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Abstract: Borylated aryl alkynes have been synthesized via one-pot iridium catalyzed C–H borylation
(CHB)/Sonogashira cross-coupling of aryl bromides. Direct borylation of aryl alkynes encountered
problems related to the reactivity of the alkyne under CHB conditions. However, tolerance of aryl
bromides to CHB made possible a subsequent Sonogashira cross-coupling to access the desired
borylated aryl alkynes.
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1. Introduction

Boronic acids and esters serve as precursors for a variety of functional groups and as synthetic
handles for C–C bond formation [1,2]. Over the past two decades, iridium-catalyzed C–H
borylation (CHB) of arenes have emerged as useful additions to the synthetic chemist’s toolbox [3–7].
The regiochemistry of iridium-catalyzed CHB of arenes is traditionally governed by sterics [3,7,8];
often complementing regiochemical outcomes of electrophilic aromatic substitution and directed ortho
metalation. Since its discovery [9], methods to expand regiocontrol (ortho, meta, and para) [10–12],
sp3 borylation protocols [13–21] and one-pot reactions [22–27] have been developed.

In contrast, few tactical advances have expanded the chemoselectivity of iridium-catalyzed CHBs.
This is not to say that CHBs have poor functional group tolerance. Ester, amide, ether, carbamate,
and nitrile functionalities are all well tolerated. Satisfactorily, CHB of halogenated arenes leaves
the carbon-halogen bonds intact, which differs from other protocols involving palladium or nickel.
In contrast, substrates bearing alkenes or unhindered alkynes have been considered problematic
owing to the propensity of these groups to react under the borylation conditions. In fact, addition of
hydroborane or diboron reagents across triple bonds can occur with catalytic systems similar to the
traditional conditions used for CHB (Scheme 1a) [28–32]. However, there are reports in which CHB of
arenes or heteroarenes bearing an alkyne functionality have been successful (Scheme 1b) [33–36]. It is
likely that in these examples the presence of two bulky substituents on the alkyne hinder its reactivity,
allowing for chemoselective borylation of the porphyrin moiety (1, 2) or the polyarene skeleton (3, 4).
The dichotomy of these results was the first subject of our study.
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Scheme 1. (a) Reactivity and (b) tolerance of alkynes in iridium C–H borylations [28–36}.

Unwanted alkyne reactivity can be viewed as a CHB limitation, since borylated aromatic alkynes
have found use in the synthesis of extensively conjugated polymeric materials [37] and in crystal
engineering, biological inhibition, molecular sensing, chirality, and structural assignment, etc., [38–41].
The preparation of borylated aromatic alkynes usually involves introduction of the boronic ester/acid
functionality on an aromatic alkyne by metalation/borylation [42,43] or Pd-catalyzed borylation of
aromatic halides [44]. We hypothesized that by courtesy of CHB halogen tolerance it would be possible
to make such intermediates in the opposite order, namely, to synthesize borylated aromatic alkynes by
a CHB/Sonogashira coupling sequence. If such a sequence could also be accomplished in a one-pot
fashion, it would streamline the synthesis of borylated aromatic alkynes while allowing access to target
molecules bearing the contra-electronic substitution patterns often associated with CHB reactions.

2. Results and Discussion

The prior art was inconclusive as to the compatibility between alkynes and CHB conditions.
Therefore, we began by subjecting alkynyl arenes to CHB conditions (Scheme 2, Equation (1)).
Attempted borylation of phenyl acetylene (5) using the [Ir(cod)OMe]2/dtbpy catalyst system was
unsuccessful. Considering that the terminal C–H bond in acetylene may be too acidic, we examined the
borylation of 1-phenyl-1-propylene (6) and diphenyl acetylene (7). Neither of these alkynes underwent
aromatic borylation. It was also found that the addition of 10 mol % of diphenylacetylene (7) halts
the ongoing borylation of an otherwise suitable CHB substrate as shown in Scheme 2, Equation (2).
Furthermore, attempted borylation of diphenyl acetylene with an (Ind)Ir(cod)/ dmpe catalyst system at
150 ◦C gave a mixture of products arising from hydrogenation, hydroboration, and catalytic borylation.
These results suggest that the alkynyl group binds tightly to the active borylation catalyst at 25 ◦C, but
at elevated temperatures the alkynyl group becomes a reactive partner.
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These results drove our decision to develop a CHB/Sonogashira protocol. Others had demonstrated
the tolerance of boronic esters under Sonogashira cross-coupling reaction conditions [39,40,45–47].
While our group previously showed that despite the propensity for self-Suzuki reactions, one-pot
reactions involving CHB of aryl halides followed by C–N cross-coupling of the C–halogen bond [27] or
dehalogenation [23], that keep the C–B bond intact are possible (Scheme 3). These studies provided the
foundation from which we would seek to establish a one-pot CHB/Sonogashira cross-coupling of aryl
halides to access borylated aryl alkynes.
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Scheme 3. One-pot CHB of aryl halides followed by selective reaction of the C–Halogen bond [23,27].

3-Bromobenzotrifluoride was chosen as our test substrate. First, borylated
3-bromobenzotrifluoride (9) was subjected to Sonogashira cross-coupling under Fu’s conditions using
phenyl acetylene (5) and CuI cocatalyst [48]. We were pleased to observe the formation of the desired
borylated aromatic alkyne without any significant deborylation or polyphenylene formation. However,
the reaction had stopped at about 90% conversion after 18 h and homocoupling of the alkyne was
observed by GC-MS. As Buchwald had shown that a copper co-catalyst may inhibit Sonogashira
coupling [49] and given that CuI can promote oxidative homocoupling of alkynes, we shifted to
copper-free conditions reported by Soheili [50]. This resulted in full conversion of substrate in 10 h and
the resulting borylated aromatic alkyne was isolated in 75% yield (Scheme 4). We used this protocol
with a couple of other aryl borylated bromides (10, 11) and the Sonogashira products were obtained
in good yields (13, 14). Synthesis of 14 was run in a bigger scale (10 g, 31.5 mmol) which shows the
robustness of this reaction.
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With this success, we moved on to developing the one-pot borylation/Sonogashira sequence. In
addition to polyphenylene formation and deborylation, we envisioned other potential issues negatively
impacting this approach, such as residual iridium catalyst/ligand affecting the subsequent Sonogashira
coupling. Iridium is also known to catalyze the polymerization of aromatic alkynes [51]. In practice,
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3-bromobenzotrifluoride was borylated using a (Ind)Ir(cod)/dmpe catalyst system and the intermediate
boronate ester was then subjected to Sonogashira coupling without isolation. The coupling went
smoothly without any interference from residual iridium catalyst, ligand, or borylation by-products and
the desired product was isolated in 64% yield (Table 1, entry 1). Other substrates reacted similarly with
phenyl acetylene or TMS acetylene as the alkyne partner. The general one-pot borylation/Sonogashira
coupling sequence and the product yields over two-steps are presented in Table 1.

Table 1. Scope of one-pot CHB/Sonagashira cross-coupling reactiona.

Molecules 2019, 24, x 4 of 13 

 

the intermediate boronate ester was then subjected to Sonogashira coupling without isolation. The 

coupling went smoothly without any interference from residual iridium catalyst, ligand, or 

borylation by-products and the desired product was isolated in 64% yield (Table 1, entry 1). Other 

substrates reacted similarly with phenyl acetylene or TMS acetylene as the alkyne partner. The 

general one-pot borylation/Sonogashira coupling sequence and the product yields over two-steps are 

presented in Table 1. 

Table 1. Scope of one-pot CHB/Sonagashira cross-coupling reactiona. 

 

Entry Reagent Product Entry Reagent Product 

1 
 

 

8b 
 

 

2 
 

 

9b,c 

 
 

3 
 

 

10 
 

 

4 
 

 

11 

 
 

5 
 

 

12 
 

 

6 

 
 

13 
 

 

7 
 

 

14 
 

  
a See Materials and Methods (section 3) for experimental details and Supplementary Materials for 

spectral data. b 3 mol % [Ir(cod)OMe]2/dtbpy was used for borylation. c Borylation was carried out 

with 0.6 equiv of B2pin2. 

1) 1.5 equiv HBpin

2 mol % (Ind)Ir(cod)2

2 mol % dmpe

150 °C, 2-24 h

2) pump down

H R1.3 equiv

2 equiv DABCO

2.5 mol % [(allyl)PdCl]2
10 mol % Pt-Bu3

MeCN, 2-40 h, rt

        R = Ph, TMS

Br Br

pinB pinB

R

12–25

Ph

12
64% yield

F3C

pinB

Ph

19
71% yield

NC

pinB

TMS

13
65% yield

Me

pinB

TMS

20
47% yield

NC

pinB

TMS

14
59% yield

Cl

pinB

Ph

21
77% yield

Me

pinB

Me

Ph

15
61% yield

Me

pinB

Ph

22
70% yield

Me

Me

pinB

Ph

16
52% yield

MeO

pinB

TMS

23
54% yield

pinB

TMS

Ph

17
70% yield

Me2N

pinB

TMS

24
57% yield

pinB

TMS

Ph

18
37% yield

Cl

pinB

Entry Reagent Product Entry Reagent Product

1

Molecules 2019, 24, x 4 of 13 

 

the intermediate boronate ester was then subjected to Sonogashira coupling without isolation. The 

coupling went smoothly without any interference from residual iridium catalyst, ligand, or 

borylation by-products and the desired product was isolated in 64% yield (Table 1, entry 1). Other 

substrates reacted similarly with phenyl acetylene or TMS acetylene as the alkyne partner. The 

general one-pot borylation/Sonogashira coupling sequence and the product yields over two-steps are 

presented in Table 1. 

Table 1. Scope of one-pot CHB/Sonagashira cross-coupling reactiona. 

 

Entry Reagent Product Entry Reagent Product 

1 
 

 

8b 
 

 

2 
 

 

9b,c 

 
 

3 
 

 

10 
 

 

4 
 

 

11 

 
 

5 
 

 

12 
 

 

6 

 
 

13 
 

 

7 
 

 

14 
 

  
a See Materials and Methods (section 3) for experimental details and Supplementary Materials for 

spectral data. b 3 mol % [Ir(cod)OMe]2/dtbpy was used for borylation. c Borylation was carried out 

with 0.6 equiv of B2pin2. 

1) 1.5 equiv HBpin

2 mol % (Ind)Ir(cod)2

2 mol % dmpe

150 °C, 2-24 h

2) pump down

H R1.3 equiv

2 equiv DABCO

2.5 mol % [(allyl)PdCl]2
10 mol % Pt-Bu3

MeCN, 2-40 h, rt

        R = Ph, TMS

Br Br

pinB pinB

R

12–25

Ph

12
64% yield

F3C

pinB

Ph

19
71% yield

NC

pinB

TMS

13
65% yield

Me

pinB

TMS

20
47% yield

NC

pinB

TMS

14
59% yield

Cl

pinB

Ph

21
77% yield

Me

pinB

Me

Ph

15
61% yield

Me

pinB

Ph

22
70% yield

Me

Me

pinB

Ph

16
52% yield

MeO

pinB

TMS

23
54% yield

pinB

TMS

Ph

17
70% yield

Me2N

pinB

TMS

24
57% yield

pinB

TMS

Ph

18
37% yield

Cl

pinB

Molecules 2019, 24, x 4 of 13 

 

the intermediate boronate ester was then subjected to Sonogashira coupling without isolation. The 

coupling went smoothly without any interference from residual iridium catalyst, ligand, or 

borylation by-products and the desired product was isolated in 64% yield (Table 1, entry 1). Other 

substrates reacted similarly with phenyl acetylene or TMS acetylene as the alkyne partner. The 

general one-pot borylation/Sonogashira coupling sequence and the product yields over two-steps are 

presented in Table 1. 

Table 1. Scope of one-pot CHB/Sonagashira cross-coupling reactiona. 

 

Entry Reagent Product Entry Reagent Product 

1 
 

 

8b 
 

 

2 
 

 

9b,c 

 
 

3 
 

 

10 
 

 

4 
 

 

11 

 
 

5 
 

 

12 
 

 

6 

 
 

13 
 

 

7 
 

 

14 
 

  
a See Materials and Methods (section 3) for experimental details and Supplementary Materials for 

spectral data. b 3 mol % [Ir(cod)OMe]2/dtbpy was used for borylation. c Borylation was carried out 

with 0.6 equiv of B2pin2. 

1) 1.5 equiv HBpin

2 mol % (Ind)Ir(cod)2

2 mol % dmpe

150 °C, 2-24 h

2) pump down

H R1.3 equiv

2 equiv DABCO

2.5 mol % [(allyl)PdCl]2
10 mol % Pt-Bu3

MeCN, 2-40 h, rt

        R = Ph, TMS

Br Br

pinB pinB

R

12–25

Ph

12
64% yield

F3C

pinB

Ph

19
71% yield

NC

pinB

TMS

13
65% yield

Me

pinB

TMS

20
47% yield

NC

pinB

TMS

14
59% yield

Cl

pinB

Ph

21
77% yield

Me

pinB

Me

Ph

15
61% yield

Me

pinB

Ph

22
70% yield

Me

Me

pinB

Ph

16
52% yield

MeO

pinB

TMS

23
54% yield

pinB

TMS

Ph

17
70% yield

Me2N

pinB

TMS

24
57% yield

pinB

TMS

Ph

18
37% yield

Cl

pinB

8b

Molecules 2019, 24, x 4 of 13 

 

the intermediate boronate ester was then subjected to Sonogashira coupling without isolation. The 

coupling went smoothly without any interference from residual iridium catalyst, ligand, or 

borylation by-products and the desired product was isolated in 64% yield (Table 1, entry 1). Other 

substrates reacted similarly with phenyl acetylene or TMS acetylene as the alkyne partner. The 

general one-pot borylation/Sonogashira coupling sequence and the product yields over two-steps are 

presented in Table 1. 

Table 1. Scope of one-pot CHB/Sonagashira cross-coupling reactiona. 

 

Entry Reagent Product Entry Reagent Product 

1 
 

 

8b 
 

 

2 
 

 

9b,c 

 
 

3 
 

 

10 
 

 

4 
 

 

11 

 
 

5 
 

 

12 
 

 

6 

 
 

13 
 

 

7 
 

 

14 
 

  
a See Materials and Methods (section 3) for experimental details and Supplementary Materials for 

spectral data. b 3 mol % [Ir(cod)OMe]2/dtbpy was used for borylation. c Borylation was carried out 

with 0.6 equiv of B2pin2. 

1) 1.5 equiv HBpin

2 mol % (Ind)Ir(cod)2

2 mol % dmpe

150 °C, 2-24 h

2) pump down

H R1.3 equiv

2 equiv DABCO

2.5 mol % [(allyl)PdCl]2
10 mol % Pt-Bu3

MeCN, 2-40 h, rt

        R = Ph, TMS

Br Br

pinB pinB

R

12–25

Ph

12
64% yield

F3C

pinB

Ph

19
71% yield

NC

pinB

TMS

13
65% yield

Me

pinB

TMS

20
47% yield

NC

pinB

TMS

14
59% yield

Cl

pinB

Ph

21
77% yield

Me

pinB

Me

Ph

15
61% yield

Me

pinB

Ph

22
70% yield

Me

Me

pinB

Ph

16
52% yield

MeO

pinB

TMS

23
54% yield

pinB

TMS

Ph

17
70% yield

Me2N

pinB

TMS

24
57% yield

pinB

TMS

Ph

18
37% yield

Cl

pinB

Molecules 2019, 24, x 4 of 13 

 

the intermediate boronate ester was then subjected to Sonogashira coupling without isolation. The 

coupling went smoothly without any interference from residual iridium catalyst, ligand, or 

borylation by-products and the desired product was isolated in 64% yield (Table 1, entry 1). Other 

substrates reacted similarly with phenyl acetylene or TMS acetylene as the alkyne partner. The 

general one-pot borylation/Sonogashira coupling sequence and the product yields over two-steps are 

presented in Table 1. 

Table 1. Scope of one-pot CHB/Sonagashira cross-coupling reactiona. 

 

Entry Reagent Product Entry Reagent Product 

1 
 

 

8b 
 

 

2 
 

 

9b,c 

 
 

3 
 

 

10 
 

 

4 
 

 

11 

 
 

5 
 

 

12 
 

 

6 

 
 

13 
 

 

7 
 

 

14 
 

  
a See Materials and Methods (section 3) for experimental details and Supplementary Materials for 

spectral data. b 3 mol % [Ir(cod)OMe]2/dtbpy was used for borylation. c Borylation was carried out 

with 0.6 equiv of B2pin2. 

1) 1.5 equiv HBpin

2 mol % (Ind)Ir(cod)2

2 mol % dmpe

150 °C, 2-24 h

2) pump down

H R1.3 equiv

2 equiv DABCO

2.5 mol % [(allyl)PdCl]2
10 mol % Pt-Bu3

MeCN, 2-40 h, rt

        R = Ph, TMS

Br Br

pinB pinB

R

12–25

Ph

12
64% yield

F3C

pinB

Ph

19
71% yield

NC

pinB

TMS

13
65% yield

Me

pinB

TMS

20
47% yield

NC

pinB

TMS

14
59% yield

Cl

pinB

Ph

21
77% yield

Me

pinB

Me

Ph

15
61% yield

Me

pinB

Ph

22
70% yield

Me

Me

pinB

Ph

16
52% yield

MeO

pinB

TMS

23
54% yield

pinB

TMS

Ph

17
70% yield

Me2N

pinB

TMS

24
57% yield

pinB

TMS

Ph

18
37% yield

Cl

pinB

2

Molecules 2019, 24, x 4 of 13 

 

the intermediate boronate ester was then subjected to Sonogashira coupling without isolation. The 

coupling went smoothly without any interference from residual iridium catalyst, ligand, or 

borylation by-products and the desired product was isolated in 64% yield (Table 1, entry 1). Other 

substrates reacted similarly with phenyl acetylene or TMS acetylene as the alkyne partner. The 

general one-pot borylation/Sonogashira coupling sequence and the product yields over two-steps are 

presented in Table 1. 

Table 1. Scope of one-pot CHB/Sonagashira cross-coupling reactiona. 

 

Entry Reagent Product Entry Reagent Product 

1 
 

 

8b 
 

 

2 
 

 

9b,c 

 
 

3 
 

 

10 
 

 

4 
 

 

11 

 
 

5 
 

 

12 
 

 

6 

 
 

13 
 

 

7 
 

 

14 
 

  
a See Materials and Methods (section 3) for experimental details and Supplementary Materials for 

spectral data. b 3 mol % [Ir(cod)OMe]2/dtbpy was used for borylation. c Borylation was carried out 

with 0.6 equiv of B2pin2. 

1) 1.5 equiv HBpin

2 mol % (Ind)Ir(cod)2

2 mol % dmpe

150 °C, 2-24 h

2) pump down

H R1.3 equiv

2 equiv DABCO

2.5 mol % [(allyl)PdCl]2
10 mol % Pt-Bu3

MeCN, 2-40 h, rt

        R = Ph, TMS

Br Br

pinB pinB

R

12–25

Ph

12
64% yield

F3C

pinB

Ph

19
71% yield

NC

pinB

TMS

13
65% yield

Me

pinB

TMS

20
47% yield

NC

pinB

TMS

14
59% yield

Cl

pinB

Ph

21
77% yield

Me

pinB

Me

Ph

15
61% yield

Me

pinB

Ph

22
70% yield

Me

Me

pinB

Ph

16
52% yield

MeO

pinB

TMS

23
54% yield

pinB

TMS

Ph

17
70% yield

Me2N

pinB

TMS

24
57% yield

pinB

TMS

Ph

18
37% yield

Cl

pinB

Molecules 2019, 24, x 4 of 13 

 

the intermediate boronate ester was then subjected to Sonogashira coupling without isolation. The 

coupling went smoothly without any interference from residual iridium catalyst, ligand, or 

borylation by-products and the desired product was isolated in 64% yield (Table 1, entry 1). Other 

substrates reacted similarly with phenyl acetylene or TMS acetylene as the alkyne partner. The 

general one-pot borylation/Sonogashira coupling sequence and the product yields over two-steps are 

presented in Table 1. 

Table 1. Scope of one-pot CHB/Sonagashira cross-coupling reactiona. 

 

Entry Reagent Product Entry Reagent Product 

1 
 

 

8b 
 

 

2 
 

 

9b,c 

 
 

3 
 

 

10 
 

 

4 
 

 

11 

 
 

5 
 

 

12 
 

 

6 

 
 

13 
 

 

7 
 

 

14 
 

  
a See Materials and Methods (section 3) for experimental details and Supplementary Materials for 

spectral data. b 3 mol % [Ir(cod)OMe]2/dtbpy was used for borylation. c Borylation was carried out 

with 0.6 equiv of B2pin2. 

1) 1.5 equiv HBpin

2 mol % (Ind)Ir(cod)2

2 mol % dmpe

150 °C, 2-24 h

2) pump down

H R1.3 equiv

2 equiv DABCO

2.5 mol % [(allyl)PdCl]2
10 mol % Pt-Bu3

MeCN, 2-40 h, rt

        R = Ph, TMS

Br Br

pinB pinB

R

12–25

Ph

12
64% yield

F3C

pinB

Ph

19
71% yield

NC

pinB

TMS

13
65% yield

Me

pinB

TMS

20
47% yield

NC

pinB

TMS

14
59% yield

Cl

pinB

Ph

21
77% yield

Me

pinB

Me

Ph

15
61% yield

Me

pinB

Ph

22
70% yield

Me

Me

pinB

Ph

16
52% yield

MeO

pinB

TMS

23
54% yield

pinB

TMS

Ph

17
70% yield

Me2N

pinB

TMS

24
57% yield

pinB

TMS

Ph

18
37% yield

Cl

pinB

9b,c

Molecules 2019, 24, x 4 of 13 

 

the intermediate boronate ester was then subjected to Sonogashira coupling without isolation. The 

coupling went smoothly without any interference from residual iridium catalyst, ligand, or 

borylation by-products and the desired product was isolated in 64% yield (Table 1, entry 1). Other 

substrates reacted similarly with phenyl acetylene or TMS acetylene as the alkyne partner. The 

general one-pot borylation/Sonogashira coupling sequence and the product yields over two-steps are 

presented in Table 1. 

Table 1. Scope of one-pot CHB/Sonagashira cross-coupling reactiona. 

 

Entry Reagent Product Entry Reagent Product 

1 
 

 

8b 
 

 

2 
 

 

9b,c 

 
 

3 
 

 

10 
 

 

4 
 

 

11 

 
 

5 
 

 

12 
 

 

6 

 
 

13 
 

 

7 
 

 

14 
 

  
a See Materials and Methods (section 3) for experimental details and Supplementary Materials for 

spectral data. b 3 mol % [Ir(cod)OMe]2/dtbpy was used for borylation. c Borylation was carried out 

with 0.6 equiv of B2pin2. 

1) 1.5 equiv HBpin

2 mol % (Ind)Ir(cod)2

2 mol % dmpe

150 °C, 2-24 h

2) pump down

H R1.3 equiv

2 equiv DABCO

2.5 mol % [(allyl)PdCl]2
10 mol % Pt-Bu3

MeCN, 2-40 h, rt

        R = Ph, TMS

Br Br

pinB pinB

R

12–25

Ph

12
64% yield

F3C

pinB

Ph

19
71% yield

NC

pinB

TMS

13
65% yield

Me

pinB

TMS

20
47% yield

NC

pinB

TMS

14
59% yield

Cl

pinB

Ph

21
77% yield

Me

pinB

Me

Ph

15
61% yield

Me

pinB

Ph

22
70% yield

Me

Me

pinB

Ph

16
52% yield

MeO

pinB

TMS

23
54% yield

pinB

TMS

Ph

17
70% yield

Me2N

pinB

TMS

24
57% yield

pinB

TMS

Ph

18
37% yield

Cl

pinB

Molecules 2019, 24, x 4 of 13 

 

the intermediate boronate ester was then subjected to Sonogashira coupling without isolation. The 

coupling went smoothly without any interference from residual iridium catalyst, ligand, or 

borylation by-products and the desired product was isolated in 64% yield (Table 1, entry 1). Other 

substrates reacted similarly with phenyl acetylene or TMS acetylene as the alkyne partner. The 

general one-pot borylation/Sonogashira coupling sequence and the product yields over two-steps are 

presented in Table 1. 

Table 1. Scope of one-pot CHB/Sonagashira cross-coupling reactiona. 

 

Entry Reagent Product Entry Reagent Product 

1 
 

 

8b 
 

 

2 
 

 

9b,c 

 
 

3 
 

 

10 
 

 

4 
 

 

11 

 
 

5 
 

 

12 
 

 

6 

 
 

13 
 

 

7 
 

 

14 
 

  
a See Materials and Methods (section 3) for experimental details and Supplementary Materials for 

spectral data. b 3 mol % [Ir(cod)OMe]2/dtbpy was used for borylation. c Borylation was carried out 

with 0.6 equiv of B2pin2. 

1) 1.5 equiv HBpin

2 mol % (Ind)Ir(cod)2

2 mol % dmpe

150 °C, 2-24 h

2) pump down

H R1.3 equiv

2 equiv DABCO

2.5 mol % [(allyl)PdCl]2
10 mol % Pt-Bu3

MeCN, 2-40 h, rt

        R = Ph, TMS

Br Br

pinB pinB

R

12–25

Ph

12
64% yield

F3C

pinB

Ph

19
71% yield

NC

pinB

TMS

13
65% yield

Me

pinB

TMS

20
47% yield

NC

pinB

TMS

14
59% yield

Cl

pinB

Ph

21
77% yield

Me

pinB

Me

Ph

15
61% yield

Me

pinB

Ph

22
70% yield

Me

Me

pinB

Ph

16
52% yield

MeO

pinB

TMS

23
54% yield

pinB

TMS

Ph

17
70% yield

Me2N

pinB

TMS

24
57% yield

pinB

TMS

Ph

18
37% yield

Cl

pinB

3

Molecules 2019, 24, x 4 of 13 

 

the intermediate boronate ester was then subjected to Sonogashira coupling without isolation. The 

coupling went smoothly without any interference from residual iridium catalyst, ligand, or 

borylation by-products and the desired product was isolated in 64% yield (Table 1, entry 1). Other 

substrates reacted similarly with phenyl acetylene or TMS acetylene as the alkyne partner. The 

general one-pot borylation/Sonogashira coupling sequence and the product yields over two-steps are 

presented in Table 1. 

Table 1. Scope of one-pot CHB/Sonagashira cross-coupling reactiona. 

 

Entry Reagent Product Entry Reagent Product 

1 
 

 

8b 
 

 

2 
 

 

9b,c 

 
 

3 
 

 

10 
 

 

4 
 

 

11 

 
 

5 
 

 

12 
 

 

6 

 
 

13 
 

 

7 
 

 

14 
 

  
a See Materials and Methods (section 3) for experimental details and Supplementary Materials for 

spectral data. b 3 mol % [Ir(cod)OMe]2/dtbpy was used for borylation. c Borylation was carried out 

with 0.6 equiv of B2pin2. 

1) 1.5 equiv HBpin

2 mol % (Ind)Ir(cod)2

2 mol % dmpe

150 °C, 2-24 h

2) pump down

H R1.3 equiv

2 equiv DABCO

2.5 mol % [(allyl)PdCl]2
10 mol % Pt-Bu3

MeCN, 2-40 h, rt

        R = Ph, TMS

Br Br

pinB pinB

R

12–25

Ph

12
64% yield

F3C

pinB

Ph

19
71% yield

NC

pinB

TMS

13
65% yield

Me

pinB

TMS

20
47% yield

NC

pinB

TMS

14
59% yield

Cl

pinB

Ph

21
77% yield

Me

pinB

Me

Ph

15
61% yield

Me

pinB

Ph

22
70% yield

Me

Me

pinB

Ph

16
52% yield

MeO

pinB

TMS

23
54% yield

pinB

TMS

Ph

17
70% yield

Me2N

pinB

TMS

24
57% yield

pinB

TMS

Ph

18
37% yield

Cl

pinB

Molecules 2019, 24, x 4 of 13 

 

the intermediate boronate ester was then subjected to Sonogashira coupling without isolation. The 

coupling went smoothly without any interference from residual iridium catalyst, ligand, or 

borylation by-products and the desired product was isolated in 64% yield (Table 1, entry 1). Other 

substrates reacted similarly with phenyl acetylene or TMS acetylene as the alkyne partner. The 

general one-pot borylation/Sonogashira coupling sequence and the product yields over two-steps are 

presented in Table 1. 

Table 1. Scope of one-pot CHB/Sonagashira cross-coupling reactiona. 

 

Entry Reagent Product Entry Reagent Product 

1 
 

 

8b 
 

 

2 
 

 

9b,c 

 
 

3 
 

 

10 
 

 

4 
 

 

11 

 
 

5 
 

 

12 
 

 

6 

 
 

13 
 

 

7 
 

 

14 
 

  
a See Materials and Methods (section 3) for experimental details and Supplementary Materials for 

spectral data. b 3 mol % [Ir(cod)OMe]2/dtbpy was used for borylation. c Borylation was carried out 

with 0.6 equiv of B2pin2. 

1) 1.5 equiv HBpin

2 mol % (Ind)Ir(cod)2

2 mol % dmpe

150 °C, 2-24 h

2) pump down

H R1.3 equiv

2 equiv DABCO

2.5 mol % [(allyl)PdCl]2
10 mol % Pt-Bu3

MeCN, 2-40 h, rt

        R = Ph, TMS

Br Br

pinB pinB

R

12–25

Ph

12
64% yield

F3C

pinB

Ph

19
71% yield

NC

pinB

TMS

13
65% yield

Me

pinB

TMS

20
47% yield

NC

pinB

TMS

14
59% yield

Cl

pinB

Ph

21
77% yield

Me

pinB

Me

Ph

15
61% yield

Me

pinB

Ph

22
70% yield

Me

Me

pinB

Ph

16
52% yield

MeO

pinB

TMS

23
54% yield

pinB

TMS

Ph

17
70% yield

Me2N

pinB

TMS

24
57% yield

pinB

TMS

Ph

18
37% yield

Cl

pinB

10

Molecules 2019, 24, x 4 of 13 

 

the intermediate boronate ester was then subjected to Sonogashira coupling without isolation. The 

coupling went smoothly without any interference from residual iridium catalyst, ligand, or 

borylation by-products and the desired product was isolated in 64% yield (Table 1, entry 1). Other 

substrates reacted similarly with phenyl acetylene or TMS acetylene as the alkyne partner. The 

general one-pot borylation/Sonogashira coupling sequence and the product yields over two-steps are 

presented in Table 1. 

Table 1. Scope of one-pot CHB/Sonagashira cross-coupling reactiona. 

 

Entry Reagent Product Entry Reagent Product 

1 
 

 

8b 
 

 

2 
 

 

9b,c 

 
 

3 
 

 

10 
 

 

4 
 

 

11 

 
 

5 
 

 

12 
 

 

6 

 
 

13 
 

 

7 
 

 

14 
 

  
a See Materials and Methods (section 3) for experimental details and Supplementary Materials for 

spectral data. b 3 mol % [Ir(cod)OMe]2/dtbpy was used for borylation. c Borylation was carried out 

with 0.6 equiv of B2pin2. 

1) 1.5 equiv HBpin

2 mol % (Ind)Ir(cod)2

2 mol % dmpe

150 °C, 2-24 h

2) pump down

H R1.3 equiv

2 equiv DABCO

2.5 mol % [(allyl)PdCl]2
10 mol % Pt-Bu3

MeCN, 2-40 h, rt

        R = Ph, TMS

Br Br

pinB pinB

R

12–25

Ph

12
64% yield

F3C

pinB

Ph

19
71% yield

NC

pinB

TMS

13
65% yield

Me

pinB

TMS

20
47% yield

NC

pinB

TMS

14
59% yield

Cl

pinB

Ph

21
77% yield

Me

pinB

Me

Ph

15
61% yield

Me

pinB

Ph

22
70% yield

Me

Me

pinB

Ph

16
52% yield

MeO

pinB

TMS

23
54% yield

pinB

TMS

Ph

17
70% yield

Me2N

pinB

TMS

24
57% yield

pinB

TMS

Ph

18
37% yield

Cl

pinB

Molecules 2019, 24, x 4 of 13 

 

the intermediate boronate ester was then subjected to Sonogashira coupling without isolation. The 

coupling went smoothly without any interference from residual iridium catalyst, ligand, or 

borylation by-products and the desired product was isolated in 64% yield (Table 1, entry 1). Other 

substrates reacted similarly with phenyl acetylene or TMS acetylene as the alkyne partner. The 

general one-pot borylation/Sonogashira coupling sequence and the product yields over two-steps are 

presented in Table 1. 

Table 1. Scope of one-pot CHB/Sonagashira cross-coupling reactiona. 

 

Entry Reagent Product Entry Reagent Product 

1 
 

 

8b 
 

 

2 
 

 

9b,c 

 
 

3 
 

 

10 
 

 

4 
 

 

11 

 
 

5 
 

 

12 
 

 

6 

 
 

13 
 

 

7 
 

 

14 
 

  
a See Materials and Methods (section 3) for experimental details and Supplementary Materials for 

spectral data. b 3 mol % [Ir(cod)OMe]2/dtbpy was used for borylation. c Borylation was carried out 

with 0.6 equiv of B2pin2. 

1) 1.5 equiv HBpin

2 mol % (Ind)Ir(cod)2

2 mol % dmpe

150 °C, 2-24 h

2) pump down

H R1.3 equiv

2 equiv DABCO

2.5 mol % [(allyl)PdCl]2
10 mol % Pt-Bu3

MeCN, 2-40 h, rt

        R = Ph, TMS

Br Br

pinB pinB

R

12–25

Ph

12
64% yield

F3C

pinB

Ph

19
71% yield

NC

pinB

TMS

13
65% yield

Me

pinB

TMS

20
47% yield

NC

pinB

TMS

14
59% yield

Cl

pinB

Ph

21
77% yield

Me

pinB

Me

Ph

15
61% yield

Me

pinB

Ph

22
70% yield

Me

Me

pinB

Ph

16
52% yield

MeO

pinB

TMS

23
54% yield

pinB

TMS

Ph

17
70% yield

Me2N

pinB

TMS

24
57% yield

pinB

TMS

Ph

18
37% yield

Cl

pinB

4

Molecules 2019, 24, x 4 of 13 

 

the intermediate boronate ester was then subjected to Sonogashira coupling without isolation. The 

coupling went smoothly without any interference from residual iridium catalyst, ligand, or 

borylation by-products and the desired product was isolated in 64% yield (Table 1, entry 1). Other 

substrates reacted similarly with phenyl acetylene or TMS acetylene as the alkyne partner. The 

general one-pot borylation/Sonogashira coupling sequence and the product yields over two-steps are 

presented in Table 1. 

Table 1. Scope of one-pot CHB/Sonagashira cross-coupling reactiona. 

 

Entry Reagent Product Entry Reagent Product 

1 
 

 

8b 
 

 

2 
 

 

9b,c 

 
 

3 
 

 

10 
 

 

4 
 

 

11 

 
 

5 
 

 

12 
 

 

6 

 
 

13 
 

 

7 
 

 

14 
 

  
a See Materials and Methods (section 3) for experimental details and Supplementary Materials for 

spectral data. b 3 mol % [Ir(cod)OMe]2/dtbpy was used for borylation. c Borylation was carried out 

with 0.6 equiv of B2pin2. 

1) 1.5 equiv HBpin

2 mol % (Ind)Ir(cod)2

2 mol % dmpe

150 °C, 2-24 h

2) pump down

H R1.3 equiv

2 equiv DABCO

2.5 mol % [(allyl)PdCl]2
10 mol % Pt-Bu3

MeCN, 2-40 h, rt

        R = Ph, TMS

Br Br

pinB pinB

R

12–25

Ph

12
64% yield

F3C

pinB

Ph

19
71% yield

NC

pinB

TMS

13
65% yield

Me

pinB

TMS

20
47% yield

NC

pinB

TMS

14
59% yield

Cl

pinB

Ph

21
77% yield

Me

pinB

Me

Ph

15
61% yield

Me

pinB

Ph

22
70% yield

Me

Me

pinB

Ph

16
52% yield

MeO

pinB

TMS

23
54% yield

pinB

TMS

Ph

17
70% yield

Me2N

pinB

TMS

24
57% yield

pinB

TMS

Ph

18
37% yield

Cl

pinB

Molecules 2019, 24, x 4 of 13 

 

the intermediate boronate ester was then subjected to Sonogashira coupling without isolation. The 

coupling went smoothly without any interference from residual iridium catalyst, ligand, or 

borylation by-products and the desired product was isolated in 64% yield (Table 1, entry 1). Other 

substrates reacted similarly with phenyl acetylene or TMS acetylene as the alkyne partner. The 

general one-pot borylation/Sonogashira coupling sequence and the product yields over two-steps are 

presented in Table 1. 

Table 1. Scope of one-pot CHB/Sonagashira cross-coupling reactiona. 

 

Entry Reagent Product Entry Reagent Product 

1 
 

 

8b 
 

 

2 
 

 

9b,c 

 
 

3 
 

 

10 
 

 

4 
 

 

11 

 
 

5 
 

 

12 
 

 

6 

 
 

13 
 

 

7 
 

 

14 
 

  
a See Materials and Methods (section 3) for experimental details and Supplementary Materials for 

spectral data. b 3 mol % [Ir(cod)OMe]2/dtbpy was used for borylation. c Borylation was carried out 

with 0.6 equiv of B2pin2. 

1) 1.5 equiv HBpin

2 mol % (Ind)Ir(cod)2

2 mol % dmpe

150 °C, 2-24 h

2) pump down

H R1.3 equiv

2 equiv DABCO

2.5 mol % [(allyl)PdCl]2
10 mol % Pt-Bu3

MeCN, 2-40 h, rt

        R = Ph, TMS

Br Br

pinB pinB

R

12–25

Ph

12
64% yield

F3C

pinB

Ph

19
71% yield

NC

pinB

TMS

13
65% yield

Me

pinB

TMS

20
47% yield

NC

pinB

TMS

14
59% yield

Cl

pinB

Ph

21
77% yield

Me

pinB

Me

Ph

15
61% yield

Me

pinB

Ph

22
70% yield

Me

Me

pinB

Ph

16
52% yield

MeO

pinB

TMS

23
54% yield

pinB

TMS

Ph

17
70% yield

Me2N

pinB

TMS

24
57% yield

pinB

TMS

Ph

18
37% yield

Cl

pinB

11

Molecules 2019, 24, x 4 of 13 

 

the intermediate boronate ester was then subjected to Sonogashira coupling without isolation. The 

coupling went smoothly without any interference from residual iridium catalyst, ligand, or 

borylation by-products and the desired product was isolated in 64% yield (Table 1, entry 1). Other 

substrates reacted similarly with phenyl acetylene or TMS acetylene as the alkyne partner. The 

general one-pot borylation/Sonogashira coupling sequence and the product yields over two-steps are 

presented in Table 1. 

Table 1. Scope of one-pot CHB/Sonagashira cross-coupling reactiona. 

 

Entry Reagent Product Entry Reagent Product 

1 
 

 

8b 
 

 

2 
 

 

9b,c 

 
 

3 
 

 

10 
 

 

4 
 

 

11 

 
 

5 
 

 

12 
 

 

6 

 
 

13 
 

 

7 
 

 

14 
 

  
a See Materials and Methods (section 3) for experimental details and Supplementary Materials for 

spectral data. b 3 mol % [Ir(cod)OMe]2/dtbpy was used for borylation. c Borylation was carried out 

with 0.6 equiv of B2pin2. 

1) 1.5 equiv HBpin

2 mol % (Ind)Ir(cod)2

2 mol % dmpe

150 °C, 2-24 h

2) pump down

H R1.3 equiv

2 equiv DABCO

2.5 mol % [(allyl)PdCl]2
10 mol % Pt-Bu3

MeCN, 2-40 h, rt

        R = Ph, TMS

Br Br

pinB pinB

R

12–25

Ph

12
64% yield

F3C

pinB

Ph

19
71% yield

NC

pinB

TMS

13
65% yield

Me

pinB

TMS

20
47% yield

NC

pinB

TMS

14
59% yield

Cl

pinB

Ph

21
77% yield

Me

pinB

Me

Ph

15
61% yield

Me

pinB

Ph

22
70% yield

Me

Me

pinB

Ph

16
52% yield

MeO

pinB

TMS

23
54% yield

pinB

TMS

Ph

17
70% yield

Me2N

pinB

TMS

24
57% yield

pinB

TMS

Ph

18
37% yield

Cl

pinB

Molecules 2019, 24, x 4 of 13 

 

the intermediate boronate ester was then subjected to Sonogashira coupling without isolation. The 

coupling went smoothly without any interference from residual iridium catalyst, ligand, or 

borylation by-products and the desired product was isolated in 64% yield (Table 1, entry 1). Other 

substrates reacted similarly with phenyl acetylene or TMS acetylene as the alkyne partner. The 

general one-pot borylation/Sonogashira coupling sequence and the product yields over two-steps are 

presented in Table 1. 

Table 1. Scope of one-pot CHB/Sonagashira cross-coupling reactiona. 

 

Entry Reagent Product Entry Reagent Product 

1 
 

 

8b 
 

 

2 
 

 

9b,c 

 
 

3 
 

 

10 
 

 

4 
 

 

11 

 
 

5 
 

 

12 
 

 

6 

 
 

13 
 

 

7 
 

 

14 
 

  
a See Materials and Methods (section 3) for experimental details and Supplementary Materials for 

spectral data. b 3 mol % [Ir(cod)OMe]2/dtbpy was used for borylation. c Borylation was carried out 

with 0.6 equiv of B2pin2. 

1) 1.5 equiv HBpin

2 mol % (Ind)Ir(cod)2

2 mol % dmpe

150 °C, 2-24 h

2) pump down

H R1.3 equiv

2 equiv DABCO

2.5 mol % [(allyl)PdCl]2
10 mol % Pt-Bu3

MeCN, 2-40 h, rt

        R = Ph, TMS

Br Br

pinB pinB

R

12–25

Ph

12
64% yield

F3C

pinB

Ph

19
71% yield

NC

pinB

TMS

13
65% yield

Me

pinB

TMS

20
47% yield

NC

pinB

TMS

14
59% yield

Cl

pinB

Ph

21
77% yield

Me

pinB

Me

Ph

15
61% yield

Me

pinB

Ph

22
70% yield

Me

Me

pinB

Ph

16
52% yield

MeO

pinB

TMS

23
54% yield

pinB

TMS

Ph

17
70% yield

Me2N

pinB

TMS

24
57% yield

pinB

TMS

Ph

18
37% yield

Cl

pinB

5

Molecules 2019, 24, x 4 of 13 

 

the intermediate boronate ester was then subjected to Sonogashira coupling without isolation. The 

coupling went smoothly without any interference from residual iridium catalyst, ligand, or 

borylation by-products and the desired product was isolated in 64% yield (Table 1, entry 1). Other 

substrates reacted similarly with phenyl acetylene or TMS acetylene as the alkyne partner. The 

general one-pot borylation/Sonogashira coupling sequence and the product yields over two-steps are 

presented in Table 1. 

Table 1. Scope of one-pot CHB/Sonagashira cross-coupling reactiona. 

 

Entry Reagent Product Entry Reagent Product 

1 
 

 

8b 
 

 

2 
 

 

9b,c 

 
 

3 
 

 

10 
 

 

4 
 

 

11 

 
 

5 
 

 

12 
 

 

6 

 
 

13 
 

 

7 
 

 

14 
 

  
a See Materials and Methods (section 3) for experimental details and Supplementary Materials for 

spectral data. b 3 mol % [Ir(cod)OMe]2/dtbpy was used for borylation. c Borylation was carried out 

with 0.6 equiv of B2pin2. 

1) 1.5 equiv HBpin

2 mol % (Ind)Ir(cod)2

2 mol % dmpe

150 °C, 2-24 h

2) pump down

H R1.3 equiv

2 equiv DABCO

2.5 mol % [(allyl)PdCl]2
10 mol % Pt-Bu3

MeCN, 2-40 h, rt

        R = Ph, TMS

Br Br

pinB pinB

R

12–25

Ph

12
64% yield

F3C

pinB

Ph

19
71% yield

NC

pinB

TMS

13
65% yield

Me

pinB

TMS

20
47% yield

NC

pinB

TMS

14
59% yield

Cl

pinB

Ph

21
77% yield

Me

pinB

Me

Ph

15
61% yield

Me

pinB

Ph

22
70% yield

Me

Me

pinB

Ph

16
52% yield

MeO

pinB

TMS

23
54% yield

pinB

TMS

Ph

17
70% yield

Me2N

pinB

TMS

24
57% yield

pinB

TMS

Ph

18
37% yield

Cl

pinB

Molecules 2019, 24, x 4 of 13 

 

the intermediate boronate ester was then subjected to Sonogashira coupling without isolation. The 

coupling went smoothly without any interference from residual iridium catalyst, ligand, or 

borylation by-products and the desired product was isolated in 64% yield (Table 1, entry 1). Other 

substrates reacted similarly with phenyl acetylene or TMS acetylene as the alkyne partner. The 

general one-pot borylation/Sonogashira coupling sequence and the product yields over two-steps are 

presented in Table 1. 

Table 1. Scope of one-pot CHB/Sonagashira cross-coupling reactiona. 

 

Entry Reagent Product Entry Reagent Product 

1 
 

 

8b 
 

 

2 
 

 

9b,c 

 
 

3 
 

 

10 
 

 

4 
 

 

11 

 
 

5 
 

 

12 
 

 

6 

 
 

13 
 

 

7 
 

 

14 
 

  
a See Materials and Methods (section 3) for experimental details and Supplementary Materials for 

spectral data. b 3 mol % [Ir(cod)OMe]2/dtbpy was used for borylation. c Borylation was carried out 

with 0.6 equiv of B2pin2. 

1) 1.5 equiv HBpin

2 mol % (Ind)Ir(cod)2

2 mol % dmpe

150 °C, 2-24 h

2) pump down

H R1.3 equiv

2 equiv DABCO

2.5 mol % [(allyl)PdCl]2
10 mol % Pt-Bu3

MeCN, 2-40 h, rt

        R = Ph, TMS

Br Br

pinB pinB

R

12–25

Ph

12
64% yield

F3C

pinB

Ph

19
71% yield

NC

pinB

TMS

13
65% yield

Me

pinB

TMS

20
47% yield

NC

pinB

TMS

14
59% yield

Cl

pinB

Ph

21
77% yield

Me

pinB

Me

Ph

15
61% yield

Me

pinB

Ph

22
70% yield

Me

Me

pinB

Ph

16
52% yield

MeO

pinB

TMS

23
54% yield

pinB

TMS

Ph

17
70% yield

Me2N

pinB

TMS

24
57% yield

pinB

TMS

Ph

18
37% yield

Cl

pinB

12

Molecules 2019, 24, x 4 of 13 

 

the intermediate boronate ester was then subjected to Sonogashira coupling without isolation. The 

coupling went smoothly without any interference from residual iridium catalyst, ligand, or 

borylation by-products and the desired product was isolated in 64% yield (Table 1, entry 1). Other 

substrates reacted similarly with phenyl acetylene or TMS acetylene as the alkyne partner. The 

general one-pot borylation/Sonogashira coupling sequence and the product yields over two-steps are 

presented in Table 1. 

Table 1. Scope of one-pot CHB/Sonagashira cross-coupling reactiona. 

 

Entry Reagent Product Entry Reagent Product 

1 
 

 

8b 
 

 

2 
 

 

9b,c 

 
 

3 
 

 

10 
 

 

4 
 

 

11 

 
 

5 
 

 

12 
 

 

6 

 
 

13 
 

 

7 
 

 

14 
 

  
a See Materials and Methods (section 3) for experimental details and Supplementary Materials for 

spectral data. b 3 mol % [Ir(cod)OMe]2/dtbpy was used for borylation. c Borylation was carried out 

with 0.6 equiv of B2pin2. 

1) 1.5 equiv HBpin

2 mol % (Ind)Ir(cod)2

2 mol % dmpe

150 °C, 2-24 h

2) pump down

H R1.3 equiv

2 equiv DABCO

2.5 mol % [(allyl)PdCl]2
10 mol % Pt-Bu3

MeCN, 2-40 h, rt

        R = Ph, TMS

Br Br

pinB pinB

R

12–25

Ph

12
64% yield

F3C

pinB

Ph

19
71% yield

NC

pinB

TMS

13
65% yield

Me

pinB

TMS

20
47% yield

NC

pinB

TMS

14
59% yield

Cl

pinB

Ph

21
77% yield

Me

pinB

Me

Ph

15
61% yield

Me

pinB

Ph

22
70% yield

Me

Me

pinB

Ph

16
52% yield

MeO

pinB

TMS

23
54% yield

pinB

TMS

Ph

17
70% yield

Me2N

pinB

TMS

24
57% yield

pinB

TMS

Ph

18
37% yield

Cl

pinB

Molecules 2019, 24, x 4 of 13 

 

the intermediate boronate ester was then subjected to Sonogashira coupling without isolation. The 

coupling went smoothly without any interference from residual iridium catalyst, ligand, or 

borylation by-products and the desired product was isolated in 64% yield (Table 1, entry 1). Other 

substrates reacted similarly with phenyl acetylene or TMS acetylene as the alkyne partner. The 

general one-pot borylation/Sonogashira coupling sequence and the product yields over two-steps are 

presented in Table 1. 

Table 1. Scope of one-pot CHB/Sonagashira cross-coupling reactiona. 

 

Entry Reagent Product Entry Reagent Product 

1 
 

 

8b 
 

 

2 
 

 

9b,c 

 
 

3 
 

 

10 
 

 

4 
 

 

11 

 
 

5 
 

 

12 
 

 

6 

 
 

13 
 

 

7 
 

 

14 
 

  
a See Materials and Methods (section 3) for experimental details and Supplementary Materials for 

spectral data. b 3 mol % [Ir(cod)OMe]2/dtbpy was used for borylation. c Borylation was carried out 

with 0.6 equiv of B2pin2. 

1) 1.5 equiv HBpin

2 mol % (Ind)Ir(cod)2

2 mol % dmpe

150 °C, 2-24 h

2) pump down

H R1.3 equiv

2 equiv DABCO

2.5 mol % [(allyl)PdCl]2
10 mol % Pt-Bu3

MeCN, 2-40 h, rt

        R = Ph, TMS

Br Br

pinB pinB

R

12–25

Ph

12
64% yield

F3C

pinB

Ph

19
71% yield

NC

pinB

TMS

13
65% yield

Me

pinB

TMS

20
47% yield

NC

pinB

TMS

14
59% yield

Cl

pinB

Ph

21
77% yield

Me

pinB

Me

Ph

15
61% yield

Me

pinB

Ph

22
70% yield

Me

Me

pinB

Ph

16
52% yield

MeO

pinB

TMS

23
54% yield

pinB

TMS

Ph

17
70% yield

Me2N

pinB

TMS

24
57% yield

pinB

TMS

Ph

18
37% yield

Cl

pinB

6

Molecules 2019, 24, x 4 of 13 

 

the intermediate boronate ester was then subjected to Sonogashira coupling without isolation. The 

coupling went smoothly without any interference from residual iridium catalyst, ligand, or 

borylation by-products and the desired product was isolated in 64% yield (Table 1, entry 1). Other 

substrates reacted similarly with phenyl acetylene or TMS acetylene as the alkyne partner. The 

general one-pot borylation/Sonogashira coupling sequence and the product yields over two-steps are 

presented in Table 1. 

Table 1. Scope of one-pot CHB/Sonagashira cross-coupling reactiona. 

 

Entry Reagent Product Entry Reagent Product 

1 
 

 

8b 
 

 

2 
 

 

9b,c 

 
 

3 
 

 

10 
 

 

4 
 

 

11 

 
 

5 
 

 

12 
 

 

6 

 
 

13 
 

 

7 
 

 

14 
 

  
a See Materials and Methods (section 3) for experimental details and Supplementary Materials for 

spectral data. b 3 mol % [Ir(cod)OMe]2/dtbpy was used for borylation. c Borylation was carried out 

with 0.6 equiv of B2pin2. 

1) 1.5 equiv HBpin

2 mol % (Ind)Ir(cod)2

2 mol % dmpe

150 °C, 2-24 h

2) pump down

H R1.3 equiv

2 equiv DABCO

2.5 mol % [(allyl)PdCl]2
10 mol % Pt-Bu3

MeCN, 2-40 h, rt

        R = Ph, TMS

Br Br

pinB pinB

R

12–25

Ph

12
64% yield

F3C

pinB

Ph

19
71% yield

NC

pinB

TMS

13
65% yield

Me

pinB

TMS

20
47% yield

NC

pinB

TMS

14
59% yield

Cl

pinB

Ph

21
77% yield

Me

pinB

Me

Ph

15
61% yield

Me

pinB

Ph

22
70% yield

Me

Me

pinB

Ph

16
52% yield

MeO

pinB

TMS

23
54% yield

pinB

TMS

Ph

17
70% yield

Me2N

pinB

TMS

24
57% yield

pinB

TMS

Ph

18
37% yield

Cl

pinB

Molecules 2019, 24, x 4 of 13 

 

the intermediate boronate ester was then subjected to Sonogashira coupling without isolation. The 

coupling went smoothly without any interference from residual iridium catalyst, ligand, or 

borylation by-products and the desired product was isolated in 64% yield (Table 1, entry 1). Other 

substrates reacted similarly with phenyl acetylene or TMS acetylene as the alkyne partner. The 

general one-pot borylation/Sonogashira coupling sequence and the product yields over two-steps are 

presented in Table 1. 

Table 1. Scope of one-pot CHB/Sonagashira cross-coupling reactiona. 

 

Entry Reagent Product Entry Reagent Product 

1 
 

 

8b 
 

 

2 
 

 

9b,c 

 
 

3 
 

 

10 
 

 

4 
 

 

11 

 
 

5 
 

 

12 
 

 

6 

 
 

13 
 

 

7 
 

 

14 
 

  
a See Materials and Methods (section 3) for experimental details and Supplementary Materials for 

spectral data. b 3 mol % [Ir(cod)OMe]2/dtbpy was used for borylation. c Borylation was carried out 

with 0.6 equiv of B2pin2. 

1) 1.5 equiv HBpin

2 mol % (Ind)Ir(cod)2

2 mol % dmpe

150 °C, 2-24 h

2) pump down

H R1.3 equiv

2 equiv DABCO

2.5 mol % [(allyl)PdCl]2
10 mol % Pt-Bu3

MeCN, 2-40 h, rt

        R = Ph, TMS

Br Br

pinB pinB

R

12–25

Ph

12
64% yield

F3C

pinB

Ph

19
71% yield

NC

pinB

TMS

13
65% yield

Me

pinB

TMS

20
47% yield

NC

pinB

TMS

14
59% yield

Cl

pinB

Ph

21
77% yield

Me

pinB

Me

Ph

15
61% yield

Me

pinB

Ph

22
70% yield

Me

Me

pinB

Ph

16
52% yield

MeO

pinB

TMS

23
54% yield

pinB

TMS

Ph

17
70% yield

Me2N

pinB

TMS

24
57% yield

pinB

TMS

Ph

18
37% yield

Cl

pinB

13

Molecules 2019, 24, x 4 of 13 

 

the intermediate boronate ester was then subjected to Sonogashira coupling without isolation. The 

coupling went smoothly without any interference from residual iridium catalyst, ligand, or 

borylation by-products and the desired product was isolated in 64% yield (Table 1, entry 1). Other 

substrates reacted similarly with phenyl acetylene or TMS acetylene as the alkyne partner. The 

general one-pot borylation/Sonogashira coupling sequence and the product yields over two-steps are 

presented in Table 1. 

Table 1. Scope of one-pot CHB/Sonagashira cross-coupling reactiona. 

 

Entry Reagent Product Entry Reagent Product 

1 
 

 

8b 
 

 

2 
 

 

9b,c 

 
 

3 
 

 

10 
 

 

4 
 

 

11 

 
 

5 
 

 

12 
 

 

6 

 
 

13 
 

 

7 
 

 

14 
 

  
a See Materials and Methods (section 3) for experimental details and Supplementary Materials for 

spectral data. b 3 mol % [Ir(cod)OMe]2/dtbpy was used for borylation. c Borylation was carried out 

with 0.6 equiv of B2pin2. 

1) 1.5 equiv HBpin

2 mol % (Ind)Ir(cod)2

2 mol % dmpe

150 °C, 2-24 h

2) pump down

H R1.3 equiv

2 equiv DABCO

2.5 mol % [(allyl)PdCl]2
10 mol % Pt-Bu3

MeCN, 2-40 h, rt

        R = Ph, TMS

Br Br

pinB pinB

R

12–25

Ph

12
64% yield

F3C

pinB

Ph

19
71% yield

NC

pinB

TMS

13
65% yield

Me

pinB

TMS

20
47% yield

NC

pinB

TMS

14
59% yield

Cl

pinB

Ph

21
77% yield

Me

pinB

Me

Ph

15
61% yield

Me

pinB

Ph

22
70% yield

Me

Me

pinB

Ph

16
52% yield

MeO

pinB

TMS

23
54% yield

pinB

TMS

Ph

17
70% yield

Me2N

pinB

TMS

24
57% yield

pinB

TMS

Ph

18
37% yield

Cl

pinB

Molecules 2019, 24, x 4 of 13 

 

the intermediate boronate ester was then subjected to Sonogashira coupling without isolation. The 

coupling went smoothly without any interference from residual iridium catalyst, ligand, or 

borylation by-products and the desired product was isolated in 64% yield (Table 1, entry 1). Other 

substrates reacted similarly with phenyl acetylene or TMS acetylene as the alkyne partner. The 

general one-pot borylation/Sonogashira coupling sequence and the product yields over two-steps are 

presented in Table 1. 

Table 1. Scope of one-pot CHB/Sonagashira cross-coupling reactiona. 

 

Entry Reagent Product Entry Reagent Product 

1 
 

 

8b 
 

 

2 
 

 

9b,c 

 
 

3 
 

 

10 
 

 

4 
 

 

11 

 
 

5 
 

 

12 
 

 

6 

 
 

13 
 

 

7 
 

 

14 
 

  
a See Materials and Methods (section 3) for experimental details and Supplementary Materials for 

spectral data. b 3 mol % [Ir(cod)OMe]2/dtbpy was used for borylation. c Borylation was carried out 

with 0.6 equiv of B2pin2. 

1) 1.5 equiv HBpin

2 mol % (Ind)Ir(cod)2

2 mol % dmpe

150 °C, 2-24 h

2) pump down

H R1.3 equiv

2 equiv DABCO

2.5 mol % [(allyl)PdCl]2
10 mol % Pt-Bu3

MeCN, 2-40 h, rt

        R = Ph, TMS

Br Br

pinB pinB

R

12–25

Ph

12
64% yield

F3C

pinB

Ph

19
71% yield

NC

pinB

TMS

13
65% yield

Me

pinB

TMS

20
47% yield

NC

pinB

TMS

14
59% yield

Cl

pinB

Ph

21
77% yield

Me

pinB

Me

Ph

15
61% yield

Me

pinB

Ph

22
70% yield

Me

Me

pinB

Ph

16
52% yield

MeO

pinB

TMS

23
54% yield

pinB

TMS

Ph

17
70% yield

Me2N

pinB

TMS

24
57% yield

pinB

TMS

Ph

18
37% yield

Cl

pinB
7

Molecules 2019, 24, x 4 of 13 

 

the intermediate boronate ester was then subjected to Sonogashira coupling without isolation. The 

coupling went smoothly without any interference from residual iridium catalyst, ligand, or 

borylation by-products and the desired product was isolated in 64% yield (Table 1, entry 1). Other 

substrates reacted similarly with phenyl acetylene or TMS acetylene as the alkyne partner. The 

general one-pot borylation/Sonogashira coupling sequence and the product yields over two-steps are 

presented in Table 1. 

Table 1. Scope of one-pot CHB/Sonagashira cross-coupling reactiona. 

 

Entry Reagent Product Entry Reagent Product 

1 
 

 

8b 
 

 

2 
 

 

9b,c 

 
 

3 
 

 

10 
 

 

4 
 

 

11 

 
 

5 
 

 

12 
 

 

6 

 
 

13 
 

 

7 
 

 

14 
 

  
a See Materials and Methods (section 3) for experimental details and Supplementary Materials for 

spectral data. b 3 mol % [Ir(cod)OMe]2/dtbpy was used for borylation. c Borylation was carried out 

with 0.6 equiv of B2pin2. 

1) 1.5 equiv HBpin

2 mol % (Ind)Ir(cod)2

2 mol % dmpe

150 °C, 2-24 h

2) pump down

H R1.3 equiv

2 equiv DABCO

2.5 mol % [(allyl)PdCl]2
10 mol % Pt-Bu3

MeCN, 2-40 h, rt

        R = Ph, TMS

Br Br

pinB pinB

R

12–25

Ph

12
64% yield

F3C

pinB

Ph

19
71% yield

NC

pinB

TMS

13
65% yield

Me

pinB

TMS

20
47% yield

NC

pinB

TMS

14
59% yield

Cl

pinB

Ph

21
77% yield

Me

pinB

Me

Ph

15
61% yield

Me

pinB

Ph

22
70% yield

Me

Me

pinB

Ph

16
52% yield

MeO

pinB

TMS

23
54% yield

pinB

TMS

Ph

17
70% yield

Me2N

pinB

TMS

24
57% yield

pinB

TMS

Ph

18
37% yield

Cl

pinB

Molecules 2019, 24, x 4 of 13 

 

the intermediate boronate ester was then subjected to Sonogashira coupling without isolation. The 

coupling went smoothly without any interference from residual iridium catalyst, ligand, or 

borylation by-products and the desired product was isolated in 64% yield (Table 1, entry 1). Other 

substrates reacted similarly with phenyl acetylene or TMS acetylene as the alkyne partner. The 

general one-pot borylation/Sonogashira coupling sequence and the product yields over two-steps are 

presented in Table 1. 

Table 1. Scope of one-pot CHB/Sonagashira cross-coupling reactiona. 

 

Entry Reagent Product Entry Reagent Product 

1 
 

 

8b 
 

 

2 
 

 

9b,c 

 
 

3 
 

 

10 
 

 

4 
 

 

11 

 
 

5 
 

 

12 
 

 

6 

 
 

13 
 

 

7 
 

 

14 
 

  
a See Materials and Methods (section 3) for experimental details and Supplementary Materials for 

spectral data. b 3 mol % [Ir(cod)OMe]2/dtbpy was used for borylation. c Borylation was carried out 

with 0.6 equiv of B2pin2. 

1) 1.5 equiv HBpin

2 mol % (Ind)Ir(cod)2

2 mol % dmpe

150 °C, 2-24 h

2) pump down

H R1.3 equiv

2 equiv DABCO

2.5 mol % [(allyl)PdCl]2
10 mol % Pt-Bu3

MeCN, 2-40 h, rt

        R = Ph, TMS

Br Br

pinB pinB

R

12–25

Ph

12
64% yield

F3C

pinB

Ph

19
71% yield

NC

pinB

TMS

13
65% yield

Me

pinB

TMS

20
47% yield

NC

pinB

TMS

14
59% yield

Cl

pinB

Ph

21
77% yield

Me

pinB

Me

Ph

15
61% yield

Me

pinB

Ph

22
70% yield

Me

Me

pinB

Ph

16
52% yield

MeO

pinB

TMS

23
54% yield

pinB

TMS

Ph

17
70% yield

Me2N

pinB

TMS

24
57% yield

pinB

TMS

Ph

18
37% yield

Cl

pinB

14

Molecules 2019, 24, x 4 of 13 

 

the intermediate boronate ester was then subjected to Sonogashira coupling without isolation. The 

coupling went smoothly without any interference from residual iridium catalyst, ligand, or 

borylation by-products and the desired product was isolated in 64% yield (Table 1, entry 1). Other 

substrates reacted similarly with phenyl acetylene or TMS acetylene as the alkyne partner. The 

general one-pot borylation/Sonogashira coupling sequence and the product yields over two-steps are 

presented in Table 1. 

Table 1. Scope of one-pot CHB/Sonagashira cross-coupling reactiona. 

 

Entry Reagent Product Entry Reagent Product 

1 
 

 

8b 
 

 

2 
 

 

9b,c 

 
 

3 
 

 

10 
 

 

4 
 

 

11 

 
 

5 
 

 

12 
 

 

6 

 
 

13 
 

 

7 
 

 

14 
 

  
a See Materials and Methods (section 3) for experimental details and Supplementary Materials for 

spectral data. b 3 mol % [Ir(cod)OMe]2/dtbpy was used for borylation. c Borylation was carried out 

with 0.6 equiv of B2pin2. 

1) 1.5 equiv HBpin

2 mol % (Ind)Ir(cod)2

2 mol % dmpe

150 °C, 2-24 h

2) pump down

H R1.3 equiv

2 equiv DABCO

2.5 mol % [(allyl)PdCl]2
10 mol % Pt-Bu3

MeCN, 2-40 h, rt

        R = Ph, TMS

Br Br

pinB pinB

R

12–25

Ph

12
64% yield

F3C

pinB

Ph

19
71% yield

NC

pinB

TMS

13
65% yield

Me

pinB

TMS

20
47% yield

NC

pinB

TMS

14
59% yield

Cl

pinB

Ph

21
77% yield

Me

pinB

Me

Ph

15
61% yield

Me

pinB

Ph

22
70% yield

Me

Me

pinB

Ph

16
52% yield

MeO

pinB

TMS

23
54% yield

pinB

TMS

Ph

17
70% yield

Me2N

pinB

TMS

24
57% yield

pinB

TMS

Ph

18
37% yield

Cl

pinB

Molecules 2019, 24, x 4 of 13 

 

the intermediate boronate ester was then subjected to Sonogashira coupling without isolation. The 

coupling went smoothly without any interference from residual iridium catalyst, ligand, or 

borylation by-products and the desired product was isolated in 64% yield (Table 1, entry 1). Other 

substrates reacted similarly with phenyl acetylene or TMS acetylene as the alkyne partner. The 

general one-pot borylation/Sonogashira coupling sequence and the product yields over two-steps are 

presented in Table 1. 

Table 1. Scope of one-pot CHB/Sonagashira cross-coupling reactiona. 

 

Entry Reagent Product Entry Reagent Product 

1 
 

 

8b 
 

 

2 
 

 

9b,c 

 
 

3 
 

 

10 
 

 

4 
 

 

11 

 
 

5 
 

 

12 
 

 

6 

 
 

13 
 

 

7 
 

 

14 
 

  
a See Materials and Methods (section 3) for experimental details and Supplementary Materials for 

spectral data. b 3 mol % [Ir(cod)OMe]2/dtbpy was used for borylation. c Borylation was carried out 

with 0.6 equiv of B2pin2. 

1) 1.5 equiv HBpin

2 mol % (Ind)Ir(cod)2

2 mol % dmpe

150 °C, 2-24 h

2) pump down

H R1.3 equiv

2 equiv DABCO

2.5 mol % [(allyl)PdCl]2
10 mol % Pt-Bu3

MeCN, 2-40 h, rt

        R = Ph, TMS

Br Br

pinB pinB

R

12–25

Ph

12
64% yield

F3C

pinB

Ph

19
71% yield

NC

pinB

TMS

13
65% yield

Me

pinB

TMS

20
47% yield

NC

pinB

TMS

14
59% yield

Cl

pinB

Ph

21
77% yield

Me

pinB

Me

Ph

15
61% yield

Me

pinB

Ph

22
70% yield

Me

Me

pinB

Ph

16
52% yield

MeO

pinB

TMS

23
54% yield

pinB

TMS

Ph

17
70% yield

Me2N

pinB

TMS

24
57% yield

pinB

TMS

Ph

18
37% yield

Cl

pinB

a See Materials and Methods (Section 3) for experimental details and Supplementary Materials for spectral data.
b 3 mol % [Ir(cod)OMe]2/dtbpy was used for borylation. c Borylation was carried out with 0.6 equiv of B2pin2.

Both electron rich as well as electron deficient aryl bromides proved to be efficient substrates.
Entries 10 and 11 show that a hindered C–Br bond in a bromoaryl boronate ester can undergo selective
Sonogashira coupling without any deborylation of the more sterically accessible C–B bond. Double
Sonogashira coupling can be carried out starting from 1,3-dibromobenzene (entry 12). Attempted
mono-Sonogashira coupling on the intermediate boronic ester of 1,2-di-bromobenzene using 0.9 equiv
of TMS-acetylene resulted in a 1:3 mixture of two regioisomers, however the di-Sonogashira product
was the major species observed by GC-FID. The resulting borylated aromatic enediynes were isolated
in good yields by using 2.2 equiv of alkyne (entries 13 and 14). To expand the scope of this methodology
to heteroaromatics, we examined the one-pot borylation/Sonogashira coupling of 3-bromothiophene.
Diborylation was complete in 1 h, however upon exposure to the Sonogashira conditions, extensive
deborylation was observed (Scheme 5).
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Scheme 5. Attempted di-borylation Sonogashira cross-coupling of 3-bromothiophene.

Considering that the presence of iridium may have caused deborylation [52,53], we ran the
Sonogashira coupling on isolated 2-bromo-5-Bpin-thiophene. Although the Sonogashira coupling was
complete in 2 h, about 80% of the coupled product was deborylated. These results suggest that the
presence of Bpin functionality on the 2-position of thiophene is inherently unstable to the Sonogashira
conditions. Indeed, Zheng also reported deborylation during microwave-assisted Sonogashira coupling
of 2-borylated heteroaromatics [46].

3. Materials and Methods

3.1. Materials

All commercially available chemicals were used as received or purified as described.
Bis(η4-1,5-cyclooctadiene)-di-µ-methoxy-diiridium(I) [Ir(cod)OMe]2 [54], (η5-Indenyl)(cyclooctadiene)
iridium (Ind)Ir(cod)} [55], and pinacolborane (HBpin) [56] were prepared as per the literature procedures.
4′-Di-t-butyl-2,2′-bipyridine (dtbpy), bis(pinacolato)diboron (B2pin2), and 3-bromobenzonitrile were
sublimed before use. Liquid aryl bromides were refluxed over CaH2, distilled, and degassed. Phenyl
acetylene was distilled before use. Acetonitrile was distilled over activated molecular sieves. n-Hexane
was refluxed over sodium, distilled, and degassed. Silica gel (230–400 Mesh) was purchased from
EMD™.

3.2. General Procedure A: Sonogashira Cross-Coupling of Borylated Aryl Bromides

In a glove box, borylated aryl bromide (1.0 mmol, 1 equiv), 1,4-diazabicyclo[2.2.2]octane [DABCO]
(225 mg, 2.0 mmol, 2 equiv), allylpalladium chloride dimer (9 mg, 0.025 mmol, 2.5 mol %), Pt-Bu3

(20 mg, 0.1 mmol, 10 mol %), alkyne (1.1 mmol, 1.1 equiv), and acetonitrile (3 mL) were transferred
into a Schlenk flask equipped with a magnetic stirring bar [50]. The flask was then stoppered and
stirred at room temperature until the Sonogashira coupling was judged complete by GC-FID. After
completion, 5 mL of water were added to the reaction mixture. The reaction mixture was extracted
with ether (10 mL × 3). The combined ether extractions were washed with brine (10 mL), followed
by water (10 mL), dried over MgSO4 before being concentrated under reduced pressure on a rotary
evaporator. The crude material was then subjected to column chromatography.

3.3. General Procedure B: One-Pot CHB/Sonogashira Reaction

In a glove box, (Ind)Ir(cod) (8 mg, 0.02 mmol, 2 mol % Ir), dmpe (3 mg, 0.02 mmol, 2 mol %),
HBpin (256 mg, 2.0 mmol, 2 equiv), and aryl bromide (1.0 mmol, 1 equiv) were transferred into a
Schlenk flask equipped with a magnetic stirring bar. The flask was stoppered, removed from the glove
box, and stirred at 150 ◦C until the borylation was judged completely by GC-FID/MS. The reaction
mixture was allowed to cool to room temperature and subsequently placed under high vacuum for
1–2 h. The Schlenk flask was brought into the dry box and 1,4-diazabicyclo[2.2.2]octane [DABCO]
(225 mg, 2.0 mmol, 2 equiv), allylpalladium chloride dimer (9 mg, 0.025 mmol, 2.5 mol %), Pt-Bu3

(20 mg, 0.1 mmol, 10 mol %), alkyne (1.1–1.3 mmol, 1.1–1.3 equiv) and acetonitrile (3 mL) were
added [50]. The flask was then stoppered and stirred at room temperature until the Sonogashira
coupling was judged completely by GC-FID. After completion, 10 mL of water were added to the
reaction mixture. The reaction mixture was extracted with ether (10 mL × 3). The combined ether
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extractions were washed with brine (10 mL), followed by water (10 mL), dried over MgSO4 before
being concentrated under reduced pressure on a rotary evaporator. The crude material was then
subjected to column chromatography.

3.4. Analytical data of products 12–25

3-(Phenylethynyl)-5-(4,4,5,5-tetramethyl-1,3,2-dioxaborolane-2-yl)-benzotrifluoride (12)

From Sonogashira coupling of borylated aryl bromide: the general procedure A was applied to
the borylated version of 3-bromobenzotrifluoride (9, 351 mg, 1.0 mmol, 1 equiv) with phenyl acetylene
(121 µL, 112 mg, 1.10 mmol, 1.1 equiv) as the coupling partner for 10 h. The crude mixture was
concentrated and passed through a plug of silica gel (CH2Cl2 as eluent) to furnish the desired product
as orange yellow oil, which solidified on standing (280 mg, 75% yield, mp 74–75 ◦C).

From one-pot CHB/Sonogashira coupling: the general procedure B was applied to
3-bromobenzotrifluoride (279 µL, 450 mg, 2.0 mmol, 1 equiv). The borylation step was carried
out with HBpin (436 µL, 384 mg, 3.00 mmol, 1.50 equiv) for 3 h. The Sonogashira coupling step was
carried out with phenyl acetylene (242 µL, 225 mg, 2.20 mmol, 1.1 equiv) for 5 h. Gradient column
chromatography (pentane:dichloromethane 4:1→ pentane:dichloromethane 1:1) furnished the desired
product as orange yellow oil, which solidified on standing (473 mg, 64% yield, mp 74–75 ◦C).

1H NMR (CDCl3, 300 MHz): δ 8.15 (m, 1 H), 8.00 (m, 1.0 Hz, 1 H), 7.86 (m, 1 H), 7.58–7.49 (m, 2 H),
7.42–7.30 (m, 3 H), 1.37 (s, 12 H, 4 CH3 of Bpin). 13C-NMR {1H} (CDCl3, 125 MHz): δ 141.2 (CH), 131.8
(2 CH), 130.8 (q, 3JC–F = 3.8 Hz, CH), 130.7 (q, 3JC–F = 3.8 Hz, CH), 130.6 (q, 2JC–F = 32.5 Hz, C), 128.8
(CH), 128.5 (2 CH), 124.1 (q, 1JC–F = 273 Hz, CF3), 124.0 (C), 122.9 (C), 91.2 (C), 88.0 (C), 84.6 (2 C), 24.9
(4 CH3 of Bpin); 11B-NMR (CDCl3, 96 MHz): δ 30.6; 19F-NMR (CDCl3, 282 MHz) δ −63.0; FT-IR (neat)
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acetylene (121 μL, 112 mg, 1.10 mmol, 1.1 equiv) as the coupling partner for 10 h. The crude mixture 
was concentrated and passed through a plug of silica gel (CH2Cl2 as eluent) to furnish the desired 
product as orange yellow oil, which solidified on standing (280 mg, 75% yield, mp 74–75 °C). 

From one-pot CHB/Sonogashira coupling: the general procedure B was applied to 3-
bromobenzotrifluoride (279 μL, 450 mg, 2.0 mmol, 1 equiv). The borylation step was carried out with 
HBpin (436 μL, 384 mg, 3.00 mmol, 1.50 equiv) for 3 h. The Sonogashira coupling step was carried 
out with phenyl acetylene (242 μL, 225 mg, 2.20 mmol, 1.1 equiv) for 5 h. Gradient column 
chromatography (pentane:dichloromethane 4:1 → pentane:dichloromethane 1:1) furnished the 
desired product as orange yellow oil, which solidified on standing (473 mg, 64% yield, mp 74–75 °C). 

1H NMR (CDCl3, 300 MHz): δ 8.15 (m, 1 H), 8.00 (m, 1.0 Hz, 1 H), 7.86 (m, 1 H), 7.58–7.49 (m, 2 
H), 7.42–7.30 (m, 3 H), 1.37 (s, 12 H, 4 CH3 of Bpin). 13C-NMR {1H} (CDCl3, 125 MHz): δ 141.2 (CH), 
131.8 (2 CH), 130.8 (q, 3JC–F = 3.8 Hz, CH), 130.7 (q, 3JC–F = 3.8 Hz, CH), 130.6 (q, 2JC–F = 32.5 Hz, C), 128.8 
(CH), 128.5 (2 CH), 124.1 (q, 1JC–F = 273 Hz, CF3), 124.0 (C), 122.9 (C), 91.2 (C), 88.0 (C), 84.6 (2 C), 24.9 
(4 CH3 of Bpin); 11B-NMR (CDCl3, 96 MHz): δ 30.6; 19F-NMR (CDCl3, 282 MHz) δ −63.0; FT-IR (neat)  

ῦ max: 2980, 1601, 1493, 1369, 1306, 1277, 1169, 1130, 966, 898, 871, 847, 756, 704, 688 cm–1; GC-MS 
(EI) m/z (% relative intensity): M+ 372 (100), 357 (10), 286 (18), 272 (12); HRMS (FAB): m/z 372.1510 
[(M+); Calcd for C21H20BF3O2: 372.1508]. 

3-(Trimethylsilylethynyl)-5-(4,4,5,5-tetramethyl-1,3,2-dioxaborolane-2-yl)-toluene (13). 
From Sonogashira coupling of borylated aryl bromide: the general procedure A was applied to 

the borylated version of 3-bromotoluene (10, 297 mg, 1.0 mmol, 1 equiv) with trimethylsilyl acetylene 
(156 μL, 108 mg, 1.10 mmol, 1.1 equiv) as the coupling partner for 4 h. Column chromatography 
(pentane/ether 9:1, Rf 0.8) furnished the desired product as yellow oil (194 mg, 62% yield). 

From one-pot CHB/Sonogashira coupling: the general procedure B was applied to 3-
bromotoluene (122 μL, 171 mg, 1.0 mmol, 1 equiv). The borylation step was carried out with HBpin 
(218 μL, 192 mg, 1.50 mmol, 1.50 equiv) for 12 h. The Sonogashira coupling step was carried out with 
trimethylsilyl acetylene (156 μL, 108 mg, 1.10 mmol, 1.1 equiv) for 4 h. Column chromatography 
(pentane/ether 9:1, Rf 0.8) furnished the desired product as yellow oil (204 mg, 65% yield).  

1H NMR (CDCl3, 500 MHz): δ 7.74 (m, 1 H), 7.56 (m, 1 H), 7.38 (m, 1 H), 2.31 (m, 3 H), 1.34 (br s, 
12 H, 4 CH3 of Bpin), 0.22 (s, 9 H, 3 CH3 of TMS); 13C-NMR {1H} (CDCl3, 125 MHz): δ 137.3 (C), 135.7 
(CH), 135.5 (CH), 135.2 (CH), 122.7 (C), 105.4 (C), 93.8 (C), 84.1 (2 C), 25.0 (4 CH3 of Bpin), 21.1 (CH3), 
0.2 (3 CH3 of TMS); 11B-NMR (CDCl3, 160 MHz): δ 30.2; FT-IR (neat) ῦmax: 2978, 2154, 1591, 1383, 1365, 

max: 2978, 2154, 1591, 1383, 1365,
1248, 1145, 966, 848, 760, 706 cm−1; GC-MS (EI) m/z (% relative intensity): M+ 314 (15), 299 (100), 199
(11); HRMS (FAB): m/z 314.1875 [(M+); Calcd for C18H27BO2Si: 314.1873].

3-(Trimethylsilylethynyl)-5-(4,4,5,5-tetramethyl-1,3,2-dioxaborolane-2-yl)-chlorobenzene (14).

From Sonogashira coupling of borylated aryl bromide: the general procedure A was
applied to the borylated version of 3-bromochlorobenzene (11, 10 g, 31.5 mmol, 1 equiv) with
1,4-diazabicyclo[2.2.2]octane [DABCO] (3.54 g, 31.5 mmol, 1 equiv), allylpalladium chloride dimer
(288 mg, 0.788 mmol, 2.5 mol %), Pt-Bu3 (638 mg, 3.15 mmol, 10 mol %), trimethylsilyl acetylene
(4.5 mL, 3.09 g, 31.5 mmol, 1 equiv) and acetonitrile (100 mL) for 4 h. After completion, 100 mL of
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water was added to the reaction mixture. The reaction mixture was extracted with MTBE (50 mL
× 3). The combined ether extractions were washed with water (50 mL), followed by brine (50 mL),
dried over MgSO4 before being concentrated under reduced pressure on a rotary evaporator. Gradient
column chromatography (hexanes/ dichloromethane 1:1→ hexanes/dichloromethane 0:1) furnished
the desired product as yellow oil. If the oil is left to dry in air, it will dry to a waxy solid that can be
scraped and dried under vacuum to a yellow powder (8 g, 76% yield).

From one-pot CHB/Sonogashira coupling: the general procedure B was applied to
3-bromochlorobenzene (118 µL, 191 mg, 1.0 mmol, 1 equiv). The borylation step was carried
out with HBpin (218 µL, 192 mg, 1.50 mmol, 1.50 equiv) for 4 h. The Sonogashira coupling step was
carried out with trimethylsilyl acetylene (184 µL, 128 mg, 1.30 mmol, 1.3 equiv) for 4 h. Gradient
column chromatography (hexanes/ dichloromethane 1:1→ hexanes/dichloromethane 0:1) furnished
the desired product as yellow oil (196 mg, 59% yield).

1H-NMR (CDCl3, 300 MHz): δ 7.78 (dd, J = 1.5, 1.0 Hz, 1 H), 7.70 (dd, J = 2.2, 1.0 Hz, 1 H), 7.52
(dd, J = 2.2, 1.5 Hz, 1 H), 1.34 (br s, 12 H, 4 CH3 of Bpin), 0.23 (s, 9 H, 3 CH3 of TMS); 13C NMR {1H}
(CDCl3, 125 MHz): δ 136.5 (CH), 134.6 (CH), 134.2 (CH), 133.9 (C), 124.6 (C), 103.6 (C), 95.8 (C), 84.5
(2 C), 25.0 (4 CH3 of Bpin), 0.0 (3 CH3 of TMS); 11B-NMR (CDCl3, 96 MHz): δ 30.6; FT-IR (neat)

Molecules 2019, 24, x 6 of 13 

 

3.3. General Procedure B: One-Pot CHB/Sonogashira Reaction 

In a glove box, (Ind)Ir(cod) (8 mg, 0.02 mmol, 2 mol % Ir), dmpe (3 mg, 0.02 mmol, 2 mol %), 
HBpin (256 mg, 2.0 mmol, 2 equiv), and aryl bromide (1.0 mmol, 1 equiv) were transferred into a 
Schlenk flask equipped with a magnetic stirring bar. The flask was stoppered, removed from the 
glove box, and stirred at 150 °C until the borylation was judged completely by GC-FID/MS. The 
reaction mixture was allowed to cool to room temperature and subsequently placed under high 
vacuum for 1–2 h. The Schlenk flask was brought into the dry box and 1,4-diazabicyclo[2.2.2]octane 
[DABCO] (225 mg, 2.0 mmol, 2 equiv), allylpalladium chloride dimer (9 mg, 0.025 mmol, 2.5 mol %), 
Pt-Bu3 (20 mg, 0.1 mmol, 10 mol %), alkyne (1.1–1.3 mmol, 1.1–1.3 equiv) and acetonitrile (3 mL) were 
added [50]. The flask was then stoppered and stirred at room temperature until the Sonogashira 
coupling was judged completely by GC-FID. After completion, 10 mL of water were added to the 
reaction mixture. The reaction mixture was extracted with ether (10 mL × 3). The combined ether 
extractions were washed with brine (10 mL), followed by water (10 mL), dried over MgSO4 before 
being concentrated under reduced pressure on a rotary evaporator. The crude material was then 
subjected to column chromatography. 

3.4. Analytical data of products 12–25 

3-(Phenylethynyl)-5-(4,4,5,5-tetramethyl-1,3,2-dioxaborolane-2-yl)-benzotrifluoride (12) 
From Sonogashira coupling of borylated aryl bromide: the general procedure A was applied to 

the borylated version of 3-bromobenzotrifluoride (9, 351 mg, 1.0 mmol, 1 equiv) with phenyl 
acetylene (121 μL, 112 mg, 1.10 mmol, 1.1 equiv) as the coupling partner for 10 h. The crude mixture 
was concentrated and passed through a plug of silica gel (CH2Cl2 as eluent) to furnish the desired 
product as orange yellow oil, which solidified on standing (280 mg, 75% yield, mp 74–75 °C). 

From one-pot CHB/Sonogashira coupling: the general procedure B was applied to 3-
bromobenzotrifluoride (279 μL, 450 mg, 2.0 mmol, 1 equiv). The borylation step was carried out with 
HBpin (436 μL, 384 mg, 3.00 mmol, 1.50 equiv) for 3 h. The Sonogashira coupling step was carried 
out with phenyl acetylene (242 μL, 225 mg, 2.20 mmol, 1.1 equiv) for 5 h. Gradient column 
chromatography (pentane:dichloromethane 4:1 → pentane:dichloromethane 1:1) furnished the 
desired product as orange yellow oil, which solidified on standing (473 mg, 64% yield, mp 74–75 °C). 

1H NMR (CDCl3, 300 MHz): δ 8.15 (m, 1 H), 8.00 (m, 1.0 Hz, 1 H), 7.86 (m, 1 H), 7.58–7.49 (m, 2 
H), 7.42–7.30 (m, 3 H), 1.37 (s, 12 H, 4 CH3 of Bpin). 13C-NMR {1H} (CDCl3, 125 MHz): δ 141.2 (CH), 
131.8 (2 CH), 130.8 (q, 3JC–F = 3.8 Hz, CH), 130.7 (q, 3JC–F = 3.8 Hz, CH), 130.6 (q, 2JC–F = 32.5 Hz, C), 128.8 
(CH), 128.5 (2 CH), 124.1 (q, 1JC–F = 273 Hz, CF3), 124.0 (C), 122.9 (C), 91.2 (C), 88.0 (C), 84.6 (2 C), 24.9 
(4 CH3 of Bpin); 11B-NMR (CDCl3, 96 MHz): δ 30.6; 19F-NMR (CDCl3, 282 MHz) δ −63.0; FT-IR (neat)  

ῦ max: 2980, 1601, 1493, 1369, 1306, 1277, 1169, 1130, 966, 898, 871, 847, 756, 704, 688 cm–1; GC-MS 
(EI) m/z (% relative intensity): M+ 372 (100), 357 (10), 286 (18), 272 (12); HRMS (FAB): m/z 372.1510 
[(M+); Calcd for C21H20BF3O2: 372.1508]. 

3-(Trimethylsilylethynyl)-5-(4,4,5,5-tetramethyl-1,3,2-dioxaborolane-2-yl)-toluene (13). 
From Sonogashira coupling of borylated aryl bromide: the general procedure A was applied to 

the borylated version of 3-bromotoluene (10, 297 mg, 1.0 mmol, 1 equiv) with trimethylsilyl acetylene 
(156 μL, 108 mg, 1.10 mmol, 1.1 equiv) as the coupling partner for 4 h. Column chromatography 
(pentane/ether 9:1, Rf 0.8) furnished the desired product as yellow oil (194 mg, 62% yield). 

From one-pot CHB/Sonogashira coupling: the general procedure B was applied to 3-
bromotoluene (122 μL, 171 mg, 1.0 mmol, 1 equiv). The borylation step was carried out with HBpin 
(218 μL, 192 mg, 1.50 mmol, 1.50 equiv) for 12 h. The Sonogashira coupling step was carried out with 
trimethylsilyl acetylene (156 μL, 108 mg, 1.10 mmol, 1.1 equiv) for 4 h. Column chromatography 
(pentane/ether 9:1, Rf 0.8) furnished the desired product as yellow oil (204 mg, 65% yield).  

1H NMR (CDCl3, 500 MHz): δ 7.74 (m, 1 H), 7.56 (m, 1 H), 7.38 (m, 1 H), 2.31 (m, 3 H), 1.34 (br s, 
12 H, 4 CH3 of Bpin), 0.22 (s, 9 H, 3 CH3 of TMS); 13C-NMR {1H} (CDCl3, 125 MHz): δ 137.3 (C), 135.7 
(CH), 135.5 (CH), 135.2 (CH), 122.7 (C), 105.4 (C), 93.8 (C), 84.1 (2 C), 25.0 (4 CH3 of Bpin), 21.1 (CH3), 
0.2 (3 CH3 of TMS); 11B-NMR (CDCl3, 160 MHz): δ 30.2; FT-IR (neat) ῦmax: 2978, 2154, 1591, 1383, 1365, 

max:
2978, 2166, 1562, 1352, 1143, 966, 927, 844, 760, 702 cm−1; GC-MS (EI) m/z (% relative intensity): M+ 334
(8), 320 (100), 219 (10); HRMS (FAB): m/z 335.1407 [(M+); Calcd for C17H25BO2SiCl: 335.14055].

3-(Phenylethynyl)-5-(4,4,5,5-tetramethyl-1,3,2-dioxaborolane-2-yl)-toluene (15)

The general procedure B was applied to 3-bromotoluene (122 µL, 171 mg, 1.0 mmol, 1 equiv).
The borylation step was carried out with HBpin (290 µL, 256 mg, 2.00 mmol, 2.00 equiv) for 12 h.
The Sonogashira coupling step was carried out with phenyl acetylene (121 µL, 112 mg, 1.10 mmol,
1.1 equiv) for 12 h. Column chromatography (pentane/dichloromethane 1:1, Rf 0.8) furnished the
desired product as yellow oil, which solidified on standing (193 mg, 61% yield, mp 73–75 ◦C).

1H-NMR (CDCl3, 500 MHz): δ 7.83 (m, 1 H), 7.60 (m, 1 H), 7.47–7.50 (m, 2 H), 7.46 (m, 1 H),
7.30–7.34 (m, 3 H), 2.36 (s, 3 H), 1.36 (br s, 12 H, 4 CH3 of Bpin); 13C NMR {1H} (CDCl3, 75 MHz): δ
137.4 (C), 135.4 (CH), 135.4 (CH), 134.9 (CH), 131.7 (2 CH), 128.4 (2 CH), 128.2 (CH), 123.7 (C), 123.0
(C), 89.8 (C), 89.3 (C), 84.1 (2 C), 25.0 (4 CH3 of Bpin), 21.2 (CH3); 11B-NMR (C6D6, 96 MHz): δ 31.7;

FT-IR (neat)
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(EI) m/z (% relative intensity): M+ 372 (100), 357 (10), 286 (18), 272 (12); HRMS (FAB): m/z 372.1510 
[(M+); Calcd for C21H20BF3O2: 372.1508]. 

3-(Trimethylsilylethynyl)-5-(4,4,5,5-tetramethyl-1,3,2-dioxaborolane-2-yl)-toluene (13). 
From Sonogashira coupling of borylated aryl bromide: the general procedure A was applied to 

the borylated version of 3-bromotoluene (10, 297 mg, 1.0 mmol, 1 equiv) with trimethylsilyl acetylene 
(156 μL, 108 mg, 1.10 mmol, 1.1 equiv) as the coupling partner for 4 h. Column chromatography 
(pentane/ether 9:1, Rf 0.8) furnished the desired product as yellow oil (194 mg, 62% yield). 

From one-pot CHB/Sonogashira coupling: the general procedure B was applied to 3-
bromotoluene (122 μL, 171 mg, 1.0 mmol, 1 equiv). The borylation step was carried out with HBpin 
(218 μL, 192 mg, 1.50 mmol, 1.50 equiv) for 12 h. The Sonogashira coupling step was carried out with 
trimethylsilyl acetylene (156 μL, 108 mg, 1.10 mmol, 1.1 equiv) for 4 h. Column chromatography 
(pentane/ether 9:1, Rf 0.8) furnished the desired product as yellow oil (204 mg, 65% yield).  

1H NMR (CDCl3, 500 MHz): δ 7.74 (m, 1 H), 7.56 (m, 1 H), 7.38 (m, 1 H), 2.31 (m, 3 H), 1.34 (br s, 
12 H, 4 CH3 of Bpin), 0.22 (s, 9 H, 3 CH3 of TMS); 13C-NMR {1H} (CDCl3, 125 MHz): δ 137.3 (C), 135.7 
(CH), 135.5 (CH), 135.2 (CH), 122.7 (C), 105.4 (C), 93.8 (C), 84.1 (2 C), 25.0 (4 CH3 of Bpin), 21.1 (CH3), 
0.2 (3 CH3 of TMS); 11B-NMR (CDCl3, 160 MHz): δ 30.2; FT-IR (neat) ῦmax: 2978, 2154, 1591, 1383, 1365, 

max: 2976, 1595, 1491, 1417, 1385, 1371, 1317, 1289, 1207, 1143, 966, 852, 756, 706, 690 cm−1;
GC-MS (EI) m/z (% relative intensity): M+ 318 (100), 304 (15), 233 (11), 219 (12); HRMS (FAB): m/z
318.1794 [(M+); Calcd for C21H23BO2: 318.1791].

3-(Phenylethynyl)-5-(4,4,5,5-tetramethyl-1,3,2-dioxaborolane-2-yl)-anisole (16)

The general procedure B was applied to 3-bromoanisole (254 µL, 374 mg, 2.0 mmol, 1 equiv).
The borylation step was carried out with HBpin (580 µL, 512 mg, 4.00 mmol, 2.00 equiv) for
16 h. The Sonogashira coupling step was carried out with phenyl acetylene (286 µL, 266 mg,
2.60 mmol, 1.3 equiv) for 4 h. Gradient column chromatography (hexanes/dichloromethane 1:1→
hexanes/dichloromethane 0:1) furnished the desired product as yellow oil (343 mg, 52% yield).

1H-NMR (CDCl3, 500 MHz): δ 7.61 (dd, J = 1.5, 0.9 Hz, 1 H), 7.54–7.49 (m, 2 H), 7.37–7.31 (m, 3 H),
7.30 (dd, J = 2.7, 0.9 Hz, 1 H), 7.15 (dd, J = 2.7, 1.5, Hz, 1 H), 3.85 (s, 3 H), 1.35 (br s, 12 H, 4 CH3 of
Bpin); 13C-NMR {1H} (CDCl3, 125 MHz): δ 159.1 (C), 131.7 (2 CH), 130.8 (CH), 128.5 (2 CH), 128.3 (CH),
124.1 (C), 123.5 (C), 120.0 (CH), 119.8 (CH), 89.38 (C), 89.36 (C), 84.2 (2 C), 55.6 (OCH3), 25.0 (4 CH3 of
Bpin); 11B NMR (CDCl3, 96 MHz): δ 30.6; FT-IR (neat)
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chromatography (pentane:dichloromethane 4:1 → pentane:dichloromethane 1:1) furnished the 
desired product as orange yellow oil, which solidified on standing (473 mg, 64% yield, mp 74–75 °C). 

1H NMR (CDCl3, 300 MHz): δ 8.15 (m, 1 H), 8.00 (m, 1.0 Hz, 1 H), 7.86 (m, 1 H), 7.58–7.49 (m, 2 
H), 7.42–7.30 (m, 3 H), 1.37 (s, 12 H, 4 CH3 of Bpin). 13C-NMR {1H} (CDCl3, 125 MHz): δ 141.2 (CH), 
131.8 (2 CH), 130.8 (q, 3JC–F = 3.8 Hz, CH), 130.7 (q, 3JC–F = 3.8 Hz, CH), 130.6 (q, 2JC–F = 32.5 Hz, C), 128.8 
(CH), 128.5 (2 CH), 124.1 (q, 1JC–F = 273 Hz, CF3), 124.0 (C), 122.9 (C), 91.2 (C), 88.0 (C), 84.6 (2 C), 24.9 
(4 CH3 of Bpin); 11B-NMR (CDCl3, 96 MHz): δ 30.6; 19F-NMR (CDCl3, 282 MHz) δ −63.0; FT-IR (neat)  

ῦ max: 2980, 1601, 1493, 1369, 1306, 1277, 1169, 1130, 966, 898, 871, 847, 756, 704, 688 cm–1; GC-MS 
(EI) m/z (% relative intensity): M+ 372 (100), 357 (10), 286 (18), 272 (12); HRMS (FAB): m/z 372.1510 
[(M+); Calcd for C21H20BF3O2: 372.1508]. 

3-(Trimethylsilylethynyl)-5-(4,4,5,5-tetramethyl-1,3,2-dioxaborolane-2-yl)-toluene (13). 
From Sonogashira coupling of borylated aryl bromide: the general procedure A was applied to 

the borylated version of 3-bromotoluene (10, 297 mg, 1.0 mmol, 1 equiv) with trimethylsilyl acetylene 
(156 μL, 108 mg, 1.10 mmol, 1.1 equiv) as the coupling partner for 4 h. Column chromatography 
(pentane/ether 9:1, Rf 0.8) furnished the desired product as yellow oil (194 mg, 62% yield). 

From one-pot CHB/Sonogashira coupling: the general procedure B was applied to 3-
bromotoluene (122 μL, 171 mg, 1.0 mmol, 1 equiv). The borylation step was carried out with HBpin 
(218 μL, 192 mg, 1.50 mmol, 1.50 equiv) for 12 h. The Sonogashira coupling step was carried out with 
trimethylsilyl acetylene (156 μL, 108 mg, 1.10 mmol, 1.1 equiv) for 4 h. Column chromatography 
(pentane/ether 9:1, Rf 0.8) furnished the desired product as yellow oil (204 mg, 65% yield).  

1H NMR (CDCl3, 500 MHz): δ 7.74 (m, 1 H), 7.56 (m, 1 H), 7.38 (m, 1 H), 2.31 (m, 3 H), 1.34 (br s, 
12 H, 4 CH3 of Bpin), 0.22 (s, 9 H, 3 CH3 of TMS); 13C-NMR {1H} (CDCl3, 125 MHz): δ 137.3 (C), 135.7 
(CH), 135.5 (CH), 135.2 (CH), 122.7 (C), 105.4 (C), 93.8 (C), 84.1 (2 C), 25.0 (4 CH3 of Bpin), 21.1 (CH3), 
0.2 (3 CH3 of TMS); 11B-NMR (CDCl3, 160 MHz): δ 30.2; FT-IR (neat) ῦmax: 2978, 2154, 1591, 1383, 1365, 

max: 2980, 1581, 1373, 1224, 1143, 1057, 966,850,
756, 704 cm−1; GC-MS (EI) m/z (% relative intensity): M+ 334 (100), 319 (10), 276 (6), 248 (15), 234 (21);
HRMS (FAB): m/z 334.1742 [(M+); Calcd for C21H23BO3: 334.1740].

N,N-Di-methyl-3-(phenylethynyl)-5-(4,4,5,5-tetramethyl-1,3,2-dioxaborolane-2-yl)-aniline (17)

The general procedure B was applied to N,N-dimethyl-3-bromoaniline (400 mg, 2.0 mmol, 1 equiv).
The borylation step was carried out with HBpin (580 µL, 512 mg, 4.00 mmol, 2.00 equiv) for 24 h.
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The Sonogashira coupling step was carried out with phenyl acetylene (242 µL, 225 mg, 2.20 mmol,
1.1 equiv) for 20 h. Column chromatography (pentane/ether 4:1, Rf 0.5) furnished the desired product
as yellow oil (488 mg, 70% yield).

1H-NMR (C6D6, 300 MHz): δ 8.03 (dd, J = 1.4, 0.8 Hz, 1 H), 7.59–7.50 (m, 2 H), 7.48 (dd, J = 2.8, 0.8
Hz, 1 H), 7.12 (dd, J = 2.8, 1.4 Hz, 1 H), 7.06-6.96 (m, 3 H), 2.40 (s, 6 H), 1.15 (br s, 12 H, 4 CH3 of Bpin);
13C-NMR {1H} (C6D6, 75 MHz): δ 150.4 (C), 132.0 (2 CH), 128.6 (2 CH), 128.2 (CH), 127.6 (CH), 124.4
(C), 124.0 (C), 119.6 (CH), 118.4 (CH), 91.5 (C), 89.1 (C), 83.9 (2 C), 40.1 (2 CH3), 25.1 (4 CH3 of Bpin);
11B NMR (CDCl3, 96 MHz): δ 31.1; FT-IR (neat)
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In a glove box, (Ind)Ir(cod) (8 mg, 0.02 mmol, 2 mol % Ir), dmpe (3 mg, 0.02 mmol, 2 mol %), 
HBpin (256 mg, 2.0 mmol, 2 equiv), and aryl bromide (1.0 mmol, 1 equiv) were transferred into a 
Schlenk flask equipped with a magnetic stirring bar. The flask was stoppered, removed from the 
glove box, and stirred at 150 °C until the borylation was judged completely by GC-FID/MS. The 
reaction mixture was allowed to cool to room temperature and subsequently placed under high 
vacuum for 1–2 h. The Schlenk flask was brought into the dry box and 1,4-diazabicyclo[2.2.2]octane 
[DABCO] (225 mg, 2.0 mmol, 2 equiv), allylpalladium chloride dimer (9 mg, 0.025 mmol, 2.5 mol %), 
Pt-Bu3 (20 mg, 0.1 mmol, 10 mol %), alkyne (1.1–1.3 mmol, 1.1–1.3 equiv) and acetonitrile (3 mL) were 
added [50]. The flask was then stoppered and stirred at room temperature until the Sonogashira 
coupling was judged completely by GC-FID. After completion, 10 mL of water were added to the 
reaction mixture. The reaction mixture was extracted with ether (10 mL × 3). The combined ether 
extractions were washed with brine (10 mL), followed by water (10 mL), dried over MgSO4 before 
being concentrated under reduced pressure on a rotary evaporator. The crude material was then 
subjected to column chromatography. 

3.4. Analytical data of products 12–25 

3-(Phenylethynyl)-5-(4,4,5,5-tetramethyl-1,3,2-dioxaborolane-2-yl)-benzotrifluoride (12) 
From Sonogashira coupling of borylated aryl bromide: the general procedure A was applied to 

the borylated version of 3-bromobenzotrifluoride (9, 351 mg, 1.0 mmol, 1 equiv) with phenyl 
acetylene (121 μL, 112 mg, 1.10 mmol, 1.1 equiv) as the coupling partner for 10 h. The crude mixture 
was concentrated and passed through a plug of silica gel (CH2Cl2 as eluent) to furnish the desired 
product as orange yellow oil, which solidified on standing (280 mg, 75% yield, mp 74–75 °C). 

From one-pot CHB/Sonogashira coupling: the general procedure B was applied to 3-
bromobenzotrifluoride (279 μL, 450 mg, 2.0 mmol, 1 equiv). The borylation step was carried out with 
HBpin (436 μL, 384 mg, 3.00 mmol, 1.50 equiv) for 3 h. The Sonogashira coupling step was carried 
out with phenyl acetylene (242 μL, 225 mg, 2.20 mmol, 1.1 equiv) for 5 h. Gradient column 
chromatography (pentane:dichloromethane 4:1 → pentane:dichloromethane 1:1) furnished the 
desired product as orange yellow oil, which solidified on standing (473 mg, 64% yield, mp 74–75 °C). 

1H NMR (CDCl3, 300 MHz): δ 8.15 (m, 1 H), 8.00 (m, 1.0 Hz, 1 H), 7.86 (m, 1 H), 7.58–7.49 (m, 2 
H), 7.42–7.30 (m, 3 H), 1.37 (s, 12 H, 4 CH3 of Bpin). 13C-NMR {1H} (CDCl3, 125 MHz): δ 141.2 (CH), 
131.8 (2 CH), 130.8 (q, 3JC–F = 3.8 Hz, CH), 130.7 (q, 3JC–F = 3.8 Hz, CH), 130.6 (q, 2JC–F = 32.5 Hz, C), 128.8 
(CH), 128.5 (2 CH), 124.1 (q, 1JC–F = 273 Hz, CF3), 124.0 (C), 122.9 (C), 91.2 (C), 88.0 (C), 84.6 (2 C), 24.9 
(4 CH3 of Bpin); 11B-NMR (CDCl3, 96 MHz): δ 30.6; 19F-NMR (CDCl3, 282 MHz) δ −63.0; FT-IR (neat)  

ῦ max: 2980, 1601, 1493, 1369, 1306, 1277, 1169, 1130, 966, 898, 871, 847, 756, 704, 688 cm–1; GC-MS 
(EI) m/z (% relative intensity): M+ 372 (100), 357 (10), 286 (18), 272 (12); HRMS (FAB): m/z 372.1510 
[(M+); Calcd for C21H20BF3O2: 372.1508]. 

3-(Trimethylsilylethynyl)-5-(4,4,5,5-tetramethyl-1,3,2-dioxaborolane-2-yl)-toluene (13). 
From Sonogashira coupling of borylated aryl bromide: the general procedure A was applied to 

the borylated version of 3-bromotoluene (10, 297 mg, 1.0 mmol, 1 equiv) with trimethylsilyl acetylene 
(156 μL, 108 mg, 1.10 mmol, 1.1 equiv) as the coupling partner for 4 h. Column chromatography 
(pentane/ether 9:1, Rf 0.8) furnished the desired product as yellow oil (194 mg, 62% yield). 

From one-pot CHB/Sonogashira coupling: the general procedure B was applied to 3-
bromotoluene (122 μL, 171 mg, 1.0 mmol, 1 equiv). The borylation step was carried out with HBpin 
(218 μL, 192 mg, 1.50 mmol, 1.50 equiv) for 12 h. The Sonogashira coupling step was carried out with 
trimethylsilyl acetylene (156 μL, 108 mg, 1.10 mmol, 1.1 equiv) for 4 h. Column chromatography 
(pentane/ether 9:1, Rf 0.8) furnished the desired product as yellow oil (204 mg, 65% yield).  

1H NMR (CDCl3, 500 MHz): δ 7.74 (m, 1 H), 7.56 (m, 1 H), 7.38 (m, 1 H), 2.31 (m, 3 H), 1.34 (br s, 
12 H, 4 CH3 of Bpin), 0.22 (s, 9 H, 3 CH3 of TMS); 13C-NMR {1H} (CDCl3, 125 MHz): δ 137.3 (C), 135.7 
(CH), 135.5 (CH), 135.2 (CH), 122.7 (C), 105.4 (C), 93.8 (C), 84.1 (2 C), 25.0 (4 CH3 of Bpin), 21.1 (CH3), 
0.2 (3 CH3 of TMS); 11B-NMR (CDCl3, 160 MHz): δ 30.2; FT-IR (neat) ῦmax: 2978, 2154, 1591, 1383, 1365, 

max: 2978, 2930, 2799, 1587, 1489, 1429, 1386, 1269,
1143, 1010, 966, 846, 756, 704, 690 cm−1; GC-MS (EI) m/z (% relative intensity): M+ 347 (100), 289 (2), 247
(10); HRMS (FAB): m/z 347.2060 [(M+); Calcd for C22H26BNO2: 347.2057].

3-(Phenylethynyl)-5-(4,4,5,5-tetramethyl-1,3,2-dioxaborolane-2-yl)-chlorobenzene (18)

The general procedure B was applied to 3-bromochlorobenzene (118 µL, 191 mg, 1.0 mmol,
1 equiv). The borylation step was carried out with HBpin (290 µL, 256 mg, 2.00 mmol, 2.00 equiv) for
12 h. The Sonogashira coupling step was carried out with phenyl acetylene (121 µL, 112 mg, 1.10 mmol,
1.1 equiv) for 12 h. Column chromatography (pentane/dichloromethane 4:3, Rf 0.8) furnished the
desired product as a light yellow solid (117 mg, 37% yield, mp 45–46 ◦C).

1H-NMR (CDCl3, 300 MHz): δ 7.87 (dd, J = 1.6, 1.0 Hz, 1 H), 7.74 (dd, J = 2.2, 1.0 Hz, 1 H), 7.60
(dd, J = 2.2, 1.6 Hz, 1 H), 7.56–7.47 (m, 2 H), 7.40–7.32 (m, 3 H), 1.36 (br s, 12 H, 4 CH3 of Bpin); 13C
NMR {1H} (CDCl3, 75 MHz): δ 136.2 (CH), 134.4 (CH), 134.1 (C), 133.8 (CH), 131.8 (2 CH), 128.7 (CH),
128.5 (2 CH), 124.9 (C), 123.1 (C), 90.7 (C), 88.2 (C), 84.5 (2 C), 25.0 (4 CH3 of Bpin); 11B NMR (CDCl3,

160 MHz): δ 29.9; FT-IR (neat)
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being concentrated under reduced pressure on a rotary evaporator. The crude material was then 
subjected to column chromatography. 

3.4. Analytical data of products 12–25 

3-(Phenylethynyl)-5-(4,4,5,5-tetramethyl-1,3,2-dioxaborolane-2-yl)-benzotrifluoride (12) 
From Sonogashira coupling of borylated aryl bromide: the general procedure A was applied to 

the borylated version of 3-bromobenzotrifluoride (9, 351 mg, 1.0 mmol, 1 equiv) with phenyl 
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product as orange yellow oil, which solidified on standing (280 mg, 75% yield, mp 74–75 °C). 

From one-pot CHB/Sonogashira coupling: the general procedure B was applied to 3-
bromobenzotrifluoride (279 μL, 450 mg, 2.0 mmol, 1 equiv). The borylation step was carried out with 
HBpin (436 μL, 384 mg, 3.00 mmol, 1.50 equiv) for 3 h. The Sonogashira coupling step was carried 
out with phenyl acetylene (242 μL, 225 mg, 2.20 mmol, 1.1 equiv) for 5 h. Gradient column 
chromatography (pentane:dichloromethane 4:1 → pentane:dichloromethane 1:1) furnished the 
desired product as orange yellow oil, which solidified on standing (473 mg, 64% yield, mp 74–75 °C). 

1H NMR (CDCl3, 300 MHz): δ 8.15 (m, 1 H), 8.00 (m, 1.0 Hz, 1 H), 7.86 (m, 1 H), 7.58–7.49 (m, 2 
H), 7.42–7.30 (m, 3 H), 1.37 (s, 12 H, 4 CH3 of Bpin). 13C-NMR {1H} (CDCl3, 125 MHz): δ 141.2 (CH), 
131.8 (2 CH), 130.8 (q, 3JC–F = 3.8 Hz, CH), 130.7 (q, 3JC–F = 3.8 Hz, CH), 130.6 (q, 2JC–F = 32.5 Hz, C), 128.8 
(CH), 128.5 (2 CH), 124.1 (q, 1JC–F = 273 Hz, CF3), 124.0 (C), 122.9 (C), 91.2 (C), 88.0 (C), 84.6 (2 C), 24.9 
(4 CH3 of Bpin); 11B-NMR (CDCl3, 96 MHz): δ 30.6; 19F-NMR (CDCl3, 282 MHz) δ −63.0; FT-IR (neat)  

ῦ max: 2980, 1601, 1493, 1369, 1306, 1277, 1169, 1130, 966, 898, 871, 847, 756, 704, 688 cm–1; GC-MS 
(EI) m/z (% relative intensity): M+ 372 (100), 357 (10), 286 (18), 272 (12); HRMS (FAB): m/z 372.1510 
[(M+); Calcd for C21H20BF3O2: 372.1508]. 

3-(Trimethylsilylethynyl)-5-(4,4,5,5-tetramethyl-1,3,2-dioxaborolane-2-yl)-toluene (13). 
From Sonogashira coupling of borylated aryl bromide: the general procedure A was applied to 

the borylated version of 3-bromotoluene (10, 297 mg, 1.0 mmol, 1 equiv) with trimethylsilyl acetylene 
(156 μL, 108 mg, 1.10 mmol, 1.1 equiv) as the coupling partner for 4 h. Column chromatography 
(pentane/ether 9:1, Rf 0.8) furnished the desired product as yellow oil (194 mg, 62% yield). 

From one-pot CHB/Sonogashira coupling: the general procedure B was applied to 3-
bromotoluene (122 μL, 171 mg, 1.0 mmol, 1 equiv). The borylation step was carried out with HBpin 
(218 μL, 192 mg, 1.50 mmol, 1.50 equiv) for 12 h. The Sonogashira coupling step was carried out with 
trimethylsilyl acetylene (156 μL, 108 mg, 1.10 mmol, 1.1 equiv) for 4 h. Column chromatography 
(pentane/ether 9:1, Rf 0.8) furnished the desired product as yellow oil (204 mg, 65% yield).  

1H NMR (CDCl3, 500 MHz): δ 7.74 (m, 1 H), 7.56 (m, 1 H), 7.38 (m, 1 H), 2.31 (m, 3 H), 1.34 (br s, 
12 H, 4 CH3 of Bpin), 0.22 (s, 9 H, 3 CH3 of TMS); 13C-NMR {1H} (CDCl3, 125 MHz): δ 137.3 (C), 135.7 
(CH), 135.5 (CH), 135.2 (CH), 122.7 (C), 105.4 (C), 93.8 (C), 84.1 (2 C), 25.0 (4 CH3 of Bpin), 21.1 (CH3), 
0.2 (3 CH3 of TMS); 11B-NMR (CDCl3, 160 MHz): δ 30.2; FT-IR (neat) ῦmax: 2978, 2154, 1591, 1383, 1365, 

max: 2978, 1562, 1412, 1356, 1142, 966, 862, 756, 700, 690 cm−1; GC-MS
(EI) m/z (% relative intensity): M+ 338 (100), 340(33), 324 (18), 280 (5), 252 (59); HRMS (FAB): m/z
338.1247 [(M+); Calcd for C20H20BClO2: 338.1245].

3-(Phenylethynyl)-5-(4,4,5,5-tetramethyl-1,3,2-dioxaborolane-2-yl)-benzonitrile (19)

The general procedure B was applied to 3-bromobenzonitrile (910 mg, 5.0 mmol, 1 equiv).
The borylation step was carried out with HBpin (1.09 mL, 960 mg, 7.5 mmol, 1.5 equiv), [Ir(OMe)(COD)]2

(50 mg, 0.075 mmol, 3 mol % Ir), and dtbpy (40 mg, 0.15 mmol, 3 mol %) at room temperature for 12 h.
The Sonogashira coupling step was carried out with phenyl acetylene (604 µL, 562 mg, 5.50 mmol,
1.1 equiv) for 24 h. After completion, 20 mL of water were added to the reaction mixture. The reaction
mixture was extracted with ether (100 mL). The combined ether extractions were washed with brine
(25 mL), followed by water (20 mL) and dried over MgSO4. Filtration and concentration under reduced
pressure on a rotary evaporator furnished the desired product as a light yellow solid (1.652 g, 71%
yield, mp 83–85 ◦C).

1H-NMR (CDCl3, 300 MHz): δ 8.16 (dd, J = 1.7, 1.1 Hz, 1 H), 8.01 (dd, J = 1.7, 1.1 Hz, 1 H), 7.85 (t,
J = 1.7 Hz, 1 H), 7.59–7.46 (m, 2 H), 7.42–7.31 (m, 3 H), 1.36 (br s, 12 H, 4 CH3 of Bpin); 13C-NMR {1H}
(CDCl3, 75 MHz): δ 141.8 (CH), 137.5 (CH), 136.9 (CH), 131.9 (2 CH), 129.0 (CH), 128.6 (2 CH), 124.6
(C), 122.6 (C), 118.2 (C), 112.7 (C), 91.9 (C), 87.2 (C), 84.9 (2 C), 25.0 (4 CH3 of Bpin); 11B NMR (CDCl3,

160 MHz): δ 29.7; FT-IR (neat)
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1H NMR (CDCl3, 500 MHz): δ 7.74 (m, 1 H), 7.56 (m, 1 H), 7.38 (m, 1 H), 2.31 (m, 3 H), 1.34 (br s, 
12 H, 4 CH3 of Bpin), 0.22 (s, 9 H, 3 CH3 of TMS); 13C-NMR {1H} (CDCl3, 125 MHz): δ 137.3 (C), 135.7 
(CH), 135.5 (CH), 135.2 (CH), 122.7 (C), 105.4 (C), 93.8 (C), 84.1 (2 C), 25.0 (4 CH3 of Bpin), 21.1 (CH3), 
0.2 (3 CH3 of TMS); 11B-NMR (CDCl3, 160 MHz): δ 30.2; FT-IR (neat) ῦmax: 2978, 2154, 1591, 1383, 1365, 

max: 3061, 2980, 2932, 2231 (s), 2212 (w), 1589, 1491, 1415, 1377, 1329,
1298, 1143, 1122, 966, 897, 848, 756, 698, 690 cm−1; GC-MS (EI) m/z (% relative intensity): M+ 329 (100),
314 (8), 244 (46), 230 (27); HRMS (FAB): m/z 330.1668 [(M+); Calcd for C21H21BNO2: 330.1665].

3-(Trimethylsilylethynyl)-5-(4,4,5,5-tetramethyl-1,3,2-dioxaborolane-2-yl)-benzonitrile (20)

The general procedure B was applied to 3-bromobenzonitrile (182 mg, 1.0 mmol, 1 equiv).
The borylation step was carried out with B2pin2 (153 mg, 0.60 mmol, 1.2 equiv of boron),
[Ir(OMe)(COD)]2 (10 mg, 0.015 mmol, 3 mol % Ir), and dtbpy (8 mg, 0.03 mmol, 3 mol %) at
room temperature for 2 h. The Sonogashira coupling step was carried out with trimethylsilyl acetylene
(156 µL, 108 mg, 1.10 mmol, 1.1 equiv) for 2 h. Column chromatography (pentane/ethylacetate 9:1, Rf
0.7) furnished the desired product as yellow oil (154 mg, 47% yield).
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1H-NMR (CDCl3, 500 MHz): δ 8.07 (dd, J = 1.7, 1.1 Hz, 1 H), 7.98 (dd, J = 1.7, 1.1 Hz, 1 H), 7.77 (t,
J = 1.7 Hz, 1 H), 1.34 (br s, 12 H, 4 CH3 of Bpin), 0.24 (s, 9 H, 3 CH3 of TMS); 13C-NMR {1H} (CDCl3, 125
MHz): δ 142.1 (CH), 137.7 (CH), 137.3 (CH), 124.3 (C), 118.1 (C), 112.5 (C), 102.5 (C), 97.3 (C), 84.8 (2 C),
25.0 (4 CH3 of Bpin), −0.1 (3 CH3 of TMS); 11B-NMR (CDCl3, 96 MHz): δ 30.4; FT-IR (neat)
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3.3. General Procedure B: One-Pot CHB/Sonogashira Reaction 

In a glove box, (Ind)Ir(cod) (8 mg, 0.02 mmol, 2 mol % Ir), dmpe (3 mg, 0.02 mmol, 2 mol %), 
HBpin (256 mg, 2.0 mmol, 2 equiv), and aryl bromide (1.0 mmol, 1 equiv) were transferred into a 
Schlenk flask equipped with a magnetic stirring bar. The flask was stoppered, removed from the 
glove box, and stirred at 150 °C until the borylation was judged completely by GC-FID/MS. The 
reaction mixture was allowed to cool to room temperature and subsequently placed under high 
vacuum for 1–2 h. The Schlenk flask was brought into the dry box and 1,4-diazabicyclo[2.2.2]octane 
[DABCO] (225 mg, 2.0 mmol, 2 equiv), allylpalladium chloride dimer (9 mg, 0.025 mmol, 2.5 mol %), 
Pt-Bu3 (20 mg, 0.1 mmol, 10 mol %), alkyne (1.1–1.3 mmol, 1.1–1.3 equiv) and acetonitrile (3 mL) were 
added [50]. The flask was then stoppered and stirred at room temperature until the Sonogashira 
coupling was judged completely by GC-FID. After completion, 10 mL of water were added to the 
reaction mixture. The reaction mixture was extracted with ether (10 mL × 3). The combined ether 
extractions were washed with brine (10 mL), followed by water (10 mL), dried over MgSO4 before 
being concentrated under reduced pressure on a rotary evaporator. The crude material was then 
subjected to column chromatography. 

3.4. Analytical data of products 12–25 

3-(Phenylethynyl)-5-(4,4,5,5-tetramethyl-1,3,2-dioxaborolane-2-yl)-benzotrifluoride (12) 
From Sonogashira coupling of borylated aryl bromide: the general procedure A was applied to 

the borylated version of 3-bromobenzotrifluoride (9, 351 mg, 1.0 mmol, 1 equiv) with phenyl 
acetylene (121 μL, 112 mg, 1.10 mmol, 1.1 equiv) as the coupling partner for 10 h. The crude mixture 
was concentrated and passed through a plug of silica gel (CH2Cl2 as eluent) to furnish the desired 
product as orange yellow oil, which solidified on standing (280 mg, 75% yield, mp 74–75 °C). 

From one-pot CHB/Sonogashira coupling: the general procedure B was applied to 3-
bromobenzotrifluoride (279 μL, 450 mg, 2.0 mmol, 1 equiv). The borylation step was carried out with 
HBpin (436 μL, 384 mg, 3.00 mmol, 1.50 equiv) for 3 h. The Sonogashira coupling step was carried 
out with phenyl acetylene (242 μL, 225 mg, 2.20 mmol, 1.1 equiv) for 5 h. Gradient column 
chromatography (pentane:dichloromethane 4:1 → pentane:dichloromethane 1:1) furnished the 
desired product as orange yellow oil, which solidified on standing (473 mg, 64% yield, mp 74–75 °C). 

1H NMR (CDCl3, 300 MHz): δ 8.15 (m, 1 H), 8.00 (m, 1.0 Hz, 1 H), 7.86 (m, 1 H), 7.58–7.49 (m, 2 
H), 7.42–7.30 (m, 3 H), 1.37 (s, 12 H, 4 CH3 of Bpin). 13C-NMR {1H} (CDCl3, 125 MHz): δ 141.2 (CH), 
131.8 (2 CH), 130.8 (q, 3JC–F = 3.8 Hz, CH), 130.7 (q, 3JC–F = 3.8 Hz, CH), 130.6 (q, 2JC–F = 32.5 Hz, C), 128.8 
(CH), 128.5 (2 CH), 124.1 (q, 1JC–F = 273 Hz, CF3), 124.0 (C), 122.9 (C), 91.2 (C), 88.0 (C), 84.6 (2 C), 24.9 
(4 CH3 of Bpin); 11B-NMR (CDCl3, 96 MHz): δ 30.6; 19F-NMR (CDCl3, 282 MHz) δ −63.0; FT-IR (neat)  

ῦ max: 2980, 1601, 1493, 1369, 1306, 1277, 1169, 1130, 966, 898, 871, 847, 756, 704, 688 cm–1; GC-MS 
(EI) m/z (% relative intensity): M+ 372 (100), 357 (10), 286 (18), 272 (12); HRMS (FAB): m/z 372.1510 
[(M+); Calcd for C21H20BF3O2: 372.1508]. 

3-(Trimethylsilylethynyl)-5-(4,4,5,5-tetramethyl-1,3,2-dioxaborolane-2-yl)-toluene (13). 
From Sonogashira coupling of borylated aryl bromide: the general procedure A was applied to 

the borylated version of 3-bromotoluene (10, 297 mg, 1.0 mmol, 1 equiv) with trimethylsilyl acetylene 
(156 μL, 108 mg, 1.10 mmol, 1.1 equiv) as the coupling partner for 4 h. Column chromatography 
(pentane/ether 9:1, Rf 0.8) furnished the desired product as yellow oil (194 mg, 62% yield). 

From one-pot CHB/Sonogashira coupling: the general procedure B was applied to 3-
bromotoluene (122 μL, 171 mg, 1.0 mmol, 1 equiv). The borylation step was carried out with HBpin 
(218 μL, 192 mg, 1.50 mmol, 1.50 equiv) for 12 h. The Sonogashira coupling step was carried out with 
trimethylsilyl acetylene (156 μL, 108 mg, 1.10 mmol, 1.1 equiv) for 4 h. Column chromatography 
(pentane/ether 9:1, Rf 0.8) furnished the desired product as yellow oil (204 mg, 65% yield).  

1H NMR (CDCl3, 500 MHz): δ 7.74 (m, 1 H), 7.56 (m, 1 H), 7.38 (m, 1 H), 2.31 (m, 3 H), 1.34 (br s, 
12 H, 4 CH3 of Bpin), 0.22 (s, 9 H, 3 CH3 of TMS); 13C-NMR {1H} (CDCl3, 125 MHz): δ 137.3 (C), 135.7 
(CH), 135.5 (CH), 135.2 (CH), 122.7 (C), 105.4 (C), 93.8 (C), 84.1 (2 C), 25.0 (4 CH3 of Bpin), 21.1 (CH3), 
0.2 (3 CH3 of TMS); 11B-NMR (CDCl3, 160 MHz): δ 30.2; FT-IR (neat) ῦmax: 2978, 2154, 1591, 1383, 1365, 

max: 2961,
2235, 2158, 1589, 1369, 1250, 1143, 968, 954, 846, 760, 700 cm−1; GC-MS (EI) m/z (% relative intensity):
M+ 325 (3), 311 (100), 210 (3); HRMS (FAB): m/z 326.1748 [(M+); Calcd for C18H25BO2SiN: 326.17477].

3-(Phenylethynyl)-5-(4,4,5,5-tetramethyl-1,3,2-dioxaborolane-2-yl)-o-xylene (21)

The general procedure B was applied to 3-bromo-o-xylene (136 µL, 185 mg, 1.0 mmol, 1 equiv).
The borylation step was carried out with HBpin (290 µL, 256 mg, 2.00 mmol, 2.00 equiv) for 10 h.
The Sonogashira coupling step was carried out with phenyl acetylene (143 µL, 132 mg, 1.30 mmol,
1.3 equiv) for 18 h. Column chromatography (pentane/dichloromethane 1:2, Rf 0.8) furnished the
desired product as a yellow solid (255 mg, 77% yield, mp 104–105 ◦C).

1H NMR (CDCl3, 500 MHz): δ 7.90 (m, 1 H), 7.59 (m, 1 H), 7.57–7.53 (m, 2 H), 7.40–7.30 (m, 3 H),
2.52 (s, 3 H), 2.33 (s, 3 H), 1.38 (br s, 12 H, 4 CH3 of Bpin); 13C NMR {1H} (CDCl3, 125 MHz): δ 141.8 (C),
136.6 (CH), 136.2 (C), 136.0 (CH), 131.5 (2 CH), 128.4 (2 CH), 128.1 (CH), 123.9 (C), 123.0 (C), 92.9 (C),
89.1 (C), 83.9 (2 C), 25.0 (4 CH3 of Bpin), 20.2 (CH3), 17.9 (CH3); 11B NMR (CDCl3, 96 MHz): δ 30.7;

FT-IR (neat)
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In a glove box, (Ind)Ir(cod) (8 mg, 0.02 mmol, 2 mol % Ir), dmpe (3 mg, 0.02 mmol, 2 mol %), 
HBpin (256 mg, 2.0 mmol, 2 equiv), and aryl bromide (1.0 mmol, 1 equiv) were transferred into a 
Schlenk flask equipped with a magnetic stirring bar. The flask was stoppered, removed from the 
glove box, and stirred at 150 °C until the borylation was judged completely by GC-FID/MS. The 
reaction mixture was allowed to cool to room temperature and subsequently placed under high 
vacuum for 1–2 h. The Schlenk flask was brought into the dry box and 1,4-diazabicyclo[2.2.2]octane 
[DABCO] (225 mg, 2.0 mmol, 2 equiv), allylpalladium chloride dimer (9 mg, 0.025 mmol, 2.5 mol %), 
Pt-Bu3 (20 mg, 0.1 mmol, 10 mol %), alkyne (1.1–1.3 mmol, 1.1–1.3 equiv) and acetonitrile (3 mL) were 
added [50]. The flask was then stoppered and stirred at room temperature until the Sonogashira 
coupling was judged completely by GC-FID. After completion, 10 mL of water were added to the 
reaction mixture. The reaction mixture was extracted with ether (10 mL × 3). The combined ether 
extractions were washed with brine (10 mL), followed by water (10 mL), dried over MgSO4 before 
being concentrated under reduced pressure on a rotary evaporator. The crude material was then 
subjected to column chromatography. 

3.4. Analytical data of products 12–25 

3-(Phenylethynyl)-5-(4,4,5,5-tetramethyl-1,3,2-dioxaborolane-2-yl)-benzotrifluoride (12) 
From Sonogashira coupling of borylated aryl bromide: the general procedure A was applied to 

the borylated version of 3-bromobenzotrifluoride (9, 351 mg, 1.0 mmol, 1 equiv) with phenyl 
acetylene (121 μL, 112 mg, 1.10 mmol, 1.1 equiv) as the coupling partner for 10 h. The crude mixture 
was concentrated and passed through a plug of silica gel (CH2Cl2 as eluent) to furnish the desired 
product as orange yellow oil, which solidified on standing (280 mg, 75% yield, mp 74–75 °C). 

From one-pot CHB/Sonogashira coupling: the general procedure B was applied to 3-
bromobenzotrifluoride (279 μL, 450 mg, 2.0 mmol, 1 equiv). The borylation step was carried out with 
HBpin (436 μL, 384 mg, 3.00 mmol, 1.50 equiv) for 3 h. The Sonogashira coupling step was carried 
out with phenyl acetylene (242 μL, 225 mg, 2.20 mmol, 1.1 equiv) for 5 h. Gradient column 
chromatography (pentane:dichloromethane 4:1 → pentane:dichloromethane 1:1) furnished the 
desired product as orange yellow oil, which solidified on standing (473 mg, 64% yield, mp 74–75 °C). 

1H NMR (CDCl3, 300 MHz): δ 8.15 (m, 1 H), 8.00 (m, 1.0 Hz, 1 H), 7.86 (m, 1 H), 7.58–7.49 (m, 2 
H), 7.42–7.30 (m, 3 H), 1.37 (s, 12 H, 4 CH3 of Bpin). 13C-NMR {1H} (CDCl3, 125 MHz): δ 141.2 (CH), 
131.8 (2 CH), 130.8 (q, 3JC–F = 3.8 Hz, CH), 130.7 (q, 3JC–F = 3.8 Hz, CH), 130.6 (q, 2JC–F = 32.5 Hz, C), 128.8 
(CH), 128.5 (2 CH), 124.1 (q, 1JC–F = 273 Hz, CF3), 124.0 (C), 122.9 (C), 91.2 (C), 88.0 (C), 84.6 (2 C), 24.9 
(4 CH3 of Bpin); 11B-NMR (CDCl3, 96 MHz): δ 30.6; 19F-NMR (CDCl3, 282 MHz) δ −63.0; FT-IR (neat)  

ῦ max: 2980, 1601, 1493, 1369, 1306, 1277, 1169, 1130, 966, 898, 871, 847, 756, 704, 688 cm–1; GC-MS 
(EI) m/z (% relative intensity): M+ 372 (100), 357 (10), 286 (18), 272 (12); HRMS (FAB): m/z 372.1510 
[(M+); Calcd for C21H20BF3O2: 372.1508]. 

3-(Trimethylsilylethynyl)-5-(4,4,5,5-tetramethyl-1,3,2-dioxaborolane-2-yl)-toluene (13). 
From Sonogashira coupling of borylated aryl bromide: the general procedure A was applied to 

the borylated version of 3-bromotoluene (10, 297 mg, 1.0 mmol, 1 equiv) with trimethylsilyl acetylene 
(156 μL, 108 mg, 1.10 mmol, 1.1 equiv) as the coupling partner for 4 h. Column chromatography 
(pentane/ether 9:1, Rf 0.8) furnished the desired product as yellow oil (194 mg, 62% yield). 

From one-pot CHB/Sonogashira coupling: the general procedure B was applied to 3-
bromotoluene (122 μL, 171 mg, 1.0 mmol, 1 equiv). The borylation step was carried out with HBpin 
(218 μL, 192 mg, 1.50 mmol, 1.50 equiv) for 12 h. The Sonogashira coupling step was carried out with 
trimethylsilyl acetylene (156 μL, 108 mg, 1.10 mmol, 1.1 equiv) for 4 h. Column chromatography 
(pentane/ether 9:1, Rf 0.8) furnished the desired product as yellow oil (204 mg, 65% yield).  

1H NMR (CDCl3, 500 MHz): δ 7.74 (m, 1 H), 7.56 (m, 1 H), 7.38 (m, 1 H), 2.31 (m, 3 H), 1.34 (br s, 
12 H, 4 CH3 of Bpin), 0.22 (s, 9 H, 3 CH3 of TMS); 13C-NMR {1H} (CDCl3, 125 MHz): δ 137.3 (C), 135.7 
(CH), 135.5 (CH), 135.2 (CH), 122.7 (C), 105.4 (C), 93.8 (C), 84.1 (2 C), 25.0 (4 CH3 of Bpin), 21.1 (CH3), 
0.2 (3 CH3 of TMS); 11B-NMR (CDCl3, 160 MHz): δ 30.2; FT-IR (neat) ῦmax: 2978, 2154, 1591, 1383, 1365, 

max: 2978, 1398, 1389, 1143, 966, 854, 756, 686 cm−1; GC-MS (EI) m/z (% relative intensity):
M+ 332 (100), 318 (14), 275 (6), 247 (8), 232 (20), 218 (12); HRMS (FAB): m/z 332.1948 [(M+); Calcd for
C22H25BO2: 332.19477].

2-(Phenylethynyl)-5-(4,4,5,5-tetramethyl-1,3,2-dioxaborolane-2-yl)-m-xylene (22)

The general procedure B was applied to 2-bromo-m-xylene (134 µL, 185 mg, 1.0 mmol, 1 equiv).
The borylation step was carried out with HBpin (290 µL, 256 mg, 2.00 mmol, 2.00 equiv) for 4 h.
The Sonogashira coupling step was carried out with phenyl acetylene (143 µL, 132 mg, 1.30 mmol,
1.3 equiv) for 40 h. Gradient column chromatography (hexanes/dichloromethane 2:1 → hexanes:
dichloromethane 0:1) furnished the desired product as yellow oil (233 mg, 70% yield).

1H-NMR (CDCl3, 500 MHz): δ 7.57–7.53 (m, 2 H), 7.53 (m, 2 H), 7.39–7.32 (m, 3 H), 2.52 (t, J =

0.7 Hz, 6 H), 1.36 (br s, 12 H, 4 CH3 of Bpin); 13C-NMR {1H} (CDCl3, 125 MHz): δ 139.5 (2 C), 133.0 (2
CH), 131.6 (2 CH), 128.5 (CH), 128.4 (CH), 126.0 (C), 123.8 (C), 99.2 (C), 87.5 (C), 84.0 (2 C), 25.0 (4 CH3

of Bpin), 21.0 (2 CH3); 11B-NMR ((CD3)2CO, 96 MHz): δ 30.6; FT-IR (neat)
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HBpin (256 mg, 2.0 mmol, 2 equiv), and aryl bromide (1.0 mmol, 1 equiv) were transferred into a 
Schlenk flask equipped with a magnetic stirring bar. The flask was stoppered, removed from the 
glove box, and stirred at 150 °C until the borylation was judged completely by GC-FID/MS. The 
reaction mixture was allowed to cool to room temperature and subsequently placed under high 
vacuum for 1–2 h. The Schlenk flask was brought into the dry box and 1,4-diazabicyclo[2.2.2]octane 
[DABCO] (225 mg, 2.0 mmol, 2 equiv), allylpalladium chloride dimer (9 mg, 0.025 mmol, 2.5 mol %), 
Pt-Bu3 (20 mg, 0.1 mmol, 10 mol %), alkyne (1.1–1.3 mmol, 1.1–1.3 equiv) and acetonitrile (3 mL) were 
added [50]. The flask was then stoppered and stirred at room temperature until the Sonogashira 
coupling was judged completely by GC-FID. After completion, 10 mL of water were added to the 
reaction mixture. The reaction mixture was extracted with ether (10 mL × 3). The combined ether 
extractions were washed with brine (10 mL), followed by water (10 mL), dried over MgSO4 before 
being concentrated under reduced pressure on a rotary evaporator. The crude material was then 
subjected to column chromatography. 

3.4. Analytical data of products 12–25 

3-(Phenylethynyl)-5-(4,4,5,5-tetramethyl-1,3,2-dioxaborolane-2-yl)-benzotrifluoride (12) 
From Sonogashira coupling of borylated aryl bromide: the general procedure A was applied to 

the borylated version of 3-bromobenzotrifluoride (9, 351 mg, 1.0 mmol, 1 equiv) with phenyl 
acetylene (121 μL, 112 mg, 1.10 mmol, 1.1 equiv) as the coupling partner for 10 h. The crude mixture 
was concentrated and passed through a plug of silica gel (CH2Cl2 as eluent) to furnish the desired 
product as orange yellow oil, which solidified on standing (280 mg, 75% yield, mp 74–75 °C). 

From one-pot CHB/Sonogashira coupling: the general procedure B was applied to 3-
bromobenzotrifluoride (279 μL, 450 mg, 2.0 mmol, 1 equiv). The borylation step was carried out with 
HBpin (436 μL, 384 mg, 3.00 mmol, 1.50 equiv) for 3 h. The Sonogashira coupling step was carried 
out with phenyl acetylene (242 μL, 225 mg, 2.20 mmol, 1.1 equiv) for 5 h. Gradient column 
chromatography (pentane:dichloromethane 4:1 → pentane:dichloromethane 1:1) furnished the 
desired product as orange yellow oil, which solidified on standing (473 mg, 64% yield, mp 74–75 °C). 

1H NMR (CDCl3, 300 MHz): δ 8.15 (m, 1 H), 8.00 (m, 1.0 Hz, 1 H), 7.86 (m, 1 H), 7.58–7.49 (m, 2 
H), 7.42–7.30 (m, 3 H), 1.37 (s, 12 H, 4 CH3 of Bpin). 13C-NMR {1H} (CDCl3, 125 MHz): δ 141.2 (CH), 
131.8 (2 CH), 130.8 (q, 3JC–F = 3.8 Hz, CH), 130.7 (q, 3JC–F = 3.8 Hz, CH), 130.6 (q, 2JC–F = 32.5 Hz, C), 128.8 
(CH), 128.5 (2 CH), 124.1 (q, 1JC–F = 273 Hz, CF3), 124.0 (C), 122.9 (C), 91.2 (C), 88.0 (C), 84.6 (2 C), 24.9 
(4 CH3 of Bpin); 11B-NMR (CDCl3, 96 MHz): δ 30.6; 19F-NMR (CDCl3, 282 MHz) δ −63.0; FT-IR (neat)  

ῦ max: 2980, 1601, 1493, 1369, 1306, 1277, 1169, 1130, 966, 898, 871, 847, 756, 704, 688 cm–1; GC-MS 
(EI) m/z (% relative intensity): M+ 372 (100), 357 (10), 286 (18), 272 (12); HRMS (FAB): m/z 372.1510 
[(M+); Calcd for C21H20BF3O2: 372.1508]. 

3-(Trimethylsilylethynyl)-5-(4,4,5,5-tetramethyl-1,3,2-dioxaborolane-2-yl)-toluene (13). 
From Sonogashira coupling of borylated aryl bromide: the general procedure A was applied to 

the borylated version of 3-bromotoluene (10, 297 mg, 1.0 mmol, 1 equiv) with trimethylsilyl acetylene 
(156 μL, 108 mg, 1.10 mmol, 1.1 equiv) as the coupling partner for 4 h. Column chromatography 
(pentane/ether 9:1, Rf 0.8) furnished the desired product as yellow oil (194 mg, 62% yield). 

From one-pot CHB/Sonogashira coupling: the general procedure B was applied to 3-
bromotoluene (122 μL, 171 mg, 1.0 mmol, 1 equiv). The borylation step was carried out with HBpin 
(218 μL, 192 mg, 1.50 mmol, 1.50 equiv) for 12 h. The Sonogashira coupling step was carried out with 
trimethylsilyl acetylene (156 μL, 108 mg, 1.10 mmol, 1.1 equiv) for 4 h. Column chromatography 
(pentane/ether 9:1, Rf 0.8) furnished the desired product as yellow oil (204 mg, 65% yield).  

1H NMR (CDCl3, 500 MHz): δ 7.74 (m, 1 H), 7.56 (m, 1 H), 7.38 (m, 1 H), 2.31 (m, 3 H), 1.34 (br s, 
12 H, 4 CH3 of Bpin), 0.22 (s, 9 H, 3 CH3 of TMS); 13C-NMR {1H} (CDCl3, 125 MHz): δ 137.3 (C), 135.7 
(CH), 135.5 (CH), 135.2 (CH), 122.7 (C), 105.4 (C), 93.8 (C), 84.1 (2 C), 25.0 (4 CH3 of Bpin), 21.1 (CH3), 
0.2 (3 CH3 of TMS); 11B-NMR (CDCl3, 160 MHz): δ 30.2; FT-IR (neat) ῦmax: 2978, 2154, 1591, 1383, 1365, 

max: 2978, 1606, 1385, 1365,
1315, 1238, 1143, 856, 756, 686 cm−1; GC-MS (EI) m/z (% relative intensity): M+ 332 (100), 318 (5), 247
(22), 233 (16), 218 (9); HRMS (FAB): m/z 332.1950 [(M+); Calcd for C22H25BO2: 332.1948].

1,3-Bis-(trimethylsilylethynyl)-5-(4,4,5,5-tetramethyl-1,3,2-dioxaborolane-2-yl)-benzene (23)

The general procedure B was applied to 1,3-di-bromobenzene (121 µL, 236 mg, 1.0 mmol, 1 equiv).
The borylation step was carried out with HBpin (218 µL, 218 mg, 1.50 mmol, 1.50 equiv) for 8 h.
The Sonogashira coupling step was carried out with trimethylsilyl acetylene (312 µL, 216 mg, 2.20 mmol,
2.2 equiv) for 2 h. Column chromatography (pentane/dichloromethane 2:1, Rf 0.8) furnished the desired
product as yellow oil (212 mg, 54% yield).

1H-NMR (CDCl3, 500 MHz): δ 7.84 (d, J = 1.7 Hz, 2 H), 7.64 (t, J = 1.7 Hz, 1 H), 1.32 (br s, 12 H,
4 CH3 of Bpin), 0.22 (s, 18 H, 6 CH3 of 2 TMS); 13C-NMR {1H} (CDCl3, 125 MHz): δ 138.1 (2 CH), 137.6
(CH), 123.1 (2 C), 104.2 (C), 94.9 (C), 84.3 (2 C), 25.0 (4 CH3 of Bpin), 0.1 (6 CH3 of 2 TMS); 11B NMR

(CDCl3, 160 MHz): δ 29.7 (trace unidentified organoboronate at δ 33.9); FT-IR (neat)
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added [50]. The flask was then stoppered and stirred at room temperature until the Sonogashira 
coupling was judged completely by GC-FID. After completion, 10 mL of water were added to the 
reaction mixture. The reaction mixture was extracted with ether (10 mL × 3). The combined ether 
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3-(Phenylethynyl)-5-(4,4,5,5-tetramethyl-1,3,2-dioxaborolane-2-yl)-benzotrifluoride (12) 
From Sonogashira coupling of borylated aryl bromide: the general procedure A was applied to 

the borylated version of 3-bromobenzotrifluoride (9, 351 mg, 1.0 mmol, 1 equiv) with phenyl 
acetylene (121 μL, 112 mg, 1.10 mmol, 1.1 equiv) as the coupling partner for 10 h. The crude mixture 
was concentrated and passed through a plug of silica gel (CH2Cl2 as eluent) to furnish the desired 
product as orange yellow oil, which solidified on standing (280 mg, 75% yield, mp 74–75 °C). 

From one-pot CHB/Sonogashira coupling: the general procedure B was applied to 3-
bromobenzotrifluoride (279 μL, 450 mg, 2.0 mmol, 1 equiv). The borylation step was carried out with 
HBpin (436 μL, 384 mg, 3.00 mmol, 1.50 equiv) for 3 h. The Sonogashira coupling step was carried 
out with phenyl acetylene (242 μL, 225 mg, 2.20 mmol, 1.1 equiv) for 5 h. Gradient column 
chromatography (pentane:dichloromethane 4:1 → pentane:dichloromethane 1:1) furnished the 
desired product as orange yellow oil, which solidified on standing (473 mg, 64% yield, mp 74–75 °C). 

1H NMR (CDCl3, 300 MHz): δ 8.15 (m, 1 H), 8.00 (m, 1.0 Hz, 1 H), 7.86 (m, 1 H), 7.58–7.49 (m, 2 
H), 7.42–7.30 (m, 3 H), 1.37 (s, 12 H, 4 CH3 of Bpin). 13C-NMR {1H} (CDCl3, 125 MHz): δ 141.2 (CH), 
131.8 (2 CH), 130.8 (q, 3JC–F = 3.8 Hz, CH), 130.7 (q, 3JC–F = 3.8 Hz, CH), 130.6 (q, 2JC–F = 32.5 Hz, C), 128.8 
(CH), 128.5 (2 CH), 124.1 (q, 1JC–F = 273 Hz, CF3), 124.0 (C), 122.9 (C), 91.2 (C), 88.0 (C), 84.6 (2 C), 24.9 
(4 CH3 of Bpin); 11B-NMR (CDCl3, 96 MHz): δ 30.6; 19F-NMR (CDCl3, 282 MHz) δ −63.0; FT-IR (neat)  

ῦ max: 2980, 1601, 1493, 1369, 1306, 1277, 1169, 1130, 966, 898, 871, 847, 756, 704, 688 cm–1; GC-MS 
(EI) m/z (% relative intensity): M+ 372 (100), 357 (10), 286 (18), 272 (12); HRMS (FAB): m/z 372.1510 
[(M+); Calcd for C21H20BF3O2: 372.1508]. 

3-(Trimethylsilylethynyl)-5-(4,4,5,5-tetramethyl-1,3,2-dioxaborolane-2-yl)-toluene (13). 
From Sonogashira coupling of borylated aryl bromide: the general procedure A was applied to 

the borylated version of 3-bromotoluene (10, 297 mg, 1.0 mmol, 1 equiv) with trimethylsilyl acetylene 
(156 μL, 108 mg, 1.10 mmol, 1.1 equiv) as the coupling partner for 4 h. Column chromatography 
(pentane/ether 9:1, Rf 0.8) furnished the desired product as yellow oil (194 mg, 62% yield). 

From one-pot CHB/Sonogashira coupling: the general procedure B was applied to 3-
bromotoluene (122 μL, 171 mg, 1.0 mmol, 1 equiv). The borylation step was carried out with HBpin 
(218 μL, 192 mg, 1.50 mmol, 1.50 equiv) for 12 h. The Sonogashira coupling step was carried out with 
trimethylsilyl acetylene (156 μL, 108 mg, 1.10 mmol, 1.1 equiv) for 4 h. Column chromatography 
(pentane/ether 9:1, Rf 0.8) furnished the desired product as yellow oil (204 mg, 65% yield).  

1H NMR (CDCl3, 500 MHz): δ 7.74 (m, 1 H), 7.56 (m, 1 H), 7.38 (m, 1 H), 2.31 (m, 3 H), 1.34 (br s, 
12 H, 4 CH3 of Bpin), 0.22 (s, 9 H, 3 CH3 of TMS); 13C-NMR {1H} (CDCl3, 125 MHz): δ 137.3 (C), 135.7 
(CH), 135.5 (CH), 135.2 (CH), 122.7 (C), 105.4 (C), 93.8 (C), 84.1 (2 C), 25.0 (4 CH3 of Bpin), 21.1 (CH3), 
0.2 (3 CH3 of TMS); 11B-NMR (CDCl3, 160 MHz): δ 30.2; FT-IR (neat) ῦmax: 2978, 2154, 1591, 1383, 1365, 

max: 2961, 2899,
2154, 1583, 1412, 1371, 1250, 976, 844, 760, 702 cm−1; GC-MS (EI) m/z (% relative intensity): M+ 396 (14),
382 (100), 282 (7); HRMS (FAB): m/z 396.2116 [(M+); Calcd for C22H33BO2Si: 396.2112].

1,2-Bis-(trimethylsilylethynyl)-4-(4,4,5,5-tetramethyl-1,3,2-dioxaborolane-2-yl)-benzene (24)

The general procedure B was applied to 1,2-di-bromobenzene (121 µL, 236 mg, 1.0 mmol,
1 equiv). The borylation step was carried out with HBpin (218 µL, 192 mg, 1.50 mmol, 1.50 equiv)
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for 16 h. The Sonogashira coupling step was carried out with [DABCO] (449 mg, 4.0 mmol, 4 equiv)
and trimethylsilyl acetylene (340 µL, 236 mg, 2.40 mmol, 2.4 equiv) for 12 h. Gradient column
chromatography (hexanes/dichloromethane 1:1→ hexanes: dichloromethane 0:1) furnished the desired
product as a light yellow solid (226 mg, 57% yield, mp 123–124 ◦C).

1H-NMR (CDCl3, 500 MHz): δ 7.91 (dd, J = 1.3, 0.6 Hz, 1 H), 7.64 (dd, J = 7.7, 1.3 Hz, 1 H), 7.45
(dd, J = 7.7, 0.6 Hz, 1 H), 1.33 (br s, 12 H, 4 CH3 of Bpin), 0.27 (s, 9 H, 3 CH3 of 2 TMS), 0.26 (s, 9 H, 3
CH3 of 2 TMS); 13C-NMR {1H} (CDCl3, 125 MHz): δ 138.9 (CH), 134.0 (CH), 131.6 (CH), 128.2 (C), 125.3
(C), 103.5 (C), 103.4 (C), 100.0 (C), 98.4 (C), 84.3 (2 C), 25.0 (4 CH3 of Bpin), 0.20 (3 CH3 of 2 TMS), 0.16

(3 CH3 of 2 TMS); 11B-NMR ((CD3)2CO, 96 MHz): δ 31.0; FT-IR (neat)
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(156 μL, 108 mg, 1.10 mmol, 1.1 equiv) as the coupling partner for 4 h. Column chromatography 
(pentane/ether 9:1, Rf 0.8) furnished the desired product as yellow oil (194 mg, 62% yield). 

From one-pot CHB/Sonogashira coupling: the general procedure B was applied to 3-
bromotoluene (122 μL, 171 mg, 1.0 mmol, 1 equiv). The borylation step was carried out with HBpin 
(218 μL, 192 mg, 1.50 mmol, 1.50 equiv) for 12 h. The Sonogashira coupling step was carried out with 
trimethylsilyl acetylene (156 μL, 108 mg, 1.10 mmol, 1.1 equiv) for 4 h. Column chromatography 
(pentane/ether 9:1, Rf 0.8) furnished the desired product as yellow oil (204 mg, 65% yield).  

1H NMR (CDCl3, 500 MHz): δ 7.74 (m, 1 H), 7.56 (m, 1 H), 7.38 (m, 1 H), 2.31 (m, 3 H), 1.34 (br s, 
12 H, 4 CH3 of Bpin), 0.22 (s, 9 H, 3 CH3 of TMS); 13C-NMR {1H} (CDCl3, 125 MHz): δ 137.3 (C), 135.7 
(CH), 135.5 (CH), 135.2 (CH), 122.7 (C), 105.4 (C), 93.8 (C), 84.1 (2 C), 25.0 (4 CH3 of Bpin), 21.1 (CH3), 
0.2 (3 CH3 of TMS); 11B-NMR (CDCl3, 160 MHz): δ 30.2; FT-IR (neat) ῦmax: 2978, 2154, 1591, 1383, 1365, 

max: 2978, 2961, 2899, 2157,
1599, 1390, 1356, 1250, 964, 924, 844, 760, 684 cm−1; GC-MS (EI) m/z (% relative intensity): M+ 396 (88),
381 (57), 339 (18), 282 (100); HRMS (FAB): m/z 396.2119 [(M+); Calcd for C22H33BO2Si: 396.2112].

1,2-Bis-(phenylethynyl)-4-(4,4,5,5-tetramethyl-1,3,2-dioxaborolane-2-yl)-benzene (25)

The general procedure B was applied to 1,2-di-bromobenzene (121 µL, 236 mg, 1 mmol,
1 equiv). The borylation step was carried out with B2pin2 (153 mg, 0.60 mmol, 1.2 equiv of boron),
[Ir(OMe)(COD)]2 (10 mg, 0.015 mmol, 3 mol % Ir), dtbpy (8 mg, 0.03 mmol, 3 mol %) in THF (2 mL)
at 80 ºC for 8 h. The Sonogashira coupling step was carried out with [DABCO] (449 mg, 4.0 mmol,
4 equiv) and phenyl acetylene (242 µL, 225 mg, 2.20 mmol, 2.2 equiv) for 13 h. Column chromatography
(chloroform, Rf 0.9) furnished the desired product as yellow oil (296 mg, 73% yield).

1H-NMR (CDCl3, 500 MHz) δ 8.08 (d, J = 1.0 Hz, 1H), 7.77 (dd, J = 7.8, 1.2 Hz, 1H), 7.66 – 7.57 (m,
5H), 7.37 (dt, J = 5.4, 2.4 Hz, 6H), 1.39 (s, 12H); 13C-NMR {1H} (CDCl3, 125 MHz): δ 138.4 (CH), 134.0
(CH), 131.8 (2 CH), 131.7 (2 CH), 131.1 (CH), 128.7 (CH), 128.50 (2 CH), 128.48 (2 CH), 128.46 (CH),
128.21 (C), 125.3 (C), 123.5 (C), 123.3 (C), 95.0 (C), 93.6 (C), 88.7 (C), 88.5 (C), 84.3 (2 C), 25.0 (4 CH3 of
Bpin); 11B-NMR (CDCl3, 160 MHz): δ 30.1; FT-IR (neat)
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3-(Trimethylsilylethynyl)-5-(4,4,5,5-tetramethyl-1,3,2-dioxaborolane-2-yl)-toluene (13). 
From Sonogashira coupling of borylated aryl bromide: the general procedure A was applied to 

the borylated version of 3-bromotoluene (10, 297 mg, 1.0 mmol, 1 equiv) with trimethylsilyl acetylene 
(156 μL, 108 mg, 1.10 mmol, 1.1 equiv) as the coupling partner for 4 h. Column chromatography 
(pentane/ether 9:1, Rf 0.8) furnished the desired product as yellow oil (194 mg, 62% yield). 

From one-pot CHB/Sonogashira coupling: the general procedure B was applied to 3-
bromotoluene (122 μL, 171 mg, 1.0 mmol, 1 equiv). The borylation step was carried out with HBpin 
(218 μL, 192 mg, 1.50 mmol, 1.50 equiv) for 12 h. The Sonogashira coupling step was carried out with 
trimethylsilyl acetylene (156 μL, 108 mg, 1.10 mmol, 1.1 equiv) for 4 h. Column chromatography 
(pentane/ether 9:1, Rf 0.8) furnished the desired product as yellow oil (204 mg, 65% yield).  

1H NMR (CDCl3, 500 MHz): δ 7.74 (m, 1 H), 7.56 (m, 1 H), 7.38 (m, 1 H), 2.31 (m, 3 H), 1.34 (br s, 
12 H, 4 CH3 of Bpin), 0.22 (s, 9 H, 3 CH3 of TMS); 13C-NMR {1H} (CDCl3, 125 MHz): δ 137.3 (C), 135.7 
(CH), 135.5 (CH), 135.2 (CH), 122.7 (C), 105.4 (C), 93.8 (C), 84.1 (2 C), 25.0 (4 CH3 of Bpin), 21.1 (CH3), 
0.2 (3 CH3 of TMS); 11B-NMR (CDCl3, 160 MHz): δ 30.2; FT-IR (neat) ῦmax: 2978, 2154, 1591, 1383, 1365, 
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1358, 1143, 1107, 964, 916, 854, 756, 688 cm−1; MS (EI) m/z (% relative intensity): M+ 404 (88), 389 (3),
318 (34), 304 (85), 276 (50); HRMS (FAB): m/z 404.1950 [(M+); Calcd for C28H25BO2: 404.1948].

4. Conclusions

In conclusion, alkyne groups are not always compatible with traditional CHB conditions
and direct synthesis of borylated aryl alkynes is challenging. However, taking advantage of the
tolerance of aryl bromides toward CHB, we have developed an efficient one-pot aromatic C–H
activation borylation/Sonogashira coupling protocol for the synthesis of borylated aromatic alkynes.
This methodology tolerates a variety of functional groups and several borylated alkynes were prepared
in good to high yields. Boronic esters as well as alkynes have a variety of applications in medicinal
chemistry, polymers, material science, etc. Boronic esters can serve as sensors for carbohydrates,
protecting groups for polymers and sugars, bioactive functional groups or versatile precursors for
more complex molecules to name some applications [2]. Introduction of an alkyne functionality to
the aromatic ring can extent conjugation and change electronic properties (e.g., fluorescence [40])
or geometrical features (e.g., crystal arrangements [38]) of the molecules. Taking advantage of
both functionalities (alkyne and boronic ester) in the same ring can result in useful intermediates,
we anticipate that our report will facilitate the synthesis of these compounds and the examination of
their properties.

Supplementary Materials: The following are available online: Spectral data for the borylated products.
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