptosis
in both middle-aged and elderly skin aging. For the second pathway, the receptor KIT
could interact with the microenvironment factor KITLG to trigger TF AR through signaling
transduction proteins FAM83H, HSPB1, PAX3 and H2AFB2. TF AR downregulated not
only target gene TYR through triggering TF MITF to promote melanin synthesis, but
also target gene CDH1, which was modified by phosphorylation, to promote cell-cycle,
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apoptosis and DNA damage in both middle-aged and elderly skin aging. In the third
pathway, receptor LRP1 could receive the microenvironment factor CYR61 to trigger the TF
ETS1 via signaling transduction proteins RAMP1, MCM2, GEMIN4 and NOP56. In both
middle-aged and elderly skin aging, the TF ETS1 could negatively regulate target gene
COL17A1 to promote melanin synthesis and inhibit collagen stability and skin homeostasis.
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Figure 5. The core signaling pathways are obtained by projecting core GWGENs to KEGG pathways to investigate the aging
progression mechanism from middle-aged to elderly skin aging. The green dotted lines denote the signaling pathways in
middle-aged skin; the green dashed lines represent the signaling pathways in elderly skin; the green solid lines indicate the
signaling pathways in both stages; the green lines with arrow heads are upregulation; the green lines with circle heads are
downregulation; the black solid lines with arrow heads mean activating cellular function; the black solid lines with circle
heads mean inhibiting cellular function; the selected red target gene nodes indicate a higher gene expression in elderly skin
compared with middle-aged skin; the selected green target gene nodes indicate a lower gene expression in elderly skin
compared with middle-aged skin; the blue background shows middle-aged skin; the brown background covers the overlap
between middle-aged and elderly skin; the skin color background shows elderly skin.
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In the core pathways of elderly skin aging only in Figure 5, CYR61/LRP1 could also
trigger TF NDUFS4 through signaling transduction proteins CPNE2, MYH9 and ERCC6.
The activated TF NDUFS4 might downregulate target gene CASP3 to inhibit apoptosis
and promote DNA damage. For another pathway, the microenvironment factor IL6 was
accepted by receptor IL6R to trigger TF YAP1 through signaling transduction proteins
RHOB and CDK20. In the elderly skin aging only, TF YAP1 activated target gene CDC5L
through inhibiting MIR126 to inhibit cell cycle and promote skin homeostasis and DNA
damage.

In summary, for skin aging molecular progression mechanisms from middle age to old
age, we found that the promotion of cell cycle process, the inhibition of apoptosis, and the
damage of DNA arose in elderly skin. Furthermore, skin homeostasis and collagen stability
were destroyed to cause lower immunity and epidermal thinning, that is, the increment of
wrinkles. According to core signaling analyses and considering the overlap nodes between
the GenAge and CMap datasets, we identified MMP9, IL6, BCL2, and CASP3 as essential
biomarkers for preventing skin aging from middle age to old age. Moreover, by extracting
differential core signaling pathways from young-adult to elderly skin aging, some cellular
dysfunctions including proliferation, DNA repair and damage, cell-cycle arrest, apoptosis,
ROS accumulation, collagen stability, skin homeostasis, and melanin synthesis are induced
in the skin aging process shown in Figure 6.

2.3. The Application of Deep Neural Network of Drug–Target Interaction Prediction and the
Design of Two Filters Considering Drug Regulation Ability and Drug Sensitivity

To explore the drug–target interaction toward our identified biomarkers, we trained
a deep neural network for drug–target interaction prediction. The design framework is
shown in Figure S4. The interaction dataset used for training are from BindingDB [35].
In total, there are 80,291 known drug–target interactions between 38,015 drugs and 7292 pro-
teins. The number of unknown drug–target interactions is 19,966,109, which is greater
than the known drug–target interactions. Considering the class imbalance problem, we
randomly chose the number of unknown interactions and made them the same size as
known interactions. We trained the model using 70% of data, including 10% of data as
the validation set. The remaining 30% of data was used as the testing set. To the data
preprocessing before training the model, we performed feature scaling by standardization.
Assisted with principal component analyses (PCA) for dimensionality reduction, we had
1000 out of 1359 features. For the architecture of deep neural network of drug–target inter-
action, we used Adam as an optimizer (learning rate = 0.003) with binary cross-entropy
loss. The input layer had 1000 neurons followed by 512, 256, 128, and 64 neurons of hidden
layers, respectively. The output layer has one neuron. Except for using sigmoid function
to the output layer, we set a nonlinear activation function ReLU for each hidden layer.
Moreover, the dropout 0.5, 0.4, 0.3, and 0.1 was applied to each hidden layer, respectively.
For the trained deep neural network of drug–target interaction prediction, the training
accuracy, validation accuracy, and testing accuracy were 95.469%, 93.230%, and 93.077%,
respectively. From the perspective of the deep neural network framework application,
we used it to predict the potential candidate drugs for our identified biomarkers. When
the score of candidate drug approaches one, it would be selected. In other words, the
higher the score, the higher probability of interacting between the candidate drug and the
identified biomarker.
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In order to narrow down the candidate drugs predicted by the deep neural network
framework based on the identified biomarkers, we designed two filters considering drug
regulation ability and drug sensitivity. With the help of the CMap dataset, we could
know whether a gene was upregulated or downregulated after treating the small molecule
compound. The abnormal up or down gene expression could be found by comparing
the gene expression of identified biomarkers to the later skin stage. The goal for the first
filter is to select candidate drugs, which could reverse the abnormal gene expression.
Afterwards, we used the drug sensitivity dataset (PRISM Repurposing Primary Screen) to
consider drug sensitivity. The second filter aims to find the drugs with around zero values
implying that they would not influence the cell line too much since we are not going to kill
or proliferate cells toward the skin corresponding cell line. Consequently, we proposed
niridazole, liothyroninr, decitabine, pinacidil, and allantoin as a multiple-molecule drug
for mitigating skin aging from young adulthood to middle age; and allantoin, diclofenac,
mepyramime, resveratrol, and azathioprine as multiple-molecule drug for mitigating skin
aging from middle age to old age. The drug targets with their corresponding drugs are
shown in Tables S4 and S5.

3. Discussion
3.1. Investigating Skin Aging Molecular Progression Mechanisms by Differential Core Signaling
Pathways from Young-Adult to Middle-Aged Human Skin Aging

In the first core pathway of young-adult skin aging only as shown in Figure 4, mi-
croenvironment factor fatty acid synthase FASN can promote cell proliferation, DNA repair,
and cell-cycle arrest and interact with receptor ESR1 via crucial signaling transduction
proteins PRR4, LMNA, GOT1, and CHEK2 to regulate TFs SIRT6, PARP1, and JUN. The
signaling protein LMNA, which is an endogenous activator of TF SIRT6, could promote
SIRT6-mediated downstream functions upon DNA damage. Moreover, protein LMNA
could directly bind and activate TF SIRT6 toward histone deacetylation [36]. The TF SIRT6,
which could control the longevity and regulation of DNA repair, could promote DNA re-
pair and cell proliferation through the downregulation of the target gene RBBP8, which was
mediated by deacetylation [37]. TF SIRT6 could also promote DNA repair under oxidative
stress by activating TF PARP1 to upregulate target gene XRCC1 [38]. TF PARP1 serves as a
genomic caretaker by participating in several molecular mechanisms such as DNA repair
and cell-cycle regulation. Therefore, PARP1 was considered as a longevity assurance and
aging-promoting factor [39]. The target gene XRCC1 upregulated by PARP1 was required
for the viable and efficient repair for DNA single-strand breaks [40]. The TF JUN was
also activated by the signaling transduction proteins GOT1 and CHEK2. The signaling
transduction protein CHEK2 initiated by oxidative stress could regulate target gene BRCA2
and KPNA2 through interacting with TF JUN. In human cell, the serine kinase CHEK2
could induce the appropriate cellular response such as cell cycle checkpoint activation and
DNA repair depending on the extent of damage, the cell type, and other factor. CHEK2
could participate in DNA repair by phosphorylating the target gene BRCA2 through TF
JUN [41]. The karyopherin alpha2 KPNA2 expression had been reported to be induced in
various proliferative skin disorders such as psoriasis and squamous cell carcinoma [42].
When the target gene KPNA2 was downregulated by TF JUN, cell proliferation, cell cycle
and DNA repair induced by CHEK2 were indirectly promoted.

In the core pathways of both young-adult and middle-aged skin aging, the microen-
vironment factor FASLG binds receptor FAS to regulate TF E2F7 through signaling trans-
duction proteins DAXX, MAP3K5 and AIFM1. Responding to ROS, the microenvironment
factor FASLG was activated, then binding to death receptor FAS to promote apoptosis path-
way [43]. Signaling transduction protein MAP3K5 known as apoptosis signal-regulating
kinase 1 (ASK1) could respond to oxidative stress and be activated [44]. Target gene APAF1
is the core of the apoptosome, was activated by TF E2F7 to trigger the mitochondrial
apoptotic pathway. Furthermore, target gene APAF1 was also involved in the maintenance
of genomic stability by the cell-cycle arrest response elicited upon DNA damage and pro-
moted apoptosis [45]. For other pathways in both young-adult and middle-aged skin aging,
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microenvironment factor CXCL1 bound the G-protein coupled receptor CXCR2 to activate
signaling transduction protein CDKN1A through protein CENPJ. Protein CDKN1A known
as CIP1, was a potent cyclin-dependent kinase inhibitor to regulate TFs E2F7, JUN, FOXM1,
and miRNA MIR26B. First, protein CDKN1A transmits signal to AIFM1 so as to activate
TF E2F7 to enhance apoptosis and cell-cycle arrest. TF JUN was also activated by protein
CDNK1A to regulate FOXM1. Then TF FOXM1 upregulated target gene CAT, which
was known as ROS detoxification enzyme and could defend the ROS accumulation [46].
After miRNA MIR26B inhibited the target gene KPNA2, the cell proliferation could be
promoted [47].

In core pathways of middle-aged skin aging only, microenvironment factor CXCL1
also could regulate TF FOXM1 through signaling transduction proteins CENNPJ, CDKN1A,
CDK4, and DCDC2 to trigger target gene CCNB1 as shown in Figure 4. Cyclin depen-
dent kinase 4 CDK4, which was modified by phosphorylation, is a positive regulator of
cell cycle entry and can stabilize and activate FOXM1, thereby promote cell cycle and
suppress the levels of reactive oxygen species [48]. TF FOXM1 also had been reported
to be essential for proper cell cycle progression via activating cell cycle gene CCNB1 for
propelling specific cell cycle phase and inhibition ROS accumulation [49]. For another
pathway, the microenvironment factor IGF1 was received by receptor IGF1R to activate
FOXO3 via signaling transduction proteins HMGCS2, ARRB1, PDK1 and AKT1. The
protein AKT1, which was modified by phosphorylation, could activate TF FOXO3. Protein
phosphoinositide-dependent kinase PDK1 was one of the upstream kinases that activate
AKT1. After AKT1, which is a key regulator of the PI3K/AKT1 signaling cascade con-
trolling cell growth and survival, was activated and modified by phosphorylation, TF
FOXO3 would be activated [50]. Moreover, it had been reported that the enhanced ROS
production might further activate the signal of PI3K/AKT pathway, thus establishing a
self-perpetuating cycle leading to further aging [51]. TF FOXO3, which was modified by
phosphorylation, could downregulate target genes SESN3 and GADD45A [52]. TF FOXO3
could decline ROS rescue pathway through downregulating the peroxiredoxin gene SESN3,
which is responsible for the biphasic ROS accumulation. Therefore, FOXO3-induced ROS
was increased and then accelerated for apoptosis and DNA damage [53]. Furthermore,
phosphorylated FOXO3 also inhibited proapoptotic activity such as cell-cycle arrest by
downregulating GADD45A [54]. The cause of the pleiotropic action of GADD45 members, a
decreased inducibility, might lead to far-reaching consequences such as DNA damage accu-
mulation and disorder of cellular homeostasis and could eventually contribute to the aging
process [55]. Therefore, we suggest that the downregulation of GADD45A also promotes
ROS accumulation through cell-cycle arrest and the inhibition of proapoptotic activity.

3.2. Investigating Skin Aging Molecular Progression Mechanisms by Differential Core Signaling
Pathways from Middle-Aged to Elderly Human Skin Aging

According to the core pathways of middle-aged skin aging only in Figure 5, the ligand
TNF can inhibit collagen stability and skin homeostasis through receptor TNFRSF1A by
transmitting the signal through significant signaling transduction proteins GABPA and
STAT1 to TF GATA2. The proinflammatory cytokine tumor necrosis factor-alpha (TNF-A)
inhibits collagen synthesis and enhances collagen degradation via increasing the production
of target gene MMP9. It also increases the risk of cutaneous infections in the elderly by
reducing skin immunity [56]. The activation of STAT1 is modified by phosphorylation.
STAT1 has also been indicated as a potential target in the treatment of psoriasis, which
is a chronic skin diseases [57]. TF GATA2 could upregulate target gene MMP9 to digest
collagen type IV, which is an important component of the basement membrane in skin [58].

For the next pathway, ligand NGF can promote skin homeostasis through receptor
NTRK1 to transmit the significant signal via signaling transduction proteins EME1, HSPB1,
NEDD9, and CPNE2 to upregulate TF ETS1. In human skin, proliferating keratinocytes
release NGF in an increasing amount. Receptor NTRK1, known as tyrosine kinase receptor
(TrkA) is the high-affinity receptor for NGF. At the skin level, NTRK1 could mediate NGF-
induced keratinocyte proliferation [59]. Note that protein NEDD9 could be modified by
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phosphorylation in human skin [60]. TF ETS1, which was regulated through the signaling
pathway activated by ligand NGF, has been identified to be associate with skin aging [60].
The expression levels of MIR-573 were found to be lower in melanoma tissues and cell lines
when compared to normal skin tissue. Moreover, MIR-573 reduction was demonstrated to
be essential in melanoma initiation and progression [61]. Target gene ERRFI1, which was
modified by hypermethylation, is required for proper epidermal homeostasis [62,63].

Focusing on core pathways in both middle-aged and elderly skin aging in Figure 5,
the ligand NGF inhibits apoptosis and promotes cell-cycle arrest when received by receptor
NTRK1 to activate TF GATA2 via signaling transduction proteins KPNA2, KAT5, CST2, and
HRAS. Protein KAT5, which was modified by phosphorylation, has been presumed to serve
as a potential biomarker for melanoma therapeutic target [64]. NGF can not only rescue
human epidermal keratinocytes from spontaneous and UVB-induced apoptosis via NTRK1,
but also protect keratinocytes from cell death via target gene BCL2 family of apoptosis
inhibitors [59]. Antiapoptotic function of target gene BCL2 is regulated by phosphorylation.
In addition, target gene BCL2 could not only regulate cell cycle progression, but also act
as an antioxidant that may regulate intracellular ROS. Expression of target gene BCL2
has been observed to increase upon the induction of a senescence-like growth arrest or
apoptosis by oxidative stress [65,66].

In the next core pathway of both middle-aged and elderly skin aging, the ligand KITLG
promotes melanin synthesis, DNA damage, and inhibits cell-cycle arrest by modulating
TFs AR and MITF via signaling transduction proteins FAM83H, HSPB1, PAX3, ATF5,
and H2AFB2. The tyrosine kinase receptor KIT, its ligand KITLG, and TF MITF have
been reported to play an important role of initiating and regulating signaling systems
and transcription factors of melanin production. TF MITF also regulates melanocyte
pigmentation by inducing target gene TYR [67]. Moreover, a previous study supposed
that PAX3 and SOX10 could act together to induce the expression of MITF [68]. Target
gene CDH1, which is downregulated by TF AR, has been reported to be regulated by
phosphorylation [69]. It has been reported that cells lacking target gene CDH1 have a
shortened G1 phase, accumulate DNA damage, and undergo apoptosis [70].

In the final core pathways of both middle-aged and elderly skin aging, the ligand
CYR61 could modify skin homeostasis and melanin synthesis through receptor LRP1 to
transmit signal by signaling transduction proteins RAMP1, MCM2, GEMIN4 and NOP56
for upregulating TF ETS1. Responding to oxidative stress, CYR61 was elevated in the
dermis of chronologically aged human skin, promoting aberrant collagen homeostasis
by downregulating collagen members, the major structural protein in skin, to promote
collagen degradation [71,72]. The loss of target gene COL17A1 and MCM2 expression in
advanced aged skin has been found to eventually cause epidermal thinning [73].

Focusing on the first core pathway of elderly skin aging only in Figure 5, through the
signaling transduction starting from the ligand CYR61, TF NDUFS4 can promote apoptosis
and DNA damage through signaling transduction proteins CPNE2, MYH9 and ERRC6.
The ligand CYR61 interacting with receptor LRP1 has also been indicated to contribute
to CCN1-induced ROS accumulation and CCN1/TNFA-induced apoptosis [74]. With
the downregulating target gene CASP3 by TF NDUFS4, senescence fibroblast can resist
apoptosis death [75].

In the final core pathway of elderly skin aging only, the ligand IL6 could be accepted by
receptor IL6R and then the significant signal is transmitted through signaling transduction
proteins RHOB and CDK20 to activate TF YAP1. Proinflammatory cytokine IL6 has been
suggested to be a biomarker of health status in the elderly [76]. TF YAP1 has been identified
to play a physiological role in skin homeostasis, which can promote cell proliferation in
the basal layer [77]. Knockdown of target gene CDC5L induces mitotic arrest and DNA
damage [78].
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3.3. The Genetic and Epigenetic Molecular Progression Mechanisms from Young-Adult to Elderly
Human Skin Aging

The overview of overall skin aging molecular progression mechanisms is shown in
Figure 6. Microenvironments trigger corresponding ligand signals to initiate some cellular
dysfunctions affecting skin aging progression. Thus, core signaling pathways with the
genetic and epigenetic modifications play a significant role in cellular dysfunctions of
signaling transductions for each stage of skin aging.

In Figure 6, the core pathways of young-adult skin aging only, ligand FASN (ox-
idative stress) binds to receptor ESR1 to mediate two pathways. Responding to DNA
damage signal to cause of oxidative stress, LMNA directly binds and activates TF SIRT6
toward histone deacetylation [36]. Activated SIRT6 promotes DNA repair cell-cycle and
proliferation through the downregulating gene RBBP8, which was modified by deacetyla-
tion [37]. In addition, TF SIRT6 also promotes DNA repair and cell cycle under oxidative
stress by activating TF PARP1 to upregulate target gene XRCC1 [38]. Transduction protein
CHEK2 also responds to oxidative stress from ligand FASN to activate TF JUN. TF JUN
promotes DNA repair through phosphorylating target gene BRCA2 [41]. Moreover, TF
JUN could downregulate target gene KPNA2 to promote cell proliferation, cell cycle and
DNA repair [42].

In the core pathways of both young-adult and middle-aged skin aging, ligand CXCL1
(oxidative stress) binds to receptor CXCR2 to trigger protein CDKN1A. Activated protein
CDKN1A not only upregulates target gene CAT to defend ROS accumulation through
TF JUN and FOXM1, but also inhibits target gene KPNA2 to promote cell proliferation
by activating MIR26B [46,47]. Next, responding to ROS induced from DNA damage, the
ligand FASLG interacts with FAS to initiate apoptosis pathway. Signaling transduction
protein MAP3K5, activated by oxidative stress, triggers TF E2F7 to downregulate target
gene APAF1 and thereby involve in the maintenance of cell-cycle arrest upon DNA damage
and promoting apoptosis [43–45]. Hence, in order to fight to the excessive accumulation
of ROS upon decreasing the ability of DNA repair from young adulthood to middle-age,
functions of apoptosis and cell-cycle arrest are raised.

In the core pathways of middle-aged skin aging only, the ligand CXCL1 (oxidative
response) interacts with receptor CXCR2 and also activates signaling transduction protein
CDK4. Phosphorylation of CDK4 positively regulates cell cycle entry and can stabilize
and activate FOXM1 to upregulate target gene CCNB1 to promote cell cycle phase and
suppress the level of ROS [48,49]. Moreover, the ligand IGF1 (oxidative response) is
received by receptor IGF1R to activate PI3K/AKT signaling pathway. Transduction protein
AKT1 can activate TF FOXO3 through the modification by phosphorylation. Furthermore,
TF FOXO3, which is modified by phosphorylation, downregulates genes SESN3 and
GADD45A. With the silence of target gene SESN3, ROS rescue pathway is declined, thus
accelerating apoptosis with the increment of FOXO3-induced ROS. In addition, TF FOXO3
downregulates target gene GADD45A to promote ROS accumulation through cell-cycle
arrest. The ligand TNF (proinflammatory cytokine) can inhibit collagen stability and skin
homeostasis through activating TNFRSF1A and initiate the corresponding pathway. TF
GATA2 was activated by phosphorylated transduction protein STAT1 to upregulate target
gene MMP9. Increased gene MMP9 can inhibit collagen synthesis and enhance collagen
degradation. The ligand NGF (proliferating keratinocytes) interacts with receptor NTRK1
to activate TF ETS1, which was identified to be associative with skin aging [59,60]. MIR573
is activated by TF ETS1 and then negatively regulates gene ERRFI1. Downregulated
gene ERRFI1, which was modified by hypermethylation, can maintain proper epidermal
homeostasis [62,63].

In the core pathways of both middle-aged and elderly skin aging, the ligand NGF/NTRK1
(signal of positive regulation of Ras signaling pathway) activates TF GATA2 so as to
regulate gene BCL2 to protect keratinocytes from cell death [59]. Target gene BCL2 not
only triggers antiapoptotic function through the modification by phosphorylation, but also
regulates cell cycle progression to act as an antioxidant of intracellular ROS [65,66]. The
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ligand KITLG interacts with receptor KIT to promote melanin synthesis, DNA damage, and
inhibits cell-cycle arrest by activating TF MITF through signaling transduction. TF MITF
regulates melanocyte pigmentation by inducing gene TYR [67]. Due to the downregulation
of gene CDH1, which is modified by phosphorylation, by TF AR, G1 phase is shortened to
accumulate DNA damage and undergo apoptosis [69,70]. Next, the ligand CYR61 (oxida-
tive stress) is received by receptor LRP1 to downregulate collagen members and promote
collagen degradation [71,72]. After TF ETS1 is activated by signaling transduction, target
gene COL17A1 can be downregulated to destroy the balance between collagen stability and
skin homeostasis and eventually cause epidermal thinning [73].

In the core pathways of elderly skin aging only, the ligand CYR61 (oxidative stress)
interacts with receptor LRP1 so as to contribute to the CCN1-induced ROS accumulation.
When target gene CASP3 is downregulated by TF NDUFS4, senescence fibroblast could
resist apoptosis death [74,75]. Moreover, since the ligand IL6 interacts with receptor IL6R
to activate TF YAP1, which could promote cell proliferation in basal layer, it has been
identified to play a physiological role in skin homeostasis [77]. Note that IL6 has been
suggested as a biomarker of elderly health status [76]. After TF YAP1 downregulating target
gene CDC5L through activating MIR126, functions of mitotic arrest and DNA damage were
activated [78].

3.4. Two Multiple-Molecule Drugs Based on Identified Biomarkers to Mitigate Human Skin Aging

For mitigating the skin aging from young adulthood to middle age, we proposed
a multiple-molecule drug including niridazole, liothyronine, decitabine, pinacidil, and
allantoin. The drug targets were AIFM1, CAT, IGF1R, and LMNA as shown in Table 2.
The black dot in Table 2 represents the proposed small molecules target to which identi-
fied biomarker (drug target). For instance, the niridazole has more potential to target to
AIFM1 and CAT. Niridazole, an antiparasitic drug, could suppress delayed dermal hyper-
sensitivity [79]. Studies have shown that combined therapy with liothyronine improved
the treatment of hypothyroidism [80,81]. Decitabine, a DNA methyltransferase, induced
changes in gene expression and cellular behavior associated with a regenerative response.
Furthermore, wounds treated by decitabine were able to participate in regeneration [82].
Pinacidil is an effective antihypertensive drug for the treatment of mild to moderate essen-
tial hypertension [83]. In the meanwhile, according to the findings of one study, pinacidil
may be utilized to prevent from UV-induced skin aging [84]. It is noted that allantoin,
which is found in plants like chamomile, wheat sprouts, sugar beet, and comfrey, has been
widely used in anti-aging serum [85,86]. Allantoin is also a well-known anti-irritating and
hydrating agent as well as a peeling agent for skin [87,88].

Table 2. Drug targets and multiple-molecule drugs for preventing skin aging from young adulthood
to middle-age.

Drug
Target

AIFM1 CAT IGF1R LMNA

niridazole • • •
liothyronine •
decitabine •
pinacidil •
allantoin •

•: Proposed small molecules target to the identified biomarkers (drug targets).

For mitigating the skin aging from middle-aged to elderly, we proposed a multiple-
molecule drug consisting of allantoin, diclofenac, mepyramine, resveratrol, and azathio-
prine. The drug targets were MMP9, IL6, BCL2, and CASP3 as shown in Table 3. In Table 3,
the black dot shows the drug target to each specific small molecule. For example, the drug
target for allantoin are MMP9 and IL6. Diclofenac is a nonsteroidal anti-inflammatory drug.
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It has been used to treat actinic keratoses developing in fair-skinned individuals with a
history of overexposure to ultraviolet light [89]. To mepyramine, it works by preventing the
action of histamine, which is a compound produced by the body when getting venom from
insect bites [90]. Moreover, one study mentioned the stimulation from histamine would
upregulate matrix metalloproteinase 9 (MMP9), which is also our proposed drug target
for mepyramine [91]. Resveratrol is abundant in grape skin and seeds [92]. Responding
to infection, stress, injury, bacteria or fungal infections, and UV-irradiation, it a popular
ingredient in skincare products [93]. In the field of dermatology, azathioprine is an effec-
tive immunosuppressant that is extremely valuable in treating pemphigoid, generalized
eczematous disorders, and actinic dermatitis [94]. Taken together, most of the proposed
small-molecule compounds are approved by the U.S. Food and Drug Administration (FDA).
Drug repurposing for identifying new uses of old drugs with the proposed systems biology
approaches might provide the alternative way to find the effective drugs for mitigating
skin aging.

Table 3. Drug targets and multiple-molecule drugs for preventing skin aging from middle age to
old age.

Drug
Target

MMP9 IL6 BCL2 CASP3

allantoin • •
diclofenac •

mepyramine • •
resveratrol • •

azathioprine • •
•: Proposed small molecules target to the identified biomarkers (drug targets).

3.5. The Limitations and Advantages to the Proposed Systems Medicine Design Procedure for
Human Skin Aging

Gene expression has been widely used to infer other molecular type measures, such
as proteomics, copy number variation, and mutation. In this study, we used human skin
microarray data processed with cubic spline interpolation to help us construct GWGENs
by system identification method via solving constrained linear least-squares estimation
problem. After that, we computed Akaike’s information criterion (AIC) for each gene
to prune false positives. Increasing samples through data interpolation and computing
AIC for detecting real systems order, we conquered the overfitting issue. Even though
we applied AIC and performed the data interpolation for increasing sample size in each
skin aging stage, it is noted that the estimated real GWGENs are near-optimum solutions
but not unique solutions. Furthermore, we include basal level in protein, gene, miRNA,
and lncRNA systems modeling. These terms imply the unknown interaction or epigenetic
modification, and mutation. If we found a basal level change, which was higher than a
threshold, we inferred the corresponding node was influenced by epigenetic modification
or mutation. These findings have to be verified by a literature survey. Based on the
progression molecular mechanisms in each skin aging stage, we could identify essential
biomarkers. For exploring the drug–target interaction to our identified biomarkers, we
trained a deep neural network of drug–target interaction in advance. In the drug–target
data which we used to train the prediction model, if pairs have not been mentioned as
known interactions in the BindingDB, we would assign them in the group of negative
samples, meaning no interaction. However, the negative samples in our study do not mean
without interaction. They might just be lack of experimental evidence or record nowadays.
Although the proposed system medicine design procedure exists the aforementioned
limitations, it still provides another viewpoint to shed the light on the human skin aging
progression based on system level. Moreover, drug repurposing strategy, giving new uses
for old drugs, has been used in this study. Most of the suggested small molecules are
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approved by the FDA, which could shorten the time of clinical trials. Integrating systems
biology approaches, deep learning framework and the design of two filters, we not only
transferred biological knowledge into engineering interpretation but also applied them to
drug discovery efficiently.

4. Materials and Methods
4.1. Overview of Systems Medicine Design Procedure of Human Skin Aging

In order to further understand skin aging molecular mechanisms from young adult-
hood to old age, we proposed a research flowchart as shown in Figure 2. At first, we collect
several regulation and interaction databases including DIP [95], IntAct [96], BioGRID [97],
BIND [98], MINT [99], HTRIdb [100], ITFP [101], Transfac [102], CircuitDB2 [103], and
TargetScan [104] to construct the candidate GWGEN, which is composed of candidate
protein-protein interaction network (PPIN) and candidate gene regulatory network (GRN).
Moreover, the candidate GWGEN is a Boolean matrix. If two nodes have interaction, we
would give one; if two nodes do not have interaction, we would give zero in it. With
three-stage preprocessed microarray data, we then identify real GWGENs by system iden-
tification method and system order detection scheme. Since real GWGENs are still too
complicated to investigate the skin aging progression mechanisms, we apply principal
network projection (PNP) method to extract core GWGENs from real GWGENs based on
the projection values. Subsequently, we denote the core signaling pathways in the style
of KEGG pathways. According to the core signaling pathways, we investigate skin aging
molecular mechanisms and identify essential biomarkers for young adulthood to middle
age and middle age to old age, respectively. After that, we used the trained deep neural
network of drug-target interaction to predict potential candidate drugs, which hold higher
probability to have interactions with identified biomarkers. To narrow down the candidate
drugs, we design two filters considering drug regulation ability and drug sensitivity by
CMap [34] and PRISM Repurposing dataset [105]. Consequently, we propose two multiple-
molecule drugs for slowing down human skin aging from young adulthood to middle age
and from middle age to old age, respectively.

4.2. Data Preprocessing of Human Skin Microarray Data

We obtained human skin microarray data from GSE18876 containing the gene ex-
pression level of male skin. It included 50 ages in the range from 19 to 86 years old with
29,226 probes. One study has shown that OR52N2, SIRT6, CPT1B, TUBAL3, COL1A1
and MATN4 were significantly regulated with age. Furthermore, it also indicated that
gene expressions of OR52N2, SIRT6 and CPT1B increased with age and gene expressions
of TUBAL3, COL1A1 and MATN4 decreased with age [106]. Therefore, we sketched the
changes of gene expression levels of these typical genes. Based on this line graph and
gene expression trend in aforementioned study, we defined young-adult, middle-aged and
elderly skin as 19 to 45 years old, 43 to 65 years old and 64 to 86 years old, respectively.
That is, the averages of gene expressions of OR52N2, SIRT6 and CPT1B increased and the
averages of gene expressions of TUBAL3, COL1A1 and MATN4 decreased from young
adult stage to middle age, and then to old age in human male skin. In the estimation
problem, one would easily face overfitting issue when the sample size is small and the
feature size is big [107]. Hence, in this study, firstly, we increased the sample size to 500 for
each skin aging stage by performing cubic spline data interpolation via splin, a MATLAB
function [108–110]. Secondly, we utilized system order detection scheme by computing
the AIC value to prune the false positives in the candidate GWGEN for finding the real
GWGENs of the human skin aging systems. The more details would be discussed in the
Section 4.5.

4.3. Dynamic Systems Modeling for the Candidate GWGEN

The candidate GWGWN consisting of PPIN and GRN. It is noted that GRN also
includes miRNA regulation network and lncRNA regulation network. In the following



Molecules 2021, 26, 3178 19 of 28

contents, we would take PPIN and GRN as an example, and the rest of them could be
found in Supplementary Materials. The PPIs of human-protein i in the candidate PPIN can
be described as a dynamic equation shown as below:

pi(t + 1) = pi(t) +
Ii
∑

j=1
αP

ij pi(t)pj(t)− σP
i pi(t) + λP

i gi(t) + βP
i + εP

i (t)

, for i = 1, . . . , I, −σP
i ≤ 0 and λP

i ≥ 0.
(1)

where pi(t), pj(t), and gi(t) indicate the expression levels of the ith protein, the jth protein,
and the ith gene at time t, respectively; αij denotes the interactive abilities between the ith
protein with the jth protein in human skin cells; σP

i represents the degradation rate of the
ith protein; λP

i indicates the translation effect from the corresponding mRNA to the ith
protein; The basal level βP

i signifies the regulations from other unknown regulators to the
ith protein; Ii denotes the number of human proteins interacting with the ith protein in the
candidate GWGENs; εP

i (t) signifies the noise of the ith protein owing to model uncertainty
or measurement noise at time t.

The k gene in the candidate GRN can be represented as a dynamic equation in the
following:

gk(t + 1) = gk(t) +
Ik
∑

i=1
aG

ki pi(t)−
Rk
∑

r=1
bG

krgk(t)mr(t) +
Lk
∑
`=1

cG
k`o`(t)− µG

k gk(t)

+δG
k + ωG

k (t) for k = 1, 2, . . . , K, −bG
kr ≤ 0 and − µG

k ≤ 0
(2)

where gk(t), pi(t), mr(t), and o`(t) indicate the expression level of the kth gene, the ith tran-
scription factor(TF), the rth miRNA and the `th lncRNA at time t, respectively; aG

ki,−bG
kr, and

cG
k` represent the regulatory abilities of the ith TF, the repression ability of the rth miRNA,

and the regulatory ability of the `th lncRNA on the kth gene, respectively; −µG
k signifies

the degradation rate of the gene expression of the kth gene; The basal level δG
k denotes the

regulations from other unknown regulators to the kth gene such as phosphorylation; ωG
k (t)

signifies the noise of the kth gene owing to model uncertainty or measurement noise at
time t; Ik, Rk, and Lk mean the total number of TFs, miRNAs, and lncRNAs in the candidate
GRN, respectively. Note that the biological regulatory mechanisms in skin cell in (2) involve
TF transcription regulations by ∑Ik

i=1 aG
ki pi(t), miRNA repressions by −∑Rk

r=1 bG
krgk(t)mr(t),

lncRNA regulation by ∑Lk
`=1 cG

k`o`(t), the mRNA degradation by −µG
k gk(t), the basal level

by δG
k , and the noise by ωG

k (t). In this study, the effect of post-translational modification on
skin aging is considered by the basal level term δG

k .

4.4. Systems Identification Approach in the Candidate GWGEN via Microarray Data

After systems modeling by Equations (1)–(4), we then perform the systems identifi-
cation by solving the parameter estimation problems. The PPIN in Equation (1) can be
rewritten in the following linear regression form:

pi(t + 1) =
[

p1(t)pi(t) · · · pIi (t)pi(t) gi(t) pi(t) 1
]


αP
i1
...

αP
iIi

λP
i

1− σP
i

βP
i


+ εP

i (t)

= ψP
i (t)θ

P
i + εP

i (t) f or i = 1, 2, . . . , I.

(3)

where ψP
i (t), represents the regression vector that can be obtained from the microarray

data and θP
i denotes the unknown parameter vector to be estimated for the ith protein

in PPIN.
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Furthermore, the Equation (3) of the ith protein can be augmented for Yi time points
shown as below:

pi(t2)
pi(t3)

...
pi(tYi+1)

 =


ψP

i (t1)
ψP

i (t2)
...

ψP
i (tYi )

θP
i +


εP

i (t1)
εP

i (t2)
...

εP
i (tYi )

, f or i = 1, 2, . . . , I, (4)

which can also be simplified by

Pi = ΨP
i θP

i + EP
i , f or i = 1, 2, . . . , I (5)

where

Pi =


pi(t2)
pi(t3)

...
pi(tYi+1)

, ΨP
i =


ψP

i (t1)
ψP

i (t2)
...

ψP
i (tYi )

, EP
i =


εP

i (t1)
εP

i (t2)
...

εP
i (tYi )

.

Therefore, the interaction parameters in the vector θP
i can be estimated by solving the

following constrained least-squares estimation problem:

θ̂P
i = min

θP
i

1
2
‖ΨP

i θP
i − Pi‖

2
2, subject to APθP

i ≤ bP, (6)

where

AP =

[
0 · · · 0 −1 0 0
0 · · · 0 0 1 0

]
∈ R2×(Ik+3), bP =

[
0
1

]
.

To estimate the interaction parameters in (1) by solving the parameter estimation
problem in (6), we use an optimization toolbox function lsqlin in MATLAB. Simultaneously,
we ensure the protein translation rate λP

i and the protein degradation rate −σP
i to always

be non-negative and non-positive value, respectively; that is, λP
i ≥ 0 and −σP

i ≤ 0.
Similarly, we rewrite the dynamic equation of GRN in the Equation (2) as the following

linear regression form:

gk(t + 1) = [p1(t) · · · pIk (t) gk(t)m1(t) · · · gk(t)mRk (t) o1(t) · · · oLk (t) g(t) 1 ]



aG
k1
...

aG
kIk
−bG

k1
...

−bG
kRk

cG
k1
...

cG
kLk

1− µG
k

δG
k


+ωG

k (t) = ψG
k (t)θ

G
k + ωG

k (t), f or k = 1, 2, . . . , K

(7)
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where ψG
k (t), represents the regression vector that can be obtained from the microarray

data and θG
k signifies the unknown parameter vector estimated for the kth gene in the GRN.

Moreover, Equation (7) can be augmented for Yk time points in the following form:
gk(t2)
gk(t3)

...
gk(tYk+1)

 =


ψG

k (t1)
ψG

k (t2)
...

ψG
k (tYk )

θG
k +


ωG

k (t1)
ωG

k (t2)
...

ωG
k (tYk )

, for k = 1, 2, . . . , K (8)

Next, we simplify the Equation (8) as below:

Gk = ΨG
k θG

k + ΩG
k , for k = 1, 2, . . . , K (9)

where

Gk =


gk(t2)
gk(t3)

...
gk(tYk+1)

, ΨG
k =


ψG

k (t1)
ψG

k (t2)
...

ψG
k (tYk )

, ΩG
k =


ωG

k (t1)
ωG

k (t2)
...

ωG
k (tYk )

.

Hence, the regulatory parameters in the vector θG
k can be estimated by solving the

following constrained least-squares estimation problem:

θ̂G
k = min

θG
k

1
2
‖ΨG

k θG
k −Gk‖

2
2, subject to AGθG

k ≤ bG (10)

where

AG =


0 0 · · · 0 1 0 · · · 0 0 0 · · · 0 0 0
0 0 · · · 0 0 1 · · · 0 0 0 · · · 0 0 0
...

...
. . .

...
...

...
. . .

...
...

...
. . .

...
...

...
0 0 · · · 0 0 0 · · · 1 0 0 · · · 0 0 0
0 0 · · · 0 0 0 · · · 0 0 0 · · · 0 1 0

 ∈ R(Rk+1)×(Ik+Rk+Lk+2)

, bG =

 0
...
1

.

By applying the function lsqlin in MATLAB optimization toolbox to solve the param-
eter estimation problem in Equation (10), we can estimate the regulatory parameters for
GRN equation in Equation (2). Furthermore, we ensure that the miRNA repression rate
−bG

kr to be a nonpositive value and the gene degradation rate −µG
k to be a nonpositive

value for k = 1, 2, . . . K and r = 1, 2, . . . Rk.

4.5. Pruning False Positives in Candidate GWGENs to Obtain Real GWGENs by System Order
Detection Scheme

Due to the collected data, which we used for constructing the candidate GWGEN,
come from different databases, the various experimental conditions and noises might result
in getting many false-positive interactions and regulations after doing system identification.
Thus, we have to apply system order detection scheme by computing AIC to detect the real
system order of PPI model in Equation (1) and GRN model in Equation (2). According to
Akaike’s theory, the most accurate model has the smallest AIC value [111]. In other words,
when the value of AIC achieves the minimum, the detected system order approaches to
the real system order.
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For PPI model in Equation (5), the AIC value of the ith protein can be defined in the
following equation:

AICP
i (Ki) = log

{
1
Ti

[
Pi −ΨP

i θ̂P
i

]T[
Pi −ΨP

i θ̂P
i

]}
+

2Ki
Ti

(11)

where θ̂P
i denotes the estimated interactive parameters of the ith protein from the solutions

of the parameter estimation problem in Equation (6), and the covariance of estimated
residual error is (ςP

i )
2
= 1

Ti

[
Pi −ΨP

i θ̂P
i
]T[Pi −ΨP

i θ̂P
i
]
. In order to find out the real system

order K∗i of the ith protein in the PPI model so that AICP
i (K

∗
i ), in Equation (11) can achieve

the minimum value, we trade off the system order and the estimated residual error. By
aforementioned system order detection method, PPIs with insignificant interaction abilities,
which are out of K∗i , could be regarded as false positives and be pruned away.

For the GRN model in Equation (9), AIC value of the kth gene can be defined as the
following equation:

AICG
k (Ik, Rk, Lk) = log

{
1
Tk

[
Gk −ΨG

k θ̂G
k

]T[
Gk −ΨG

k θ̂G
k

]}
+

(2Ik + Rk + Lk)

Tk
(12)

where θ̂G
k denotes the estimated regulatory parameters of the kth gene from the solutions

of the parameter estimation problem in Equation (10), and the covariance of estimated
residual error is (ςG

k )
2
= 1

Tk

[
Gk −ΨG

k θ̂G
k
]T[Gk −ΨG

k θ̂G
k
]
. In order to find out the real system

order I∗k , R∗k , and O∗k of the kth gene in GRN so that AICG
k (I∗k, R∗k, L∗k), in (12) can achieve

the minimum value, we trade off the system order and to estimate residual error. In this
way, to kth gene, the gene regulations with insignificant regulatory abilities, which are
out of I∗k , R∗k , and O∗k , can be treated as false-positives and be pruned away from the
candidate GRN. It is noted that we apply the same system order detection scheme on
the miRNA model and the lncRNA model, which could be found in the Section S1.3 of
Supplementary Materials.

After performing system identification and system order detection scheme, which
pruned away the insignificant interactions and regulations in the candidate GWGEN, we
eventually obtained the real GWGENs for three stage of human skin aging. However, it
is still quite difficult to investigate the progression mechanisms of skin aging from these
real GWGENs due to their high complexity. Here, we introduce the principal network
projection (PNP) method to extract the core networks from the real GWGENs as core
GWGENs to solve this issue. The details are described in the following section.

4.6. Extracting Core Networks from Real GWGENs by the Principal Network Projection Method

The PNP method is a network structure projection approach based on the principal
singular values so as to reduce network dimension via deleting insignificant structures. In
order to use the PNP method to extract the core networks from the real GWGENs, we have
to construct a network matrix H consisting all of the estimated interactions and regulations
in the real GWGEN (with the ith row denoting the interactions or regulations on the ith
node, i.e., protein, gene, miRNA or lncRNA of real GWGEN) in the following formation:



Molecules 2021, 26, 3178 23 of 28

H =



α̂11 · · · α̂1I 0 · · · 0 0 · · · 0
... α̂ij

...
... 0

...
... 0

...
α̂I1 · · · α̂I I 0 · · · 0 0 · · · 0
âG

11 · · · âG
1I −b̂G

11 · · · −b̂G
1R ĉG

11 · · · ĉG
1Z

... âG
ki

...
... −b̂G

kr
...

... ĉG
kz

...
âG

K1 · · · âG
KI −b̂G

K1 · · · −b̂G
KR ĉG

K1 · · · ĉG
KZ

âM
11 · · · âM

1I −b̂M
11 · · · −b̂M

1R ĉM
11 · · · ĉM

1Z
... âM

ri
...

... −b̂M
rr

...
... ĉM

rz
...

âM
R1 · · · âM

RI −b̂M
R1 · · · −b̂M

RR ĉM
R1 · · · ĉM

RZ
âL

11 · · · âL
1I −b̂L

11 · · · −b̂L
1R ĉL

11 · · · ĉL
1Z

... âL
zi

...
... −b̂L

zr
...

... ĉL
zz

...
âL

Z1 · · · âL
ZI −b̂L

Z1 · · · −b̂L
ZR ĉL

Z1 · · · ĉL
ZZ



∈ R(I+K+R+Z)×(I+R+Z) (13)

where α̂ij denotes the interactive abilities of the ith protein with the jth protein in the PPIN
which could be obtained from θ̂P

i by solving parameter estimation problem in Equation (6)
and pruning the false positives by AIC in Equation (11); âG

ki, b̂G
kr, and ĉG

kz represent transcrip-
tional regulative abilities from the ith TFs, the rth miRNAs and the zth lncRNAs onto the kth
protein-coding genes, respectively, which could be obtained from θ̂G

k by solving parameter
estimation problem in Equation (10) and pruning the false positives by AIC in (12); âM

ri , b̂M
rr ,

and ĉM
rz indicate the transcriptional regulative abilities from the ith TFs, the rth miRNAs

and the zth lncRNAs onto the rth miRNA’s gene, respectively, which could be acquired
from θ̂M

r by solving parameter estimation problem in Equation (S6) and pruning the false
positives by AIC in Equation (S11); âL

zi, b̂L
zr, and ĉL

zz indicate the transcriptional regulative
abilities from the ith TFs, the rth miRNAs and the zth lncRNAs onto the zth lncRNA’s gene,
respectively, which could be acquired from θ̂L

z by solving parameter estimation problem in
Equation (S10) and pruning the false positives by AIC in Equation (S12). It is noted that if
interactions or regulations do not exist in the candidate GWGEN via big data mining or
already have been pruned by AIC, the corresponding components in matrix H are padded
with zero.

As the H have been constructed, we thereby extract the core GWGEN from the real
GWGEN by the PNP method shown as below. At first, the combined network matrix H
can be a factorization of the following singular value decomposition (SVD) form as below:

H = U × D×VT (14)

where U ∈ R(I+K+R+Z)×(I+R+Z), V ∈ R(I+R+Z)×(I+R+Z), and D = diag(d1, · · · , dI+R+Z).
D is composed of I + R + Z singular values of H and d1 ≥ d2 ≥ · · · ≥ dI+R+Z. The eigen
expression fraction Eh is defined in the following energy normalization:

Eh =
d2

h
I+R+Z

∑
h=1

d2
h

(15)

Then, we find out the minimum γ such that
γ

∑
h=1

Eh ≥ 0.85. That is, top γ singular

vectors of matrix H contain 85% core network structure of the real GWGEN from the energy
point of view. Additionally, we define the projections of H to the top γ singular vectors of
V as

NR(w, s) = hw,: × vT
:,s for w = 1, 2, . . . , I∗ + R∗ + Z∗ and s = 1, 2, . . . , γ (16)
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where hw:, and vT
:,s denote the wth row of H and the sth column of V, respectively. Sub-

sequently, for the top γ right-singular vectors, we define the 2-norm projection value of
proteins, genes, lncRNAs, and miRNAs (i.e., the nodes) in the real GWGEN as below:

DR(w) =

[
γ

∑
s=1

[NR(w, s)]2
]1/2

for w = 1, 2, . . . , I∗ + R∗ + Z∗ and s = 1, 2, . . . , γ (17)

If the projection value, DR(w), approaches to zero for the wth node, it means that
the wth node is almost independent to the principal network structure. That is, the larger
the projection value is, the greater the contribution of the corresponding node to the core
network is. By doing so, we can extract the core GWGEN by collecting nodes with large
projection values from the real GWGENs and denote them in the KEGG pathway style to
investigate the progression mechanisms of human skin aging.

4.7. Data Preprocessing for Training Deep Neural Network of Drug–Target Interaction in Advance

The drug–target interaction dataset comes from BindingDB [35]. The descriptors
of drugs and targets are transformed by PyBioMed [112]. We install this package and
import PyMolecule module and PyProtein module to transform drugs and targets into
their descriptors under python 2.7 environment. The PyMolecule module in PyBioMed is
responsible to compute the commonly used structural and physicochemical descriptors
to be drug features. The drug features include constitutional and geometrical descriptors.
Furthermore, the PyProtein module in PyBioMed is responsible for calculating the widely
used descriptors, including structural and physicochemical properties of proteins and
peptides from amino acid sequences, to be target features. Subseqently, concatenating the
drug descriptor and the target descriptor, we describe properties of a drug and its target
by a feature vector shown in (18). Moreover, the total number of drug features and target
features are 363 and 996, respectively.

vdrug−target = [D, T] = [d1, d2, . . . , dI , t1, t2, . . . , tJ ] (18)

where vdrug−target indicates a feature vector of a drug-target pair; D denotes the feature
vector of the drug; di indicates the ith drug feature; T represents the feature vector of the
target; tj is the jth target feature; I is the total number of drug features; J is the total number
of target features. We conduct the same transformation for all the drug-target pairs to
obtain their drug-target feature vectors.

Supplementary Materials: The following are available online, Figure S1: The real genome-wide
genetic and epigenetic network (GWGEN) of young-stage skin, Figure S2: The real genome-wide
genetic and epigenetic network (GWGEN) of middle-stage skin, Figure S3: The real genome-wide
genetic and epigenetic network (GWGEN) of elder-stage skin, Figure S4: Deep neural network of
drug-target interaction framework, Table S1: The pathway enrichment analysis of proteins through
applying the DAVID in the core GWGEN of young-stage skin, Table S2: The pathway enrichment
analysis of proteins through applying the DAVID in the core GWGEN of middle-stage skin, Table S3:
The pathway enrichment analysis of proteins through applying the DAVID in the core GWGEN of
elder-stage skin, Table S4: Drug targets with their corresponding small-molecule compounds, Table
S5: Drug targets with their corresponding small-molecule compounds.
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