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Abstract: American ginseng, Panax quinquefolium (L.), is traditionally used in folk medicine. It exhibits
a range of anti-inflammatory, hepatoprotective, anti-diabetic, anti-obesity, anti-hyperlipidemic and
anti-carcinogenic effects. Its main components are ginsenosides, also known as panaxosides or
triterpene saponins. In order to obtain high yields of ginsenosides, different methods of controlled
production are involved, i.e., with hairy root cultures. However, they are still employed under
in vitro conditions. Our studies revealed that hairy root cultures subjected to an elicitation process
can be considered as a potent source of ginsenosides. The present study examines the biological
activity of ginseng hairy root cultures against the Caco-2 human adenocarcinoma cell line. Among
our six different clones of P. quinquefolium hairy roots, extracts B and Be (treated with elicitor) were the
strongest inhibitors of the cellular metabolic activity. While all extracts induced DNA damage, B and
Be also generated reactive oxygen species (ROS) in a concentration-dependent manner, which was
correlated with the depletion of the mitochondrial membrane potential and induction of apoptosis.
These findings indicate that further research concerning P. quinquefolium hairy root cultures should
focus on the activity of rare ginsenosides and other biologically active compound profiles (i.e.,
phenolic compounds).

Keywords: Panax quinquefolium L.; hairy roots; ginsenosides; cytotoxicity; genotoxicity; apoptosis;
necrosis; mitochondrial membrane potential; ATP; Caco-2

1. Introduction

Plants with healing properties have been applied in medicine and folk herbal practices for
centuries. One species used for hundreds of years for its therapeutic properties is American ginseng,
known as Panax quinquefolium (L.) Alph. Wood (synonym Panax quinquefolius (L.), Aralia quinquefolia (L.)
Decne. & Planch, Ginseng quinquefolium (L.) Alph. Wood, Panax americanus (Raf.) Raf., Panax cuneatus
Raf.) [1]. Ginseng roots and their extracts are used in pharmacy and cosmetics and as functional foods
or dietary supplements. In 2015, the American Council for Responsible Nutrition reported that 31%
of the consumers used herbal supplements to cope with various health problems and ginseng was
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ranked fourth among leading dietary supplements. It is also added to beverages, smoothies or green
drinks to enhance their health beneficial properties.

Ginseng exhibits various anti-inflammatory, hepatoprotective, anti-diabetic, anti-obesity,
anti-hyperlipidemic and anti-carcinogenic effects, as well as a tonic effect [2]. As the major bioactive
ingredients of ginseng are ginsenosides, also known as panaxosides or triterpene saponins, the extracts
used in industry are usually standardized for the ginsenoside content. Ginsenosides are glycosidic
compounds consisting of a non-sugar aglycone part and either single or multiple sugar chains. Three
types of aglycones can be distinguished: tetracyclic aglycones such as dammaran (the most important
are 20 (S)-protopanaxadiol and 20 (S)-protopanaxatriol), pentacyclic aglycones such as oleanolic acid
and tetracyclic aglycones such as ocotillol. The sugar part of the saponin most often includes hexoses
(glucose, galactose), 6-deoxyhexoses (furanose, rhamnose), pentoses (arabinose, xylose) or uronic acids
(i.e., glucuronic acid); they usually have cyclic structures and form semi-acetic bonds with an aglycone.

Most ginsenosides are glycoside derivatives of dammaran consisting of 17 carbon atoms in a
four-ring structure with various sugar residues attached to the positions C-3 and C-20 [3]. Over 30 of the
so-called main ginsenosides were identified. They can be divided into two types: 20 (S)-protopanoxadiol
(PPD) derivatives and 20 (S)-protopanoxatriol (PPT) derivatives. The PPD derivatives include such
metabolites as Rb1, Rb2, Rb3, Rc and Rd. They are denoted as the Rb group of ginsenosides. Other
ginseng saponins belonging to the PPT derivatives, such as Re, Rf, Rg1, Rg2 and Rh1, are known as the
Rg group of ginsenosides [3]. The dammaran-type metabolites, such as the saponins Rh2, Rh3, Rh4,
Rg2, Rg3, Rg5 and Rk1, are rare and are referred to as minor ginsenosides. Several reports note that
they are naturally present in trace amounts or they are not detected at all. In raw plant material, their
level can be altered, enhanced or enriched using several different techniques such as steaming, puffing,
fermentation and high-temperature/pressure treatments [4–7].

Ginsenoside F11 (24-R-pseudoginsenoside) is an ocotillol-type saponin, while ginsenoside Ro is
pentacyclic [8]. Bioactive phytochemicals from P. quinquefolium, as well as their chemical structure,
biochemistry, pharmacological and biological activity, have been thoroughly discussed in a recent
review [3].

Previously, the raw material for the production of medicinal ginseng products was obtained from
natural sources; however, due to extensive exploitation resulting in ginseng being entered into the
“Red Book of Endangered Species” in 1972, new attempts have been made to cultivate ginseng under
natural conditions or field conditions. Currently, the high demand for and high prices of ginseng
root (from 20 to 1105 USD per kilogram), as well as the inability to obtain this raw material from
natural sources, have caused an increase in field ginseng cultivation. However, soil cultivation is very
labour-intensive, and at least three or four years is needed to obtain valuable raw material. In addition,
due to the need for agro technology and prophylactic plant protection treatments (ginseng is extremely
susceptible to fungal diseases and pests), the process is expensive [9–11]. Therefore, in order to obtain
plant ginsenosides with high yields, different controlled productions based on the use of hairy root
cultures in vitro are under investigation.

Such cultivation methods may be an effective way to obtain valuable secondary metabolites for
field crops. Hairy root cultures possess advantages over other cultivation methods [12]. They are
characterized by rapid growth (only 28 days) without the need for supplementation with additional
phytohormones, which allows a large amount of biomass to be produced in a relatively short time.
In addition, they are genetically stable and no drastic decline in metabolite accumulation is observed as
the root line grows older. They are distinguished by plagiatropism and a lack of geotropism. Hairy root
cultures involve the production of numerous lateral roots with an increased root hair zone, diversified
cell structure and structural integration of tissues, which plays a crucial role in the normal course of
metabolic processes. This is especially important considering that some metabolites are synthesized
only in specialized organs and usually only appear in the above-ground parts of plants. In addition,
the approach also offers a relative ease in changing the scale of production, which further increases
their value as potential “producers” of desired compounds [13].
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Our previous investigation indicated that hairy root cultures of P. quinquefolium could serve as
an alternative source of plant material for industrial use, as they readily accumulate ginsenosides in
the same or higher amounts than traditionally cultivated roots [14,15]. However, knowledge of the
active compound content must be supplemented with an understanding of the biological properties of
these cultures.

In the present studies, three clones of hairy root cultures of P. quinquefolium (labelled A, B and
G) were examined for their biological effects; these were either subjected to a methyl jasmonate
elicitation or not. The novelty of this investigation lies in the fact that it examines the genotoxic
and cytotoxic potency of the tested extracts towards the Caco-2 human colon adenocarcinoma
cell line using a comet assay (measuring DNA damage) and two commercial cytotoxicity assays:
MTT (3-(4,5-dimethylthiazolyl-2)-2,5-diphenyltetrazolium bromide) and PrestoBlue. In addition,
the cells were subjected to a microscope observation to identify any morphological changes.
A clonogenic assay was performed to measure the proliferative capacity of cells after treatment with the
P. quinquefolium extracts. To investigate the potential of the extracts as inducers of apoptosis/necrosis,
the intracellular ATP level, mitochondrial membrane potential and intracellular oxidative stress were
also investigated.

2. Results and Discussion

2.1. Ginsenoside Content in Studied Clones of Hairy Root Cultures of P. quinquefolium

Three clones of P. quinquefolium hairy roots (A, B and G) were examined to determine their
biological properties. Transformation was confirmed by a PCR analysis [16]. This analysis confirmed
that the rol B and rol C genes from the Ri plasmid of A. rhizogenes became integrated with the genome
of the P. quinquefolium hairy roots and thus indicated the presence of integrated T-DNA in the hairy
root cultures.

The studied clones differed in terms of morphology (Figure 1) and content of active
compounds–ginsenosides (Table 1).
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Figure 1. Morphology of A, B and G clones of hairy root cultures of P. quinquefolium after
28-days cultivation.

Line A demonstrated the morphology typical for hairy roots, with thin roots of a light-yellow
colour. The roots from line B were also thin; however, their oldest part became brown. Additionally,
they achieved a lower biomass production than those of clone A. The roots of clone G were partially
thicker and had a callus-like appearance. The extracts in which the level of ginsenosides was examined
were derived from the roots cultures that did not undergo an elicitation process (A, B and G), as well
as those subjected to a MeJA elicitation (Ae, Be and Ge). The hairy roots that underwent elicitation
contained more saponins than those untreated with MeJA (Table 1).
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Table 1. Ginsenoside content in the studied clones of the P. quinquefolium hairy root cultures
non-subjected and subjected to elicitation with 250 µM MeJa.

Metabolite
Saponin Content [mg/g d.w.] ± S.E.M.

A B G Ae Be Ge

R
g

gr
ou

p Rg1 1.28 ± 0.113 a 1.04 ± 0.064 a 1.42 ± 0.037 a 0.79 ± 0.053 b 1.41 ± 0.038 a 2.00 ± 0.063 c

Re 2.57 ± 0.253 a 0.86 ± 0.037 b 1.27 ± 0.035 c 1.49 ± 0.030 d 1.22 ± 0.021 c 1.21 ± 0.028 c

Sum 3.85 ± 0.359 a 1.9 ± 0.101 b 2.68 ± 0.072 c 2.28 ± 0.083 b 2.63 ± 0.048 c 3.21 ± 0.089 a

R
b

gr
ou

p

Rb1 4.74 ± 0.162 a 1.56 ± 0.021 b 1.64 ± 0.034 b 9.91 ± 0.200 c 8.48 ± 0.061 d 9.10 ± 0.282 c,d

Rc 4.51 ± 0.150 a 1.63 ± 0.194 b 1.35 ± 0.016 b 6.35 ± 0.080 c 2.67 ± 0.041 d 1.83 ± 0.086 b

Rb2 1.28 ± 0.039 a 0.34 ± 0.014 b 0.22 ± 0.005 c 3.13 ± 0.001 d 0.96 ± 0.038 e 1.10 ± 0.042 a,e

Rb3 0.76 ± 0.022 a 0.14 ± 0.014 b 0.08 ± 0.002 c 1.83 ± 0.011 d 0.48 ± 0.020 e 0.49 ± 0.018 e

Rd 1.88 ± 0.114 a 0.56 ± 0.094 b 0.31 ± 0.012 b 10.81 ± 0.141 c 4.94 ± 0.085 d 5.11 ± 0.189 d

Sum 13.19 ± 0.311 a 4.22 ± 0.245 b 3.72 ± 0.046 b 31.99 ± 0.194 c 17.53 ± 0.217 d 17.64 ± 0.611 d

Total Rg + Rb
group 17.04 ± 0.646 a 6.12 ± 0.194 b 6.27 ± 0.112 b 34.96 ± 0.278 c 20.16 ± 0.240 d 20.85 ± 0.603 d

The means with the same letter in the row does not differ significantly according to the Kruskall–Wallis test (p ≤ 0.05).

The highest levels of total ginsenosides were determined in clone A and Ae (17.04 and 34.96 mg/g
d.w., respectively). Both hairy root cultures were the richest in their Rb saponin content, expressed as
the sum of Rb1, Rb2, Rb3, Rc and Rd; however, the protopanaxadiol derivatives content was 2.4-fold
higher in Ae than clone A. In addition, the levels of the Rb group saponins also increased more than
4-fold in Be and 4.7-fold in Ge, i.e., after stimulation with MeJa, compared with the non-treated samples.

Slightly different findings were obtained for the Rg ginsenosides (expressed as sum of Rg1 and Re).
Among the untreated cultures, clone A was found to express the greatest amount of protopanaxatriol
derivatives. Among the treated cultures, clone Ge accumulated higher amounts of the Rg group
saponins than Ae and Be. Additionally, clone Ae demonstrated lower Rg1 + Re than A.

An analysis of the individual saponins showed that the quantitatively dominant compounds were
Rb1 and Rc (clone A), Rc and Rb1 (clone B) or Rb1 and Rg1 (clone G) in the cultures not subjected to
elicitation. Further, metabolites Rb1 and Rd were found to predominate in all cultures (Ae, Be, Ge) after
the MeJA treatment. Our results demonstrate that ginsenoside profiles varied significantly among the
hairy root clones both with regard to the type of clone and elicitation status. The untreated clones
demonstrated the following ginsenoside profiles: Rb1 > Rc > Re > Rd > Rb2/Rg1 > Rb3 for clone A, Rc
> Rb1 > Rg1 > Re > Rd > Rb2 > Rb3 for clone B and Rb1 > Rg1 > Rc > Re > Rd > Rb2 > Rb3 for clone
G. In contrast, the elicited cultures demonstrated quite different profiles: Rd > Rb1 > Rc > Rb2 > Rb3 >

Re > Rg1 for Ae, Rb1 > Rd > Rc > Rg1 > Re > Rb2 > Rb3 for Be and Rb1 > Rd > Rg1 > Rc > Re > Rb2 >

Rb3 for Ge (Figure S1).
Elicitation, i.e., the treatment of a culture with an elicitor, is one of the most frequently applied

methods used to increase the secondary metabolite production in in vitro cultures. It is based on the
subjecting of the studied culture to the activity of the elicitor. An elicitor is a chemical compound that
can enhance the synthesis of biologically active compounds in plants by causing defensive reactions.
These compounds can be important ingredients from a commercial point of view [17]. In this case,
MeJA was used as the elicitor. Saponin production increased twofold in the Ae line and threefold in the
Be/Ge lines of the P. quinquefolium hairy roots compared with the non-elicited roots. This observation
is not surprising considering previous studies [15,18] indicating that MeJA boosted the expression
of genes coding key enzymes involved in ginsenoside biosynthesis; more specifically, 250 µM MeJA
was found to be the most optimal concentration for an effective ginsenoside accumulation [15]. These
observations are analogous to in vivo conditions where environmental factors very often strongly
influence the production of secondary metabolites; hence, exposure to exogenous methyl jasmonate
also influences the ginsenoside production.
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The influence of in vitro elicitation on the content of the secondary metabolites in the hairy root
clones was also examined for Gentiana cruciata or Psammosilene tunicoides [19,20]. In the present study,
the A, B and G root lines not only demonstrated differences in the ginseng saponin production but
they were characterized by different morphologies. These disparities can be connected with the
random integration of T-DNA into the Ri plasmid in plant tissue. Previous research indicated that
even following a successful transformation, the length and copy number of T-DNA inserted into a
plant cell varies, resulting in variation in the morphology, genetics, physiology and biochemistry of the
resulting clone, i.e., with a different metabolic state and the capacity for the synthesis of secondary
metabolites [21,22]. Additionally, some reports on plants from the Araliaceae (for which P. quinquefolium
belongs), Solanaceae, Rubiaceae, Vitaceae or Rosaceae indicate that the rol A, rol B and rol C oncogenes,
included in T-DNA, are capable to modulate plant growth, cell differentiation and be potential activators
of secondary metabolism in transformed cells [21,23].

2.2. Cytotoxic Activity of P. quinquefolium Extracts

The cytotoxic activity of the P. quinquefolium extracts towards Caco-2 cells increased together with
the rising extract concentration (Figure 2). It could be observed that the highest concentrations of the
tested extracts exerted the strongest metabolic inhibitory effect, while the lowest concentrations did
not affect the cells significantly.

In the MTT assay, for extract A, the three highest concentrations of MeJa were associated with the
greatest decrease in the metabolic activity (up to 98.7% ± 0.2%). The lowest values of cytotoxic effects
were observed for concentrations lower than 0.136 mg/mL (Figure 2a). Extract Ae exerted a similar
biological activity towards Caco-2 cells to extract A. In the case of extract B, a significant increase in
cytotoxicity was observed between concentrations 0.137 mg/mL and 0.274 mg/mL (from 17.2% ± 2.6%
to 93.6% ± 4.8%) (Figure 2b), together with a significant decrease in cell viability. Extract Be was found
to be the greatest inhibitor of Caco-2 metabolic activity, demonstrating toxic effects from a minimum
concentration of 0.035 mg/mL. The four highest concentrations demonstrated the greatest inhibition of
cell viability (up to 98.9% ± 0.3%). Extracts G and Ge demonstrated similar effects (Figure 2c); however,
at 0.51 mg/mL, Ge had a stronger effect than G. Extracts G and Ge only exerted a strong cytotoxic
activity (approximately 98%) when administered at the three highest concentrations, as well as the
lowest influence on the metabolic activity.

In the PB assay, for extracts A and Ae, a relevant increase in the cytotoxic activity (from 11.2%
± 3.9% to 86.9% ± 0.3%) was observed between concentrations 0.27 and 0.532 mg/mL. The strongest
increase in cytotoxicity was observed between the concentrations of 0.27 and 0.54 mg/mL (Figure 2d).
Similar tendencies were observed for extract B and extract Be: the strongest cytotoxicity was observed
for the highest concentrations (up to approximately 86%). For extracts G and Ge (Figure 2f), a rapid
decrease in the metabolic activity (from 10.3% ± 4.0% to 85.8% ± 0.1% for extract G) was observed,
starting from the concentration of 0.51 mg/mL. In the case of Ge, a strong increase of cytotoxicity up to
75.1% ± 9.3% was observed, starting from the concentration 0.255 mg/mL. The highest concentrations
of both extracts were the strongest inhibitors of the metabolic cellular activity (up to approximately
86%). Furthermore, extract G demonstrated the lowest cytotoxic activity among all the studied extracts.
Generally, the P. quinquefolium extracts derived from the plant cultures that underwent elicitation
displayed a stronger influence on cellular viability than those that did not.
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Figure 2. Cytotoxic activity of the P. quinquefolium extracts towards Caco-2 cells determined by MTT
(a, b, c graphs) and PrestoBlue (d, e, f graphs) assays after 72 h of exposure. Each value represents the
mean of four repeats ± SD. Letter e in italic indicates extract of plant subjected to elicitation.

2.3. Estimation of Half Maximal Inhibitory Concentration (IC50)

IC50 is defined as the concentration of a compound which is required to reduce cell survival to
50% of the control values. The IC50 values of all the P. quinquefolium extracts were determined on
the basis of MTT and PB assays (Table 2). The IC50 value for each extract, calculated based on the
results obtained by the MTT and PB assays, were similar. The highest cytotoxic effect was documented
for extract Be (0.06 in MTT and 0.21 mg/mL for PB). The least cytotoxic appeared to be extract G,
reaching an IC50 of 0.64 mg/mL (in MTT) and 0.77 mg/mL (in PB). According to the IC50 values,
the cytotoxicity of the Panax extracts ranked as follows: Be and B > Ae and A > Ge and G. The extracts
obtained by elicitation demonstrated lower IC50 values than those that were not, indicating that the
elicited P. quinquefolium plants demonstrate a higher cytotoxic activity. The Presto Blue and MTT assay
results indicate comparable patterns of cytotoxicity. The higher sensitivity indicated by the MTT assay
may result from the fact that it induces mitochondrial dysfunction, thus augmenting the effect of the
extract [24].
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Table 2. The IC50 values of the P. quinquefolium extracts determined in MTT and PrestoBlue assays.
Letter e in italic indicates extract of plant subjected to elicitation.

Extract
IC50 [mg/mL]

MTT PrestoBlue

A 0.35 0.40

Ae 0.29 0.31

B 0.19 0.33

Be 0.06 0.21

G 0.64 0.77

Ge 0.42 0.43

In general, our findings indicate that the P. quinquefolium hairy root extracts derived from the
cultures that underwent MeJA elicitation had stronger cytotoxic properties. The analysis of the IC50

values showed that these parameters are lower for the Ae, Be and Ge clones than for the A, B and G
clones, respectively. This would suggest that higher saponin levels are associated with a stronger
cytotoxic activity against Caco-2 cells. However, in contrast, extracts B and Be were the most cytotoxic,
even though they contained the lowest level of ginsenosides. This is strong evidence that the observed
biological activity relies on the chemical composition rather than the total quantity of the compounds:
the two extracts were the richest sources of Rc, Rb1 and Rg1 ginsenosides. In addition, these findings
might be attributed to the presence of rare ginsenosides such as Rh2, Rh3, Rg2 or Rg5, which were
not studied in the present study. The literature data indicated that these metabolites demonstrate
cytotoxic, anti-cancer and anti-proliferative activities; however, they also appear in greater quantities
after subjecting field-cultivated roots to high temperatures [25–29].

A previous study [30] examined the anti-proliferative activity of P. quinquefolium extracts towards
HCT-116 colorectal cancer cells by the modified trichrome stain (MTS) method. Higher concentrations
of the extracts were found to be associated with lowered cell viability. At lower concentrations
(0.1–0.25 mg/mL), the anti-proliferative activity was minimal, while a significantly higher (above 90%)
activity was observed for the higher concentrations (0.5 mg/mL) [30]. In our case, the pattern of results
was similar.

A previous MTT-based study of the cytotoxicity of a P. quinquefolium extract towards hepatocellular
carcinoma cells (SMMC-7721) also found that the survival rate of cells decreased along with the increase
in the extract concentration. The cells were incubated with different extract concentrations (0, 20, 40, 60
and 80 mg/mL) for 12 h. [31]. The Rg3 ginsenoside level was also found to significantly decrease 375.S2
melanoma cell viability compared with controls (IC50 20 µM) [32]. Li et al. [33] observed that the total
ginsenoside extract of Chinese ginseng containing a mixture of Rg1, Re, Rd and Rb1 induced stronger
cytotoxicity against HT-29 human colon cancer cells than its individual ginsenoside components. After
a 72-h treatment, the IC50 was equal to 0.105 mg/mL.

2.4. Basal Endogenous DNA Damage Induced by P. quinquefolium Extracts

The genotoxicity of the different concentrations of the P. quinquefolium extracts was estimated
by means of a comet assay. The mean percentage of DNA in the comet tail ± S.E.M. at the different
concentrations of the extract is given in Table 3. The choice of concentrations was based on the IC50

data analysis (close or lower than IC50).
Negative control cells demonstrated 4.2% ± 0.3% DNA damage, while the positive controls

demonstrated 40.6% ± 3.6%. The genotoxic activity of extracts was observed to be dose-dependent.
The highest concentrations of the P. quinquefolium extracts were noticed to be the most genotoxic.
The lowest extract concentrations displayed a slightly higher genotoxic activity than the medium
ones. Extracts A and Ae at concentrations 0.017 and 0.068 mg/mL induced comparable results in
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DNA damage, i.e., up to 10.2% ± 0.6%. At a concentration of 0.27 mg/mL, extract A was found to be
2.5-times more genotoxic than Ae, resulting in 63.5% ± 1.9% DNA damage compared with 25.6% ±
2.3%. Extracts B and Be demonstrated similar genotoxicity at concentrations of 0.009 and 0.035 mg/mL.
Extract Be seemed to display stronger genotoxic effects at a concentration of 0.137 mg/mL (40.9% ±
2.4%) than extract B (34.0% ± 3.3%). At a concentration of 0.51 mg/mL, extract G demonstrated 66.6%
± 1.8% genotoxicity, while at 0.255 mg/mL Ge exerted 41.6% ± 2.7% genotoxicity. Extract Ge was
probably more genotoxic than G, indicated by the fact that half the concentration was needed to induce
similar genotoxic effects to G. Those values cannot be exactly compared due to the different tested
concentrations (chosen on the basis of the IC50 values).

Table 3. DNA damage in Caco-2 cells exposed to the P. quinquefolium extracts expressed as the mean
DNA content in the tail of comets (± S.E.M.) in the alkaline comet assay. The number of cells analyzed
was equal to 100. Different letters (a–r) indicate significant differences between results, ANOVA
(p < 0.05). Letter e in italic indicates extract of plant subjected to elicitation.

Extract Concentration [mg/mL] DNA in the Tail [%] ± S.E.M.

A
0.017
0.068
0.270

10.2 ± 0.6 a,b

6.6 ± 1.1 a,c

63.5 ± 1.9 b,c

Ae
0.017
0.068
0.270

8.1 ±1.4 j

9.5 ± 1.5 k

25.6 ± 2.3 j,k

B
0.009
0.035
0.137

10.2 ± 0.7 e,f

7.6 ± 1.1 e,g

34.0 ± 3.3 f,g

Be
0.009
0.035
0.137

9.9 ± 0.6 l,m

7.6 ± 0.8 l,n

40.9 ± 2.4 m

G
0.032
0.128
0.510

7.6 ± 0.7 h

8.5 ± 1.7 i

66.6 ± 1.8 h,i

Ge
0.016
0.064
0.255

12.1 ± 0.7 o,q

8.4 ± 1.3 o,r

41.6 ± 2.7 q,r

No correlation was found between genotoxic effects and the source plant species. There is no data
on the genotoxicity of P. quinquefolium extracts on cell lines, but Zhang et al. [34] found Rg3 ginsenoside
to significantly increase DNA damage in a concentration-dependent manner in human osteosarcoma
cells. Rg3 also induced double-strand breaks, which can lead to chromosome aberrations.

2.5. Effect of P. quinquefolium Extracts on Colony Formation

Extracts B and Be displayed the strongest cytotoxic and anti-proliferative effects and so were
subjected to further research based on a colony forming assay: the survival and proliferative capacity
of cells treated with a cytotoxic agent are measured based on their ability to form colonies. It was
found that the pre-treatment of cells with Panax B and Be extracts effectively inhibited the colony
formation (Figure 3), which was clearly visible in the samples containing extracts of concentrations
equal to and higher than 0.55 mg/mL. These findings confirm that extracts were not only able to
decrease the metabolic activity of Caco-2 cells but also had an anti-proliferative effect. An analysis
of the colony formation ability of melanoma A375.S2 cells 24 h after treatment with different Rg3
ginsenoside concentrations found this ability to decrease for all Rg3 concentration levels compared
with controls [32].
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Figure 3. Images representing colonies produced by Caco-2 cells following plating of 1000 cells and
7 days of incubation. Cells were treated with 0.017-1.1 mg/mL concentrations of the P. quinquefolium B
(non-elicited) and Be (elicited) extracts for 60 min. A positive control in a form of 50 µM H2O2 was
used. Cells in negative control were not treated. Letter e in italic indicates extract of plant subjected
to elicitation.

2.6. The Effect of P. quinquefolium Extracts on Intracellular ATP Level, Mitochondrial Membrane Potential,
Intracellular Oxidative Stress and Apoptosis Induction

Further analyses at concentrations not exceeding the IC50 values were performed to determine
the molecular mechanism of the B and Be ginsenosides’ cytotoxicity against Caco-2 cells. It was
found that both extracts influenced cellular ATP production (Figure 4A). The ATP level in Caco-2 cells
decreased by 20% following the treatment with 0.137 mg/mL extract of the plant following elicitation;
this decreased to 50% at the higher concentration of 0.274 mg/mL. Ginseng B preparation reduced
luminescence by 10–15% at all studied dosages.

Both extracts reduced the mitochondrial membrane potential in a concentration-dependent
manner (Figure 4B). While extract B diminished the potential by up to 15%, extract Be reduced the
value by 20% to 60%. This observed decrease in the mitochondrial potential was accompanied by an
intracellular increase in the ROS level for both B and Be (Figure 4C); however, 0.137 mg/mL extract B
was a stronger inducer of oxidative stress: it elevated fluorescence by nearly 20% compared to controls,
whereas 0.274 mg/mL Be extract increased the ROS level by nearly 45%. These quantitative results were
confirmed by fluorescence microscopy observations: cells treated with extracts B and Be demonstrated
higher fluorescence than untreated cells due to the higher ROS concentration (Figure 5). Extract Be
demonstrated a stronger intracellular ROS accumulation.
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Figure 4. The effects of the 48-h P. quinquefolium B (non-elicited) and Be (elicited) extract treatment
on the ATP level of Caco-2 cells as determined by the ATP luminescent assay kit (A); mitochondrial
membrane potential was determined with a JC-1 probe (B); intracellular reactive oxygen species (ROS)
generation was analyzed by a DCFH-DA assay (C), as a positive control of 50 µM t-BOOH was used;
control cells were not exposed to any compound but the vehicle (medium). Values are presented
as the mean (n ≥ 8) ± SD; statistical significance was calculated versus the control cells (untreated),
*** p < 0.001.
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microscopy (Nikon, Tokyo, Japan), 200× magnification. 
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Figure 5. Intracellular ROS generated in Caco-2 cells after staining with DCFH-DA. The P. quinquefolium
extract (0.274 mg/mL) B non-subjected to elicitation (with lower fluorescence) and Be subjected to
elicitation (with higher fluorescence). Negative control—healthy cells without fluorescence (no ROS).
Positive control (50 µM t-BOOH) with highly fluorescent cells. Fluorescence microscopy (Nikon, Tokyo,
Japan), 200×magnification.

The observed decrease in the mitochondrial potential and ATP level, as well as the
intensive elevation of ROS, indicated that cellular death may be triggered, like apoptosis or
necrosis. Therefore, the next part of the study investigated the impact of the ginseng extracts
on apoptosis induction by the detection of externalized phosphatidylserine (PS) in the cell membrane
using annexin-V-FITC/propidium iodide staining (Figure 6A). Annexin V binds to externalised
phosphatidylserine on the outer membrane leaflet of apoptotic cells, whilst the propidium iodide
stains the nuclei of cells with perforated membranes. The highest number of apoptotic cells positive
for annexin V staining was observed for 0.137 mg/mL of ginseng B (about 18%), whereas high levels of
cells positive for both annexin V and propidium iodide were observed for the Be extract at 0.137 mg/mL
and the B extract at 0.274 mg/mL. Ginseng Be at a 0.274 mg/mL concentration revealed a high red
fluorescence quantity of cells with stained nuclei (about 58%) specific for necrosis or secondary necrosis
of apoptotic bodies not engulfed by neighbouring cells. A subsequent DNA fragmentation analysis of
the cytoplasmic mono- and oligonucleosomes revealed a significant increase in apoptosis induction by
the B and Be extracts at 0.137 mg/mL (Figure 6B). Further investigation showed that cells treated with a
0.274 mg/mL concentration of both preparations showed predominantly necrotic death-type features
due to the presence of cell-released nucleosomes in the culture medium.
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Figure 6. The effects of the P. quinquefolium B (non-elicited) and Be (elicited) extracts after 48 h treatment
of Caco-2 cells: phosphatidylserine externalisation on the outer membrane leaflet of the apoptotic cells
and membrane permeabilization were detected with the annexin-V-FITC assay kit and propidium iodide
staining (A); the late stage of apoptosis was analyzed by a cell death detection kit (B), PC—internal
positive control of the assay. Control cells were not exposed to any compound but the vehicle (medium).
Values are presented as the mean (n ≥ 8) ± SD; statistical significance was calculated versus the control
cells (untreated), * p < 0.05, ** p < 0.01, *** p < 0.001.

The current results are consistent with the microscopic observations of the cellular morphology
changes occurring after cellular death induction. DAPI staining allows morphological changes in cell
nuclei to be assessed. The nuclear morphology of Caco-2 cells was evaluated after 48 h of exposure to
0.137 mg/mL of the B and Be extracts. Numerous apoptotic bodies, chromatin condensation and nuclear
fragmentation could be observed (Figure 7). AO/PI staining analyses were also conducted according
to the criteria given by Baskić et al., 2006 [35] and Salim et al., 2013 [36]. The control cells (viable)
exhibited a green fluorescence with a light-green nucleus with an intact structure of the chromatin
(Figure 8). An orange colour, chromatin fragmentation, cell shrinkage and cell membrane blebbing
were symptoms of late apoptosis, while bright-red nuclei with condensed chromatin indicated direct
necrosis. Kim et al., 2019 [32] demonstrated that the Rg3 ginsenoside induced apoptosis in A375.S2
melanoma cells related to the mitogen-activated protein kinase signalling pathway. The authors also
observed morphological changes in cells such as membrane blebbing. Li et al., 2018 [33], in DAPI
staining, observed nuclear changes in the colon cancer cell HT-29 typical for apoptosis, such as
karyopyknosis, chromatin condensation and nuclear fragmentation. These observations were made
for the total ginsenosides of Chinese ginseng containing Rg1, Re, Rd and Rb1.
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f). LA—late apoptosis, BL—blebbing, SN—secondary necrosis. 400× magnification. 

There are many reports indicating that Rg3, Rh2, Rg5, Rk1 and Rh4 ginsenosides act as 
apoptosis inducers in different types of cell lines [37–39]. It is supposed that the most potent 
apoptosis activators among saponins are those with less polar chemical structures [40]. Recently, it 
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Figure 7. DAPI-stained nuclei of Caco-2 cells after exposition to 0.137 mg/mL of the P. quinquefolium
extracts B (non-elicited) (a–c) and Be (elicited) (e–f). Apoptotic bodies (white arrows), chromatin
condensation (yellow arrows) and nuclear fragmentation (red arrows). Magnifications 200× (control,
a–e) and 400× (f, and magnified b).
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Figure 8. Fluorescent images of AO/PI double staining of Caco-2 cells exposed to 0.137 mg/mL (a,b,d,e)
and 0.274 mg/mL (c,f) of the P. quinquefolium extracts B (non-elicited) (a–c) and Be (elicited) (d–f).
LA—late apoptosis, BL—blebbing, SN—secondary necrosis. 400×magnification.

There are many reports indicating that Rg3, Rh2, Rg5, Rk1 and Rh4 ginsenosides act as apoptosis
inducers in different types of cell lines [37–39]. It is supposed that the most potent apoptosis activators
among saponins are those with less polar chemical structures [40]. Recently, it was demonstrated
that not only ginsenosides but also their metabolites secreted by intestinal bacteria, like compound K,
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are able to activate apoptosis via the induction of intracellular reactive oxygen species and mitochondria
membrane potential loss [41]. Remarkably, apoptosis as a programmed cell death (implicated in the
removal of defective or unwanted cells without inflammation induction) is one of the tools used
in cancer prevention. Studies performed on a BALB/c nude mouse model of human breast cancer
demonstrated that Rg5 activates caspase-dependent apoptosis via the activation of the extrinsic
death receptor and intrinsic mitochondrial signalling pathways [42]. We examined the ginsenoside
involvement in Caco-2 cell death induction via oxidative stress generation; however, a more detailed
evaluation of specific markers connected with cellular death, such as caspases−3/−9 activation or the
appearance of specific proteins, i.e., t-Bid, cytochrome c, Bax and Bak, is required [40]. Such a molecular
identification is very important because in human colorectal cancer HCT116 cells, there have been
demonstrated studies identifying ginsenosides Rh2 and Rg3 as not only inducers of apoptotic-type
cellular death but also as activators of paraptosis [43]. That type of cell death is independent of
caspase activation and is characterized by cytoplasmic vacuole formation, mitochondrial swelling
and clumping.

The present study also examines the ability of the extracts to induce necrosis. However, it is
important to mention that some proteins involved in the intrinsically regulated type of cell death,
which shares features of apoptosis and necrosis, are responsible for the induction of the cellular
death type known as necroptosis [44]. On the other hand, the treatment of H9c2 cardiomyocytes
with the deglycosylated ginsenoside compound Mc1 significantly increased the levels of catalase and
superoxide dismutase and reduced the elevation of the proapoptotic Bax/Bcl2 ratio and caspase-3
activity [45]. Due to these facts, the identification of the detailed mechanism of the biological activity
of P. quinquefolium ginsenosides requires further investigation.

3. Materials and Methods

3.1. Chemicals and Reagents

The N-2-hydroxyethylpiperazine-N’-2-ethanesulfonic acid (HEPES) buffer, Dulbecco’s modified
Eagle’s medium (DMEM), streptomycin/penicillin mixture, phosphate buffered saline (PBS, pH 7.2),
trypan blue dye, 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT), dimethyl
sulfoxide (DMSO), low melting point (LMP) agarose, normal melting point (NMP) agarose, NaCl,
Triton X-100, EDTA, Tris, NaOH, paraformaldehyde, 4,6-diamidino-2-phenylindole (DAPI), acridine
orange (AO), propidium iodide (PI), 2′,7′-dichlorofluorescin diacetate (DCFH-DA), hydrogen peroxide
(H2O2), annexin-V-FITC assay kit, tert-butyl hydroperoxide (t-BOOH), and methyl jasmonate
(MeJA) were derived from Sigma-Aldrich (St. Louis, MO, USA). The Rb1, Rb2, Rb3, Rc, Rd,
Re, Rg1 and Rg2 ginsenosides standards were purchased from C. Roth GmbH + Co Karlsruhe,
Germany. The foetal bovine serum (FBS), GlutaMAXTM, TrypLETM Express, PrestoBlue (PB),
5,5′,6,6′-tetrachloro-1,1′,3,3′-tetraethyl-imidacarbocyanine iodide (JC-1) originated from Invitrogen
Thermo Fisher Scientific (Waltham, MA, USA). The human colon adenocarcinoma cell line Caco-2 from
the 50th passage was purchased from Cell Line Service GmbH (Eppelheim, Germany). The 0.20 and
0.22 µm pore size syringe filters were from Merck Millipore (Darmstadt, Germany). The Cell Death
Detection ELISAPlus was purchased from Roche Diagnostics (Basel, Switzerland). The CellTiter-Glo®

Luminescent Cell Viability Assay kit was from Promega (Madison, WI, USA).

3.2. P. quinquefolium Hairy Root Culture

Three clones (A, B and G) of the P. quinquefolium hairy root cultures were grown in 300 mL
shake Erlenmeyer flasks with 80 mL of modified, hormone-free B-5 medium [14]. The cultures were
maintained in the dark at 26 ◦C degrees on a rotary shaker (100 rpm). The extracts were prepared from
three different clones of the transformed roots of P. quinquefolium and were used for the biological
assays. They were derived from cultures that did not undergo an elicitation process (A, B and G) and
from the hairy roots that were elicited by the 250 µM MeJA (Ae, Be and Ge). A stock solution containing
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95% MeJA in 96% ethanol (sterilized through a Millipore filter of pore size 0.20 µm) was added to the
medium on the 25th day of culture. The ginseng saponins accumulation in the hairy root cultures of
P. quinquefolium was examined after seven days of the MeJA treatment.

3.3. Preparation of P. quinquefolium Roots’ Extracts

The hairy root cultures, after 32 days of growth in in vitro conditions, were rinsed under running
water to remove medium residue, dried at room temperature and subjected to extraction in 80%
methanol and solid phase extraction, as described earlier [14]. The dried hydromethanolic extracts,
taken from all the tested cultures, were weighed and used for the quantitative analysis of the
ginsenosides (HPLC method). For further investigations of the biological activity towards Caco-2
cells, the stock solutions were prepared after dissolving in a complete culture medium for Caco-2
cells (without phenol red). They were sterile-filtered (0.22 µm pore size) and diluted to the 10× stock
concentrations from 0.08 to 22 mg/mL. The stocks were stored at −20 ◦C.

3.4. Determination of Ginsenoside Content Using HPLC Method

The samples were examined for the presence of eight ginsenosides (Rb1, Rb2, Rb3, Rc, Rd, Re, Rg1
and Rg2) using a liquid chromatography system consisting of an Agilent Technology 1200 apparatus, a
ZORBAX Eclipse XDB-C18 (150 × 4.6 mm, 5 µm) column, Quat Pump and UV–Vis DAD type detector,
as well as an Agilent Technology set combined with the Agilent ChemStation 2001–2010 software.
The details of this analysis are presented in our earlier report [46]. The ginsenoside content was
expressed as milligrams per gram of dry weight.

3.5. Caco-2 Cell Culture

Caco-2 cells were maintained according to Nowak et al., 2017 [47]. They were cultured in
DMEM, supplemented with 10% FBS, 4 mM GlutaMAXTM, 25 mM HEPES buffer and 100 µg/mL
streptomycin/100 IU/mL penicillin mixture for 7 days at 37 ◦C in the atmosphere of 5% CO2. Every
2–3 days, the cells were washed with PBS and supplemented with a fresh medium. Confluent
cells were detached with TrypLETM Express. The cell suspension was centrifuged (182× g, 5 min),
decanted and the pellet was re-suspended in fresh DMEM. After the determination of the cell count by
haemocytometer and cell viability by trypan blue exclusion, the Caco-2 cells were ready to use.

3.6. MTT and PB Assays

In each well of a 96-well plate, 1 × 104 Caco-2 cells were seeded in a complete culture medium and
incubated overnight (37 ◦C, 5% CO2). Next, the medium was aspirated, and the plant extracts were
added to achieve final concentrations of from 0.008 to 2.2 mg/mL. The negative control contained cells
in DMEM. Cells were exposed to extracts for 72 h (37 ◦C, 5% CO2). After incubation, the samples were
aspirated; MTT (0.5 mg/mL) was added and the samples were further incubated for 3 h. Next, the dye
was removed, and formazan precipitates were solubilised by DMSO. Absorbance was measured
at 550 nm (with a reference filter of 620 nm) using a microplate reader (TriStar2 LB 942, Berthold
Technologies GmbH & Co. KG, Bad Wildbad, Germany).

In the case of the PB assay, after removing the test samples, the PB reagent (10%) was added to
each well and the samples were incubated at 37 ◦C under 5% CO2 for 2 h. The fluorescence signal at
F560/590 nm was then measured, using a microplate reader. Both experiments were conducted with
the same cell’s population.

The absorbance/fluorescence of the control sample (untreated cells) represented 100% cell viability.
Cell viability (%) was calculated as [sample OD (optical density) or fluorescence/control OD or
fluorescence] × 100%; and anti-proliferative activity/cytotoxicity (%) as 100–cell viability. Results were
presented as the mean ± standard deviation (SD)/standard error of the mean (S.E.M.). The IC50 value
was used as a measure of cellular sensitivity towards a given treatment and was determined by MTT
and PB assays according to OECD (The Organisation for Economic Co-operation and Development)
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protocol, 2015 [48], according to the following formula: IC50 = (X − Z)/(X − X1) × (CX1 − CX) + CX,
where X is a 50% decrease in viability; X is the % of viability > Z; X1 is the % viability < Z; CX is the
concentration of the compound for X, and CX1 is the concentration of the compound for X1.

3.7. Genotoxicity Testing (Comet Assay)

The concentrations of the extracts for genotoxicity testing were selected on the basis of the
cytotoxicity screening and IC50 values. The cells were incubated (37 ◦C, 1 h) in a supplement-free
medium with the following concentrations of the P. quinquefolium extracts [mg/mL]: A) 0.017; 0.066
and 0.226; Ae) 0.017; 0.069 and 0.275; B) 0.008; 0.034 and 0.135; Be) 0.009; 0.035 and 0.139; G) 0.032;
0.126 and 0.504; Ge) 0.016; 0.065 and 0.258. The Caco-2 cells’ final concentrations were adjusted to
105 cells/mL in each sample. The negative control consisted of Caco-2 cells in DMEM, while the positive
control contained 50 µM H2O2. The final amount of each sample was set to 1 mL. The comet assay
was performed under alkaline conditions (pH > 13) as previously described [47]. After incubation,
aliquots of suspended cells were centrifuged (182× g, 15 min, 4 ◦C), decanted, suspended in 0.75%
LMP agarose and distributed onto slides precoated with 0.5% NMP agarose and immersed in a lysing
solution consisting of 2.5 M NaCl, 1% Triton X-100, 100 mM EDTA and 10 mM Tris, with pH 10 (4 ◦C, 1
h). After the lysis, the slides were subjected to horizontal gel electrophoresis and the DNA was allowed
to unwind for 20 min in an electrophoretic solution, containing 300 mM NaOH and 1 mM EDTA.
Electrophoresis was conducted at 4 ◦C for 30 min at an electric field of strength 0.73 V/cm (300 mA).
Then, the slides were neutralised with distilled water for 5 min, stained with 1 mg/mL PI and covered
with cover slips. The objects were visualised at 200× total magnification in a fluorescence microscope
(Nikon Eclipse Ci H600L, Tokyo, Japan), attached to a digital camera (Nikon Digital Sight DS-U3,
Tokyo, Japan) and connected to a Lucia-Comet v. 7.0 PC-based image analysis system (Laboratory
Imaging, Prague, Czech Republic). One hundred images were randomly selected from each sample
and the percentage of DNA in the comet tail was measured. The results were presented as the mean ±
standard error of the mean (S.E.M.).

3.8. Clonogenic Assay

As extracts B and Be appeared to display the strongest cytotoxic and anti-proliferative effects,
they were thus taken for further analysis according to Choi et al., 2018 [49], with some modifications.
To each well of a 6-well plate, 3.5 × 105 cells were seeded and cultured to reach 80% confluence. After
that, cells were washed with PBS and exposed to extracts of concentrations from 0.017 to 1.1 mg/mL
for 60 min. The positive control was 50 µM H2O2. After that, all cells in each well were harvested,
and counted according to the standard procedures. Next, 1000 cells were inoculated on each well of
the 6-well plate and cultured for 7 days to enable the formation of the colonies. The colonies were
fixed with 3.7% paraformaldehyde for 15 min, air-dried and stained with 0.1% crystal violet.

3.9. Measurement of ATP Production and Mitochondrial Membrane Potential (MMP)

The intracellular ATP level was quantified with a CellTiter-Glo® Luminescent Cell Viability
Assay kit according to the manufacturer’s instructions. Briefly, the cells were incubated with the
compounds for 48 h, following which, the single reagent was added directly to the cells. After the
cell lysis, the luminescence was measured—this was proportional to the amount of ATP present.
The measurements were performed using the Synergy 2 BioTek Microplate Reader and calculated
according to the formula:

Luminescence [%] = luminescence of the sample cells/luminescence for the control cells × 100 (1)

The MMP was assayed with the JC-1 probe. After 48 h treatment with the studied compounds,
the medium was changed and JC-1 (1 µg/mL) was applied for 20 min. Then, the cells were washed
with a serum-free medium and the fluorescent signals at F485/530 and F530/620 nm were measured
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and the ratio of the obtained values F485/530 and F530/620 nm were taken for the calculation according
to the formula:

Mitochondrial membrane potential [%] = (ratio of F530/620 and F485/530 the sample cells/ratio of
F530/620 and F485/530 for the control cells) × 100

(2)

3.10. Detection of Intracellular Reactive Oxygen Species (ROS) Generation

To determine the effect of extracts on the intracellular generation of ROS after the 48-h treatment,
cells were loaded with the DCFH-DA dye at a final concentration of 10 µM for 30 min. The fluorescent
signal was analyzed at a wavelength of F485/530 nm. Calculations were performed according to
the formula:

Intracellular ROS production [%] = fluorescence of the sample cells/fluorescence of the
control cells × 100

(3)

For the microscopic observations, the experiment was conducted in 8-well Lab-Tek™ Chamber
Slides. The negative control contained only cells in DMEM (without FBS), while the positive control
contained 50 µM t-BOOH. The intracellular fluorescence of cells was observed under a fluorescence
microscope after 6 h of treatment. An increased intensity of intracellular fluorescence was an indication
of an increased level of the generated ROS.

3.11. Phosphatidylserine Externalisation and Membrane Permeabilization

After 48 h treatment, the cells were washed twice with PBS and incubated with annexin-V-FITC
(final concentration 0.25 µg/mL) for 10 min. Annexin-V binding was measured by the change in
fluorescence (F485/530 nm). Membrane permeabilization caused by the investigated compounds
was measured using propidium iodide (PI). After 48 h treatment of the cells, PI was added at a final
concentration of 1 µg/mL. Intercalation was monitored by the change of fluorescence F535/620 nm.
For each of the parameters studied calculations were performed according to the formula:

[%] = fluorescence of the sample cells/fluorescence of the control cells × 100 (4)

3.12. Detection of Mono- and Oligonucleosomes Release (Apoptotic DNA Degradation and Necrosis Detection)

The late stage of apoptosis was measured by Cell Death Detection ELISA Plus according
to the manufacturer’s instructions. After 48 h treatment, the cells were lysed and the levels of
histone-complexed DNA fragments (mono- and oligonucleosomes) present in the cytoplasmic fraction
were quantified with an immunoreagent complex. The DNA–histone complex served as the positive
control (PC). Following the incubation and washes, the colorimetric solution was added and after
adding the stop solution, the colorimetric signal was measured at 405 and 490 nm. The calculation of
the enrichment factor of the mono- and oligonucleosomes released into the cytoplasm was performed
according to the formula:

Enrichment factor [%] = absorbance of the sample cells/absorbance of the control
cells × 100

(5)

In order to detect necrosis after the cells’ incubation with compounds, the medium was collected
and the level of DNA fragments released from the necrotic cells was determined analogously to the
apoptosis measurement.

3.13. Fluorescent Microscopic Analysis

For the DAPI staining, each well of a 8-well Lab-Tek™ Chamber Slide was seeded with Caco-2
cells (1 × 104cells/well); for the AO/PI double staining, a 6-well plate was used and each well was
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seeded with 5 × 104 cells/well and incubated for 24 h to allow them to attach. The tested concentrations
of the P. quinquefolium extracts B and Be were 0.137 and 0.274 mg/mL. After 48 h exposure, the medium
with the extracts was gently aspirated. For the AO/PI staining, cells were detached, centrifuged (182× g,
5 min), decanted and the pellet was stained with the AO (100 µg/mL) and PI (100 µg/mL) mixture (1:1,
v/v). The morphology of Caco-2 cells was immediately analyzed under a fluorescent microscope with
an imaging software (NIS-elements BR 3.0, Nikon, Tokyo, Japan). In the case of DAPI, after treatment,
the cells were washed with PBS, fixed with 3.7% paraformaldehyde for 15 min at room temperature
and air-dried. The cells were then stained with 1 µg/mL of DAPI for 5 min, at an ambient temperature
in the dark and observed under the microscope.

3.14. Statistical Analysis

All data were presented as the mean (n ≥ 4 or 8) ± standard deviation (SD) or standard error of
the mean (S.E.M.). All obtained results were subjected to a statistical analysis. The determination
comprised the average values and a one-way ANOVA that was followed by the Dunnett’s test using
the GraphPad prism 4.0 software (GraphPad Software, Inc. La Jolla, CA, USA) or the OriginPro 6.1
software (OriginLab Corporation, Northampton, MA, USA) at the significance level of * p ≤ 0.05.

4. Conclusions

The studied clones of the P. quinquefolium hairy roots were characterized by different ginsenoside
profiles and different contents of individual compounds; higher levels of the studied metabolites were
observed in the cultures treated with methyl jasmonate. The use of this elicitor significantly stimulated
the accumulation of saponins from the Rb group (increase: 2.4-fold, 4.15-fold and 4.7-fold respectively
in the A, B and G clones). The effect of methyl jasmonate on the Rg group saponins was ambiguous:
a weak stimulant effect was observed for the B and G clones and an inhibitory effect for clone A.

Here, we also demonstrated the biological activities of the extracts obtained from the
P. quinquefolium roots (Figure 9). As intestinal cells are mostly influenced by large quantities of
dietary and plant-originated compounds, the human epithelial adenocarcinoma Caco-2 cell line was
chosen as a cellular model. The main aim of our study was to determine the potential for ginsenosides
to induce death in cancer cells, i.e., immortalised Caco-2 cells. Importantly, an apoptosis induction
was detected at relatively high dosages. Our findings suggest that extracts derived from the elicited
P. quinquefolium roots exerted a higher biological activity towards Caco-2 cells than the non-elicited
extracts. The elicitation process was associated with significant increases in the Rb group saponins
levels in the root cultures. Among the six studied clones of the P. quinquefolium hairy root extracts,
the strongest inhibitors of the cellular metabolic activity, and apoptosis inducers, were extracts B and
Be (elicited). Due to the observed depletion of the mitochondrial membrane potential and ATP level,
we suspect that the main inducer of apoptosis was the ROS generation. In this case, extracts with high
quantities of ginseng demonstrated a prooxidative activity against cells, probably leading to lipid and
protein peroxidation, as well as DNA damage.

Moreover, Caco-2 cells are also used as a model of artificial intestine, as they maintain part of
the functional capacity of the epithelium in vitro, and are commonly used for in vitro studies of the
mechanism of intestinal absorption, and of the cytoprotection against oxidative stress or DNA and
proteins damage. It is known that P. quinquefolium phytocompounds are able decrease intracellular
oxidative stress via chemical radical scavenging, or the recovery and activation of intracellular
enzymatic defence, i.e., (glutathione peroxidase (GPx) or superoxide dismutase (SOD) [3]. We are
aware that the presented study lacks the presentation of the cytoprotective potential of the obtained
ginsenosides. The influence of the obtained extracts as cytoprotective agents and regulators of
cellular signalling at non-cytotoxic concentrations will be examined in more detail in further studies.
In summary, our findings indicate that further research concerning P. quinquefolium hairy root cultures
should focus on the examination of rare ginsenosides and other biologically active compound profiles,
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i.e., phenolic compounds, in order to fully explain the biological properties of P. quinquefolium hairy
root cultures.Molecules 2020, 25, x FOR PEER REVIEW 19 of 22 
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