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Abstract: We describe here a mechanistic study of the iron-catalyzed carboazidation of alkenes
involving an intriguing metal-assisted β-methyl scission process. Although t-BuO radical has
frequently been observed in experiments, the β-methyl scission from a t-BuO radical into a methyl
radical and acetone is still broadly believed to be thermodynamically spontaneous and difficult to
control. An iron-catalyzed β-methyl scission of t-BuO is investigated in this work. Compared to a free
t-BuO radical, the coordination at the iron atom reduces the activation energy for the scission from
9.3 to 3.9 ~ 5.2 kcal/mol. The low activation energy makes the iron-catalyzed β-methyl scission of
t-BuO radicals almost an incomparably facile process and explains the selective formation of methyl
radicals at low temperature in the presence of some iron catalysts. In addition, a radical relay process
and an outer-sphere radical azidation process in the iron-catalyzed carboazidation of alkenes are
suggested by density functional theory (DFT) calculations.
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1. Introduction

The carboazidation of alkenes, a powerful and promising method for the synthesis of amino acid
precursors and other useful building blocks, has attracted much attention recently [1–8]. Iron-catalyzed
carboazidation of alkenes has recently been developed by our group in which tert-butyl peroxybenzoate
(TBPB) was employed as the initiator (Scheme 1a) [9].

tert-Butoxy-containing peroxides, including di-tert-butyl peroxide (DTBP), [10,11] tert-butyl
hydroperoxide (TBHP), [12–21] and tert-butyl peroxybenzoate (TBPB), [22–32] have versatile roles in
organic synthesis and have been proven to be good sources of t-BuO radical. However, these peroxides
can also occasionally serve as a source of methyl radicals (Scheme 1b) [33–37]. The β-methyl scission
of alkoxy radicals which is a common fragmentation process forming corresponding alkyl radicals
was discovered more than fifty years ago [38], and is described in organic chemical textbooks [39].
The β-methyl scission from a t-BuO radical accordingly is believed to be an easily spontaneous
process, [40–44] and offers a facile pathway to methyl radicals; however, it is inconsistent with the
common experimental observation of t-BuO radical [25–32].
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Scheme 1. (a) Carboazidation of alkenes in previous study, [9] (b) selective formation of methyl 
radicals [33–37] or t-BuO radical, [10–32] and (c) mechanistic studies. 

Although β-methyl scission from a t-BuO radical can afford methyl radical, the factors which 
determine the selective formation of methyl radicals or retaining as t-BuO radical are still unclear. To 
the best of our knowledge, no further investigation of t-BuO radical splitting has been reported. Very 
recently, our studies suggested that a copper catalyst may not assist the β-methyl scission (Scheme 
1c, 30.7 kcal/mol) and the t-BuO radical can become untethered which serves as the radical initiator 
and does not proceed β-methyl scission [21]. On the other hand, the selective or dominant formation 
of methyl radicals in iron-catalyzed reactions has frequently been observed in our previous work [33–
35]. It is questionable why the t-BuO radical behaves very differently when catalyzed by iron. 

Herein, the crucial factors for the selective formation of methyl radicals have been investigated 
and a rare iron-catalyzed β-methyl scission was revealed (Scheme 1c). In addition, experimental and 
theoretical investigations were conducted to support a radical relay mechanism for carboazidation 
reactions [9].  

2. Results and Discussion 

Experiments exploring the carboazidation reactions of alkenes were conducted to probe the 
mechanism. First, the reaction was conducted in the absence of alkyl iodide, as expected, a methyl 
adduct 2, (1-azidopropyl)benzene, was obtained in 52% yield (Scheme 2a). The reaction employing 
tert-butyl ethaneperoxoate as initiator instead of TBPB also delivers the desired product (2) in 33% 
yield demonstrating that the methyl radical can be easily generated at room temperature under these 
conditions. Because of the absence of diazidation product which can indirectly prove the existence of 
t-BuO radial [45] in all cases under standard conditions or these two conditions, the formation of 
methyl radical can be regarded as highly selective. Next, (2-phenylcyclopropyl)styrene (3), a radical 
clock compound, for which the rate constant of the ring opening step is approximately 108 s−1, was 
used and afforded a ring-opened product (4) in 42% yield (Scheme 2b) [46]. A ring closure reaction 
was also conducted with 1,6-heptadiene 5 and the ring-closure products (6 and 7) and non-ring-
closed product (8) were obtained in 80% and 18% yields, respectively (Scheme 2c). This result 
suggests that the azidation step is quite fast and is comparable to 5-exo-cyclization of 5-hexenyl 
radical (~105/s). Besides, radical scavengers, 2,6-di-tert-butyl-4-methylphenol (BHT) or 
hydroquinone, can interrupt the standard reaction to reduce the yield of product (See Preliminary 
mechanistic studies in supporting information). These results are consistent with a radical 
mechanism [47,48]. 

Scheme 1. (a) Carboazidation of alkenes in previous study, [9] (b) selective formation of methyl
radicals [33–37] or t-BuO radical, [10–32] and (c) mechanistic studies.

Although β-methyl scission from a t-BuO radical can afford methyl radical, the factors which
determine the selective formation of methyl radicals or retaining as t-BuO radical are still unclear. To
the best of our knowledge, no further investigation of t-BuO radical splitting has been reported. Very
recently, our studies suggested that a copper catalyst may not assist the β-methyl scission (Scheme 1c,
30.7 kcal/mol) and the t-BuO radical can become untethered which serves as the radical initiator and
does not proceed β-methyl scission [21]. On the other hand, the selective or dominant formation of
methyl radicals in iron-catalyzed reactions has frequently been observed in our previous work [33–35].
It is questionable why the t-BuO radical behaves very differently when catalyzed by iron.

Herein, the crucial factors for the selective formation of methyl radicals have been investigated
and a rare iron-catalyzed β-methyl scission was revealed (Scheme 1c). In addition, experimental and
theoretical investigations were conducted to support a radical relay mechanism for carboazidation
reactions [9].

2. Results and Discussion

Experiments exploring the carboazidation reactions of alkenes were conducted to probe the
mechanism. First, the reaction was conducted in the absence of alkyl iodide, as expected, a methyl
adduct 2, (1-azidopropyl)benzene, was obtained in 52% yield (Scheme 2a). The reaction employing
tert-butyl ethaneperoxoate as initiator instead of TBPB also delivers the desired product (2) in 33%
yield demonstrating that the methyl radical can be easily generated at room temperature under these
conditions. Because of the absence of diazidation product which can indirectly prove the existence
of t-BuO radial [45] in all cases under standard conditions or these two conditions, the formation of
methyl radical can be regarded as highly selective. Next, (2-phenylcyclopropyl)styrene (3), a radical
clock compound, for which the rate constant of the ring opening step is approximately 108 s−1, was
used and afforded a ring-opened product (4) in 42% yield (Scheme 2b) [46]. A ring closure reaction
was also conducted with 1,6-heptadiene 5 and the ring-closure products (6 and 7) and non-ring-closed
product (8) were obtained in 80% and 18% yields, respectively (Scheme 2c). This result suggests that
the azidation step is quite fast and is comparable to 5-exo-cyclization of 5-hexenyl radical (~105/s).
Besides, radical scavengers, 2,6-di-tert-butyl-4-methylphenol (BHT) or hydroquinone, can interrupt the
standard reaction to reduce the yield of product (See Preliminary mechanistic studies in supporting
information). These results are consistent with a radical mechanism [47,48].
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Interestingly, the acetone and methyl iodide formed under standard conditions could be observed
by GC-MS (See supporting information), implying that the radical relay process possibly begins with a
methyl radical.
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Scheme 2. Experimental studies. (a) Participation of the methyl radical within the caboazidation of
alkenes in the absence of further alkyl iodides, (b) and (c) Ring-opening and ring-closing experiments
for exploring the radical relay mechanism.

Next, density functional theory (DFT) calculations on the iron-catalyzed carboazidation of styrene
were performed in an attempt to understand the mechanism at the atomic level [49,50]. Figure 1a
shows the overall potential energy surface of the iron-catalyzed reaction. According to the systematic
computations on the spin states and the conformations of iron species, a quintet state of catalyst
Fe(OTf)2 (5INT1) coordinated by two 1,2-dimethoxyethane (DME) molecules, was found to have the
lowest free energy (Table S1), and thus can be considered as the starting catalyst for first cycle [51,52].

The interaction of TBPB with 5INT1 yields 5INT2 by an associative ligand exchange process. An
associative intermediate, 5INT12, with a relative free energy of 8.3 kcal/mol can be considered as a
barrier to the ligand exchange (Supplementary Figure S1) [53,54]. Subsequently, a single electron
transfer (SET) occurs, breaking the O-O bond of TBPB with an energy barrier of 8.7 kcal/mol and
resulting in a septet, (7INT3) of the Fe(III) species coordinated by a tethered t-BuO radical with a
exergonicity of 5.7 kcal/mol. As displayed in Figure 1b, the oxygen atom of the tethered t-BuO in
7INT3 acquires an unpaired spin density, indicating that the t-BuO moiety becomes a radical during
the SET process. Since the selective formation of methyl radical was observed in this reaction and in
our previous work [33], two pathways of methyl radical generation were therefore considered.

With a terminal carbon having a spin density in 7INT3 (cf. Figure 1b), a transition state 7TS2,
corresponding to C-C bond cleavage along this coordinate, is located with a quite low barrier, 5.2
kcal/mol, and leads to a sextet (6INT4) with a free methyl radical. Surprisingly, 7TS2-OtBu, dissociation
of an t-BuO radical from 7INT3 was found to be an unfavorable process, requiring a higher energy
barrier (6.7 kcal/mol) to lead to a free t-BuO radical and a sextet 6INT4, with only 0.9 kcal/mol small
exergonicity (red path in Figure 1a). A much higher barrier of 9.3 kcal/mol is required (2TS3) for
dissociation of a methyl radical from a free t-BuO radical [21] indicating that a free methyl radical
generated directly from 7INT3 is thermodynamically and kinetically favorable. In addition, since there
will be benzoate anions in the system following the occurrence of SET on the TBPB, several possible
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iron(III) species ligated by different anions with the tethered t-BuO radical were also examined for
the possibility that they could assist the β-methyl scission. Figure 2 depicts the free energy profiles
of SET and iron-catalysed β-methyl scission processes for four candidate iron complexes, 5INT1-1
to 5INT1-4 (Supplementary Table S3). Encouragingly, the energy barriers of SET for these species
are in the range of 6.7–11.0 kcal/mol smaller than that for 5INT1. Besides, the energy barriers of
iron-catalyzed β-methyl scission for these species are in the range of 3.9–4.7 kcal/mol which are all
smaller than that of β-methyl scission from the free t-BuO radical (9.3 kcal/mol) and even smaller than
that of 7TS2 (5.2 kcal/mol) indicating that, in the reaction condition, these possible iron-catalyst species
can also perform the SET on TBPB and assist the β-methyl scission well after initial catalytic cycle.
These results are in good agreement with our experiment results in which no t-BuO radical derivative
was observed due to the incomparable process of the generation of a free methyl radical. This implies
that the Fe(III) catalyst may assist the β-methyl scission even at room temperature. This study offers a
clear image of the whole decomposition process from TBPB to the t-BuO radical and a methyl radical.
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Figure 1. (a) The Gibbs free energy profile of the Fe-catalyzed carboazidation of alkenes. The transition
state corresponding to reductive elimination from 5INT9 cannot be explicitly located and is indicated
as *. (b) Optimized structures of selected intermediates. Spin densities on selected atoms are shown
in each structure beside the arrows. For 7,5MECP, the spin densities of the quintet state are shown in
parenthesis. Hydrogen atoms are omitted for clarity.
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cation species [Fe(OBz)(DME)2]+, 5INT1-4, showing that different possible Fe(II/III) species facilitate 
the β-scission of t-BuO radical. Relative free energies are in kcal/mol. 

We then focused on the iron-catalyzed azidation. Formation of 6INT5 by TMSN3 (trimethylsilyl 
azide) complexing with the Fe in 6INT4 via the internal nitrogen atom, was initially calculated. A 
trimethylsilyl group migration transition state (6TS4) leading to an exergonic azide complex (6INT6) 
was identified [8]. Charge transfer to the iron center from the azide increases gradually during 

Figure 2. The Gibbs free energy profiles of SET and iron-catalyzed β-methyl scission processes for (a)
Fe(OBz)2(DME), 5INT1-1, (b) Fe(OBz)2(DME)2, 5INT1-2, (c) Fe(OTf)(OBz)(DME)2, 5INT1-3 and (d)
cation species [Fe(OBz)(DME)2]+, 5INT1-4, showing that different possible Fe(II/III) species facilitate
the β-scission of t-BuO radical. Relative free energies are in kcal/mol.

Subsequently, a radical relay starting from a free methyl radical and generating the benzyl
radical 2INT10 was demonstrated to be a facile process and shown in Figure 3. Herein,
1-chloro-1,1,2,2-tetrafluoro-2-iodoethane is employed as a perhaloalkyl iodide model to conduct
the radical relay process. Transition state, 2TS6, corresponding to CH3I and perhaloalkyl radical
Rf1 generations is located with the lowest barrier of 7.2 kcal/mol which is much lower than that of
chlorine extraction (2TS7, 19.8 kcal/mol). On the other hand, methyl β-addition to styrene [35,55]
is also considered; however, a much higher barrier (13.0 kcal/mol of 2TS8) is found for 2INT11
producing. Although the relative free energy of 2INT11 (−17.8 kcal/mol) is lower than that of Rf1
(−8.1 kcal/mol), Rf1 addition to styrene is barrierless to result in a much exergonic 2INT10 (−30.7
kcal/mol). Owing to the flat and long range effective (~3.22 Å) potential energy surface (PES), TS for
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2INT10 production cannot be located, suggesting that this radical relay process should be fast (see
Supplementary Figure S2).

We then focused on the iron-catalyzed azidation. Formation of 6INT5 by TMSN3 (trimethylsilyl
azide) complexing with the Fe in 6INT4 via the internal nitrogen atom, was initially calculated. A
trimethylsilyl group migration transition state (6TS4) leading to an exergonic azide complex (6INT6)
was identified [8]. Charge transfer to the iron center from the azide increases gradually during
trimethylsilyl group migration. In particular, spin spreads to the internal and terminal nitrogen atom,
implying that the azide adopts a radical characteristic even though its net charge is negative (cf.
Figure 1b). Three possible pathways leading to the C-N bond coupling via a septet state, a quintet
state or a septet-quintet crossing, were considered. In the septet state, the reaction pathway in which
the benzyl radical, 2INT10, couples directly with the terminal nitrogen atom of the azide in 6INT6
was considered due to its larger spin density and the reduced steric hindrance. An outer-sphere azide
reaction has also been proposed in Mn catalysis [56], but the transition state 7TS5 has an extremely
high barrier of 34.8 kcal/mol.
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The inner-sphere pathway via an intermediate with an iron-carbon bond was also considered [57].
A quintet, 5INT9, formed through the TMSOBz-dissociated sextet 6INT8, was found to have a much
higher relative free energy (−5.4 kcal/mol), suggesting that this pathway involving an intermediate
containing a newly formed Fe-C bond, leading to the dissociation of the TMSOBz and association of
2INT10 to 6INT6, is unfavorable. This result suggests that the oxidation of a Fe(III) by a benzyl radical
to form Fe(IV) is an unfavorable pathway in this reaction and this finding is consistent with Gutierrez’s
study although they investigated different iron species [58].

We then sought a minimum energy crossing point (MECP) crossing between the septet and the
quintet states. Intermediate 7INT7, approaching an 2INT10 to 6INT6, was located with the relative
free energy only 5.2 kcal/mol higher than that of 6INT6, and the MECP was found at a distance
d(Cb-Nt), between carbon and the terminal nitrogen atom of 3.08 Å (cf. 3.23 Å in 7INT7, Figure 1b).
The electronic energy of the MECP was estimated to be slightly higher (~0.1 kcal/mol) than that of
7INT7 [59]. After spin state crossing, no transition state relevant to product formation can be located
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due to the flat potential energy surface corresponding to d(Fe-Ni) elongation around d(Cb-Nt) of ca.
3.08 Å (Figure S3). The potential energy surface corresponding to d(Fe-Ni) elongation accompanying
the d(Cb-Nt) shortening shows no barrier and can proceed downhill to product formation. This result
is analogous to the halogenations of carbon centered radicals with iron(III)-halide species, [60,61] and
suggests that only 5.2~5.3 kcal/mol is required to conduct spin state crossing, after which product
formation is spontaneous.

A septet intermediate, 7INT9, has been calculated with the energy of 4.8 kcal/mol higher than
5INT9, (see Supplementary Table S4). A transition state between 6INT8 and 5INT9 for inner-sphere
radical coupling may exist but cannot be located. On the other hand, much effort was made to locate
the transition state after the inner-sphere spin crossing point, but was unsuccessful. This result may
be regarded as a barrierless reductive elimination for a high-valent metal complex, [62,63] but the
absence of a transition state for the inner-sphere pathway does not affect the conclusion of a favorable
outer-sphere pathway since the free energy of 5INT9 is much higher than that of 7INT7. Moreover,
such azidation processes with another possible Fe(III)N3 species, 6INT6-1, has also been calculated,
and as expected, the outer-sphere pathway remains the favorable route (see Supplementary Figure
S4), indicating that the catalytic cycle can perform after first cycle as well as the Fe(III)N3 species with
OTf- anion.

In view of the results of these mechanistic studies, a radical relay-involved catalytic cycle is
proposed and is shown in Scheme 3. A SET between iron catalyst and TBPB initiates the reaction by
generating a methyl radical (A), an Fe(III) species and acetone. A radical relay process then occurs
between the methyl radical and the alkyl iodide affording a new carbon radical (B) and methyl iodide.
This carbon radical adds to the olefin, generating an internal radical (C). Azidotrimethylsilane as a
ligand delivers an Fe(III)N3 species, [8] which ultimately reacts with the radical (C) to deliver the
desired alkylazidation products, regenerating Fe(II) [ (C) + Fe(III)N3 → (C)-N3 + Fe(II) ]. The C-N3

bond formation from alkenes can be facilitated by the Fe(III)N3 species as well as by the putative Mn(III)
species [64]. According to the theoretical study, an iron-catalyzed β-methyl scission is an incomparable
process for generation of the initial methyl radical; in addition, an outer-sphere radical coupling
pathway [56,65,66] is thought to be the more favorable pathway. Similar outer-sphere radical capture
for direct C-N bond formation have been reported on the C-H amination of copper(II) anilides [67–69].
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3. Materials and Methods

3.1. Experimental Section

3.1.1. General Information

All reactions were carried out under an atmosphere of nitrogen in dried glassware with magnetic
stirring unless otherwise indicated. Compound 3 in Scheme 2 was synthesized in our lab and other
chemicals obtained from commercial suppliers were used without further purification. The purity of
iron catalyst between different vendors (Energy Chemical, Bokachem and ®HEOWNS) did not change
the yields of products when other batches of iron triflate were purchased. Solvents were dried by
Innovative Technology Solvent Purification System. Liquids and solutions were transferred via syringe.
All reactions were monitored by thin-layer chromatography. GC and GC-MS data were recorded on
Thermo Trace 1300 (Thermo Fisher Scientific, Milan, Italy) and Thermo ISQ QD, respectively. 1H-,
19F-, and 13C-NMR spectra were recorded on Bruker-BioSpin AVANCE III HD-400 Hz (Bruker BioSpin
GmbH, Rheinstetten, Germany). Data for 1H-NMR spectra are reported relative to chloroform as an
internal standard (7.26 ppm) and are reported as follows: chemical shift (ppm), multiplicity, coupling
constant (Hz), and integration. Data for 13C-NMR spectra were reported relative to chloroform as
an internal standard (77.00 ppm) and are reported in terms of chemical shift (ppm). IR data were
obtained from Bruker VERTEX 70. All melting points were determined on a Beijing Science Instrument
Dianguang Instrument (Beijing, China) Factory XT4B melting point apparatus and are uncorrected.
HRMS(ESI) data were recorded on Agilent Technologies 6224 TOF LC/MS (Agilent, Palo Alto, CA,
USA); HRMS(EI) data were recorded on Waters Micromass GCT Premier (Waters, MMAS, New York,
NY, USA).

3.1.2. General Procedure for Confirmation of Methyl Radical

To a dried Schlenk tube equipped with a magnetic bar, Fe(OTf)2 (9 mg, 0.025 mmol) was added,
flushed with nitrogen gas (3 times) and maintained the nitrogen atmosphere using the balloon. A
thoroughly mixed solution of vinylarene (0.5 mmol), TMSN3 (1.0 mmol) and TBPB (or tert-butyl
ethaneperoxoate) (1.0 mmol) in DME (2 mL) was added to the catalyst via syringe and stirred vigorously
for 30 min at room temperature. The solvent was evaporated, and the residue was purified by flash
chromatography on silica gel to give the corresponding product 9 in 52% (33%) yield.

3.2. Computational Method and Details

Density functional theory (DFT) studies on the iron-catalyzed carboazidation of styrene were
performed at B3LYP [70,71] -D3 [72,73] /Def2-SVP [74,75] level of theory in gas-phase for geometrical
optimizations, thermal energy calculations, and frequency analyses. Transition state structures were
searched by simply performing a crude relaxed potential energy surface (RPES) scan connecting
reactants and products, and then optimized by the three-structure synchronous transit-guided
quasi-Newton (STQN) method, [76,77] and rational function optimization (RFO) method of TS as
well [78]. In addition, transition state vibrational frequencies were verified to have one and only one
imaginary frequency and confirm the correctness of the imaginary frequency by viewing normal mode
vibrational vector. All optimized stationary points were characterized by frequency calculation for
identification of minimum points and saddle points. Single point energies based upon the optimized
structures were calculated at the B3LYP-D3/Def2-TZVP [74,75] level of theory with SMD solvation
model calculation in DME solution, [79] and the reported Gibbs free energy is obtained by adding
the solution-phase electronic energy with the gas-phase Gibbs free energy correction for saving the
computational time consumption. To verify the reliability of the geometries and thermal corrections
obtained in the gas phase, geometrical optimizations as well as the frequency calculations for 5INT1,
TBPB, DME, 5INT2, 5TS1, and 7INT3 were also carried out with SMD solvation model. Figure S5
depicts the free energy profile of pathway from 5INT1 to 7INT3 in which the gas-phase thermal energy
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correction shows well comparative to the solvation thermal energy correction. Other functionals
including types of generalized gradient approximation (GGA), meta-GGA and hybrid functional
including dispersion were also employed for 5INT1 (i.e., Fe(OTf)2(DME)2) optimization on quintet,
triplet and singlet spin states to confirm the validity of quintet state. Supplementary Table S2 shows
the similar energetic tendency supporting that employing the quintet state 5INT1 to initiate studies
should be reliable. On the other hand, for radical coupling, minimum energy crossing point (MECP)
was also located by using the hybrid approach method of Harvey [80]. All calculations were performed
by the Gaussian 09 package (Gaussian, Wallingford, CT, USA) [81].

4. Conclusions

In summary, experimental studies have established the selective formation of methyl radical
formation for this iron-catalyzed carboazidation of alkenes. The methyl radical can be identified by
GC-MS and be found in the product in the absence of further alkyl iodides indicating that a methyl
radical is easily propagated at room temperature under the reaction conditions. Theoretical studies
reveal that the methyl radical propagation via β-Me scission of the t-BuO radical will be assisted by
the iron catalysis. The energy barrier of methyl radical release from a coordinated t-BuO radical is
far lower than that of untethered one. In addition, the formed methyl radical has a lower barrier to
abstract an iodine atom from the alkyl iodide instead of reacting with the styrene which explains the
outcome of products through the radical relay process. In the end, the iron-catalyzed carboazidation of
alkenes may undergo an outer-sphere radical coupling via an Fe(III)N3 intermediate to form products.
This study may shed some light on the metal-catalyzed SET reactions of peroxides and may offer a
partial explanation of the formation of methyl radical [21,36,37,44].

Supplementary Materials: The following are available online, Supporting Information including all NMR
spectroscopic analysis, characterization data, GC-MS analysis, Figure S1–S5, Tables S1–S4 and Cartesian coordinates
of all optimized structures.
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