

Figure S1. Geographical indication of *Rh. tomentosum* sampling site in Eastern Lithuania (Utena district).

Table S1. Summary of studies on bioactivities of *Rh. tomentosum* Harmaja (ex *Ledum palustre* L.) extracts, essential oils or emitted volatiles.

Activity, Evaluation Method	Product, Main Composition	Results
Repellent against host- seeking nymphs of <i>Ixodes</i> <i>ricinus</i> Linnaeus (Acari: Ixodidae) [1]	Extracts in solvents of different polarities and leaf EOs by steam distillation; myrcene, palustrol	EO diluted in acetone (10%) exhibited 95% repellency; extracts in ethyl acetate have shown >70% repellence activity. <i>I. ricinus</i> were deterred from feeding when 10% of EO was introduced.
Repellent against mosquitoes <i>Aedes aegypti</i> (L.) probing on treated cloth [2]	Extracts in solvents of different polarities, by steam distillation and SPME. Extract of leaf EO in ethyl acetate, <i>p</i> - cymene, sabinene, terpinyl acetate	Extracts significantly reduced activity of <i>Aedes aegypti</i> (L.): 83.5% repellency (0.5 ml plant extract).
Insect growth regulating and toxic effects on the metamorphosis stages of <i>Tenebrio molitor (Coleoptera,</i> <i>Tenebrionidae),</i> differential thermocouple calorimetry [3]	Leaves and flowers, extracts in 80% of EtOH (composition not indicated)	Non-lethal mild toxic effects of extracts. The timing of normal and failed ecdysis (after treatment with <i>L. palustre</i>), the length of intercdysial periods in <i>T.</i> <i>molitor</i> pupae, respiratory and muscular responses of poisoned insects was

		measured. The treated pharate pupae transformed into extra-pupal instars, which is a symptom of juvenilizing effect.
Repellent and antifeedant effects against <i>Hylobius abietis</i> L. and <i>Phyllodecta laticollis</i> Suffrian, olfactometry tests [4]	Fresh leaves, extracts in different organic solvents: ethyl acetate, MeOH and hexane; palustrol, ledol, β- myrcene	Feeding by the adults and larvae of <i>P. laticollis</i> and <i>H. abietis</i> was significantly reduced by methanol and hexane extracts. Concomitant with less feeding, larval growth was retarded by ethyl acetate extract of the plant
Repellence: system <i>Brassica</i> oleracea var. italica (broccoli)– <i>Plutella xylostella</i> (crucifer specialist herbivore) – <i>Cotesia</i> vestalis (endoparasitoid of <i>P.</i> <i>xylostella</i>) is influenced by exposure to the natural semi- volatiles emitter plant <i>Rh.</i> <i>tomentosum</i> [5]	Semi-volatiles emitted from branches, main composition of emissions: palustrol (43%), β-myrcene (34%), aromadendrene (10%), ledol (9%)	<i>Rh. tomentosum</i> -exposed <i>B. oleracea</i> was less susceptible to <i>P. xylostella</i> oviposition at both night-time (12°C) and day-time (22°C) temperatures and less favoured and damaged by <i>P.</i> <i>xylostella</i> larvae at 12°C. Exposure did not interfere with indirect defence, <i>i.e.</i> , attraction of the natural enemy <i>C. vestalis</i> on host-damaged, <i>R. tomentosum</i> - exposed <i>B. oleracea</i> under 22°C, while there was a reduction in attraction (marginal preference towards host- damaged <i>B. oleracea</i>) under 12°C.
Biological tests on growth of <i>Lemna minor</i> L., and α- amylase activity in wheat seeds and coleoptile sections from 3-day-etiolated wheat sprouts [6]	Leaves and young shoots, EO adsorbed on natural zeolite	Volatile compounds completely inhibited the growth processes of the biotest used.
Analgetic, Anti-inflammatory [7]	EO, aqueous and MeOH extracts (flavonoid components)	Analgesic test: methanol extract (10.0 and 1.0mg/kg) and aqueous extract (10.0mg/kg) decreased the acetic acid- induced writhing response. Anti-inflammatory test: MeOH extract (10.0 and 1.0mg/kg) and aqueous extract (10.0 mg/kg) decreased the paw edema in 2, 3, 4, 5 and 6 hours after lambda- carrageenan administration.
Antibacterial <i>in vitro</i> , broth dilution method, against <i>S</i> . <i>aureus</i> , <i>E</i> . <i>coli</i> , <i>P</i> . <i>aeruginosa</i> , <i>K</i> . <i>pneumoniae</i> [8] Anti-inflammatory <i>in vivo</i> , carrageenan-induced edema in rats [8]	Shoots, aqueous extract and isolated polysaccharide complex Shoots, dry aqueous extract, 40 and 70% in EtOH	Bacteriostatic effect at 1/160 dilution, excluding to <i>P. aeruginosa</i> (1/20 dilution) for polysaccharide complex. 51.5±4.6% Inhibition of edema by 40% EtOH extract, comparable to butadione.
Anticancer <i>in vitro,</i> mouse leukemia cells L1210 [9]	Aerial part, methylene chloride and MeOH extracts, Soxhlet	99% growth inhibition by methylene chloride extract, 71% growth inhibition by MeOH extract.

Anticancer in vitro, human lympho-blastoid Raji cells [10]	Aerial parts, crude EtOH (40%) extract	99% inhibition at 200µg/mL.
Antidiabetic in vitro, C2C12 murine skeletal myoblasts and the 3T3-L1 murine preadipocyte cell lines [11] Antioxidant activity in vitro, DPPH assay, ascorbic acid was used as the reference antioxidant [12]	Leaves, EtOH (80%) extract with 153.5 µg/mg total phenolic (chlorogenic acid, catechins, taxifolin, quercetin glycoside)	Cytoprotective properties under conditions of glucose toxicity (150mmol/L of glucose) and glucose deprivation (1.1mmol/L glucose) at 6.25µg/mL. Effect on the basal and insulin stimulated 3H-deoxy-glucose uptake in differentiated 3T3-L1 adipocytes at 50µg/mL. Triglyceride level was increased by 3-fold. Strong antioxidant activity, close to that of ascorbic acid.
Antidiabetic <i>in vitro</i> , Caco- 2/15 cells; western blot analysis <i>in vivo</i> . Rats, oral glucose tolerance test [12]	Leaves, EtOH (80%) extract with 153.5µg/mg total phenolic	Instantaneous inhibition of differentiated Caco2/15 intestinal cells glucose absorption at 100µg/mL. Reduction of SGLT1 protein expression, AUC of blood glucose levels <i>in vivo</i> .
Antifungal, against A. niger, C. albicans, M. canis, T. rubrum and T. mentagrophytes [13]	EO	EO exhibited antifungal activities from mild to strong.
Antifungal <i>in vitro</i> , micro- broth dilution method, against <i>C. neoformans</i> , <i>S.</i> <i>cerevisiae</i> , <i>A. niger</i> , <i>C. albicans</i> [14]	Leaves, quercetin 3-β- D-(6- <i>p</i> -coumaroyl) galactoside and quercetin 3-β-D-(6- <i>p</i> - hydroxy-benzoyl)	MIC 16-63µg/mL for <i>C. neoformans, S. cerevisiae</i> and <i>A. niger.</i> MIC 250µg/mL for <i>C. albicans.</i> MIC 0.16-10µg/mL for amphotericin B and fluconazole.
Anti-inflammatory, subcutaneous carrageenan injection-induced hind paw oedema in rats [15].	Aerial parts, EO by supercritical fluid extraction (SFE) and hydrodistillation (HD). Palustrol (41.0-43.4%), ledol (23.3-26.7%), ascaridole (4.5-15.1%)	EO enhanced a significant inhibition of oedema (50-73%) for HD oil and (52- 80%) for SFE oil. These results were similar to those obtained with piroxicam (70%) and ketoprofen (55%).
Anti-inflammatory <i>in vitro</i> , prostaglandin-synthesizing cyclooxygenase system from sheep seminal vesicles [16]	Aerial part, EO	EO inhibited cyclooxygenase <i>in vitro</i> 46.6% and carvacrol was responsible for 94% inhibition. Ledol did not inhibit the enzyme.
Anti-inflammatory in vitro, prostaglandin biosynthesis assay; PAF-induced exocytosis [17]	Aerial parts, aqueous extract, lyophilized	Moderate inhibition of prostaglandin biosynthesis (50%) and platelet activating factor (PAF)-induced exocytosis (71%).
Antimicrobial in vitro, against S. aureus, S. pneumoniae, C. perfringens, B. cereus, E. aerogenes, K. pneumoniae, C. albicans, M. smegmatis, A. Iwoffii and .C krusei [18]	EO and MeOH extracts, EO main composition: sabinene (17.8%), terpinen-4-ol (7.6%) and myrtenal (7.4%)	EO possessed antioxidant and low antimicrobial properties <i>in vitro</i> , while the water-insoluble parts of the methanolic extracts exhibited slight or no antimicrobial activity. EO strongly reduced DPPH* (IC50=1.56µg/ml) formation and exhibited a hydroxyl radical scavenging

Antioxidant in vitro, DPPH assay, Fe ³⁺⁻ EDTA-H ₂ O ₂ deoxyribose assay, nonenzymatic lipid peroxidation of rat liver homogenate [18]		effect in the deoxyribose system (IC ₅₀ = 2.7µg/ml), and inhibited the nonenzymatic lipid peroxidation of rat liver homogenate (IC ₅₀ =13.5µg/ml). The polar phase of the extract showed antioxidant activity.
Antimicrobial in vitro, against Vibrio parahaemolyticus [19]	Aerial parts, EO: α- thujenal (22.5%), β- phellandrene (10.3%), benzene,1-methyl-3-(1- methylethyl) (6.6%)	EO at concentration 5g/L inhibited growth of <i>V. parahaemolyticus</i> obviously.
Anti-proliferative and pro- apoptotic activity <i>in vitro</i> , the influence of EOs on blood lymphocytes' proliferation and apoptosis rates of synovia-derived cells was determined by flow cytometry [20]	Shoot EOs of γ - terpineol and palustrol/ledol chemotypes and microshoots cultivated <i>in vitro</i> of ledene oxide type	EOs had anti-proliferative and pro- apoptotic activity toward CD4 and CD8 T cells, synovia-infiltrating monocyte/macrophages and fibroblast- like synovial cells. At 1:400 dilutions, all tested EOs increased the number of necrotic cells in synovial fibroblasts from RA synovia; and increased proportions of late apoptotic cells in leucocyte populations.
Antithrombin <i>in vitro,</i> thrombin solution from bovine plasma [21]	Aerial parts, MeOH extract, Soxhlet	88% of thrombin inhibition
Hepato-protective <i>in vivo,</i> rats, mice, CCl4 intoxication [22]	Shoots, dry extract (EtOH 40%)	Extract reduced hexobarbital sleeping time 1.4-and 3.2-fold, respectively, for rats and mice; and improved functional- metabolic and morphological parameters of liver.
Toxicity <i>in vivo,</i> tested on mice [23]	Shoots, 40% EtOH extract, chloroform and hexane fractions of EtOH extract	LD ₅₀ =2.800–3.200mg/kg for 40% EtOH extract after intraperitoneal administration, and no mortality of mice was after intragastric administration of extract at the dose of 10g/kg. LD ₅₀ for the chloroform fraction 350mg/kg (intraperitoneal) and 2.600mg/kg (intragastric), LD ₅₀ =420mg/kg (intragastric) for hexane fraction.
Radioprotective <i>in vivo</i> , mice irradiated with γ-irradiation [24]	Aerial parts, combination with Archangelica officinalis extracts	100% of animals survived after a dose of 6Gy (LD50/30); 70% survived after a dose of 7.5Gy (LD90/30), and 25% after a dose of 8Gy (LD100/12) by 30 day.
Radioprotective <i>in vivo</i> , 30 days albino mongrel male mice irradiated with γ- irradiation (LD _{90/30}) [25]	Aerial parts, combination with Archangelica officinalis extracts	Number of mouse pups was 10.2±0.6 in experimental and 7.4±0.7 in non- irradiated groups. The number of both sexes in the posterity of non-irradiated parents was equal; the number of female pups was 2.3 times larger than that of males.

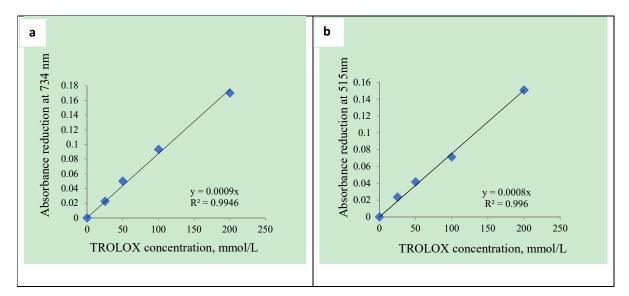


Figure S2. TROLOX standard calibration curves: (a) ABTS⁺ assay; (b) DPPH⁻ assay.

References

- Jaenson, T.G.T.; Pålsson, K.; Borg-Karlson, A.-K. Evaluation of extracts and oils of tick-repellent plants from Sweden. Med. Vet. Entomol. 2005, 19, 345–352.
- Jaenson, T.G.T.; Pålsson, K.; Borg-Karlson, A.-K. Evaluation of extracts and oils of mosquito (Diptera: *Culicidae*) repellent plants from Sweden and Guinea-Bissau. J. Med. Entomol. 2006, 43, 113–119.
- 3. Kuusik, A.; Harak, M.; Hiiesaar, K.; Metspalu, L.; Tartes, U. Studies on insect growth regulating (IGR) and toxic effects of *Ledum palustre* extracts on *Tenebrio molitor* pupae (*Coleoptera*, Tenebrionidae) using calorimetric recordings. *Termochim. Acta* **1995**, 251, 247–253.
- Egigu, M.C.; Ibrahim, M.A.; Yahya, A.; Holopainen, J.K. Cordeauxia edulis and Rhododendron tomentosum extracts disturb orientation and feeding behavior of Hylobius abietis and Phyllodecta laticollis. Entomol. Exp. Appl. 2011, 138, 162–174.
- 5. Himanen, S.J.; Bui, Th.N.T.; Mengistu, M.M.; Holopainen, J.K. Utilizing associational resistance for biocontrol: Impacted by temperature, supported by indirect defense. *BMC Ecol.* **2015**; *15*, 1–12.
- 6. Petrov, K.A. The effect of essential oils of *Ledum palustre* L., *Acorus calamus* L., *Artemisia jacutica* Drob. on the biotests growth. *Rast. Resursy* **1998**, *34*, 47–50. (In Russian)
- Min, Z.; Jing-jing, Z.; Wen-bin, W.; Yun, Z.; Xing-lei, Z.; Wei-jing, Q. Analgesic and anti-inflammatory activities of extracts from *Ledum palustre L.* in mice. *Nat. Prod. Res. Dev.* 2010, 22, 326–329.
- Belousov, M.V.; Saratikov, A.S.; Akhmedzhanov, R.R.; Berezovskaya, T.A.; Yusubov, M.S.; Dmitruk, S.E.; Basova, E.V. Pharmacological properties of *Ledum palustre (Ericaceae)* from Tomsk region. *Rast. Resursy* 2006, 42, 130–140. (In Russian)
- 9. Goun, E.A.; Petrichenko, V.M.; Solodnikov, S.U.; Suhinina, T.V.; Kline, M.A.; Cunningham, G.; Nguyen, C.; Miles, H. Anticancer and antithrombin activity of Russian plants. *J. Ethnopharm.* **2002**, *81*, 337–342.
- Spiridonov, N.A.; Konovalov, D.A.; Arkhipov, V.V. Cytotoxicity of some Russian ethnomedicinal plants and plant compounds. *Phytother. Res.* 2005, 19, 428–432.
- Harbilas, D.; Martineau, L.C.; Harris, C.S.; Adeyiwola-Spoor, D.C.; Saleem, A.; Lambert, J.; Caves, D.; Johns, T.; Prentki, M.; Cuerrier, A.; et al. Evaluation of the antidiabetic potential of selected medicinal plant extracts from the Canadian boreal forest used to treat symptoms of diabetes: Part II. *Can. J. Physiol. Pharm.* 2009, *8*, 479–492.
- Nistor Baldea, L.A.; Martineau, L.C.; Benhaddou-Andaloussi, A.; Arnason, J.T.; Lévy, É.; Haddad, P.S. Inhibition of intestinal glucose absorption by anti-diabetic medicinal plants derived from the James Bay Cree traditional pharmacopeia. J. Ethnopharmacol. 2010, 132, 473–482.
- Belousova, N.I.; Dmitruk, S.E.; Khan, V.A. Antifungal properties of essential oils of *Ledum L. Khim. Farm. Zh.* 1989, 23, 317–319.
- 14. Jin, C.; Strembiski, W.; Kulchytska, Y.; Micetich, R.G.; Daneshtalab, M. Flavonoid glycosides from *Ledum palustre* subsp. *decumbens. Daru* **1999**, *7*, 5–8.

- Baananou, S.; Bagdonaite, E.; Marongiu, B.; Piras, A.; Porcedda, S.; Falconieri, D.; Boughattas, N.A. Supercritical CO₂ extract and essential oil of aerial part of *Ledum palustre* L.–Chemical composition and anti-inflammatory activity. *Nat. Prod. Res.* 2015, *29*, 999–1005.
- 16. Wagner, H.; Wierer, M.; Bauer, R. In vitro Hemmung der Prostaglandin-Biosynthese durch etherische Ole und phenolische Verbindungen. *Planta Med.* **1986**, *3*, 184–187.
- 17. Tunón, H.; Olavsdotter, C.; Bohlin, L. Evaluation of anti-inflammatory activity of some Swedish medicinal plants. Inhibition of prostaglandin biosynthesis and PAF-induced exocytosis. *J. Ethnopharmacol.* **1995**, *48*, 61–76.
- Kim, D.; Nam, B. Extracts and essential oil of *Ledum palustre* L. and their antioxidant and antimicrobial activities. *J. Food Sci. Nutr.* 2006, 11, 100–104.
- 19. Zhang, L. Chemical composition and antibacterial activity of the essential oil from Chinese wild *Ledum palustre* L. on *Vibrio Parahaemolyticus. Int. J. Food Nutr. Sci.* **2017**, *4*, 8–12.
- Jesionek, A.; Kokotkiewicz, A.; Mikosik-Roczynska, A.; Ciesielska-Figlon, K.; Luczkiewicz, P.; Bucinski, A.; Daca, A.; Witkowski; J.M.; Bryl, E.; Zabiegala, B.; et al. Chemical variability of *Rhododendron tomentosum* (*Ledum palustre*) essential oils and their pro-apoptotic effect on lymphocytes and rheumatoid arthritis synoviocytes. *Fitoterapia* 2019, 139, 104402.
- 21. Spiridonov, N.A.; Konovalov, D.A.; Arkhipov, V.V. Cytotoxicity of some Russian ethnomedicinal plants and plant compounds. *Phytother. Res.* 2005, *19*, 428–432.
- Belousov, M.V.; Saratikov, A.S.; Tshichalin, V.S.; Akhmedganov, R.R.; Berezovskaya, T.P.; Basova, E.V.; Yusubov, M.S. Hepatoprotective properties of *Ledum palustre* (Ericaceae) shoots dry extract. *Rast. Resursy* 2007, 43, 126–129.
- 23. Basova, E.V. Chemical and Pharmacological Study of Wild Rosemary. Ph.D. Thesis, Tomsk State University, Tomsk, Russia, 2004.
- 24. Narimanov, A.A. Reproductive capacity of male mice protected from supralethal effect of gamma-radiation by the administration of a mixture of extracts from *Archangelica officinalis* and *Ledum palustre*. *Radiobiologia* **1992**, *32*, 271–275.
- 25. Narimanov, A.A.; Myakisheva, S.N.; Kuznetsova, S.M. The radioprotective effect of *Archangelica officinalis* Hoffm. and *Ledum palustre* L. extracts on mice. *Radiobiologia* **1991**, *31*, 391–393.