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Abstract: Although 1-Ph-2-X-closo-1,2-C2B10H10 (X = F, Cl, Br, I) derivatives had been computed to
have positive values of the heat of formation, it was possible to prepare them. The corresponding
solid-state structures were computationally analyzed. Electrostatic potential computations indicated
the presence of highly positive σ-holes in the case of heavy halogens. Surprisingly, the halogen•••π
interaction formed by the Br atom was found to be more favorable than that of I.

Keywords: sigma hole; halogen bond; icosahedral boron cluster

1. Introduction

Icosahedral closo-1,2-C2B10H12, known as o-carborane, was found to have the positive part of
its relatively large value of the experimental dipole moment, 4.50 D [1], in the midpoint of the C-C
vector. When one of the hypercarbon atoms is substituted with phenyl (Ph), the dipole moment is
even increased to 4.93 D. The difference between these two values was interpreted as a mesomeric
contribution to the overall dipole moment as a consequence of the electron transfer from the benzene
ring towards the icosahedral cage. This 1-Ph-closo-1,2-C2B10H11 was structurally studied by the
techniques of gas-phase electron diffraction and X-ray diffraction in the gas phase and solid state [2].
When the second hypercarbon of the cage is substituted with halogens, the overall dipole moments in
the series of 1-Ph-2-X-closo-1,2-C2B10H10 (X = F, Cl, Br, and I, denoted here as 1, 2, 3, and 4, respectively)
decrease, in the case of F and Cl by more than 1 D due to the electron-withdrawing effect of these two
halogen atoms [3]. The fact that the dipole moment of Br- and I-derivatives only decreased by 0.8 and
even 0.2 D, respectively, was ascribed to the close position of halogen and Ph, and also to the partially
positively charged outer part of the heavy halogen atoms, known as σ-holes [4]. A σ-hole can be
characterized by its magnitude, VS,max, defined as the value of the most positive electrostatic potential
(ESP) of an electron density surface. The higher the VS,max value, the more favorable the forming
σ-hole interactions [5]. The halogen•••π interactions have been extensively studied in the solid state
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and evaluated theoretically by quantum mechanical calculations [6–8]. Recently, they have even been
observed in solution [9]. The σ-hole interactions with aryls have been paid considerable attention in
boron cluster chemistry as well, e.g., the S•••π interaction appears in 1-Ph-closo-1-SB11H10 [10].

In the series of closo-SB11H11 and 12-X-closo-SB11H10 (X = Cl, Br, I), the experimentally determined
dipole moments were reported to be 3.6, 5.5, 5.5, and 5.3 D [11], respectively. Note that this series differs
from the 1−4 series in the lack of Ph substitution and in the absence of positive σ-holes on halogen
atoms (relative σ-holes occur when halogen atoms are bonded to the B vertex). Within the context
of halogen•••π interactions in brominated carbaboranes [12], this bonding motif has also appeared
in 1-Ph-2-Br-closo-1,2-C2B10H10, whose structure has been established in another laboratory [13]. In
order to obtain a deeper insight into halogen•••π interactions and crystal packing within the series of
1, 2, 3 and 4), we have prepared all of these halogenated 1-Ph-o-carboranes, crystallized them, and
computationally analyzed the corresponding solid-state structures.

2. Results and Discussion

2.1. Syntheses

Compounds 1, 2, 3, and 4 were prepared by halogenating 1-phenyl-1,2-dicarba-closo-dodecaborane
with N-fluorobenzenesulfonimide/benzene, Cl2/P4O10, Br2/toluene, and I2/tetrahydrofuran,
respectively—as described in the literature [3]. All the compounds were identified by experimental
11B{1H} NMR spectra. The 11B NMR chemical shifts were compared with the theoretical shifts reported
in ref. [3] (see Table 1). The largest difference of 3.4 ppm was found for B4 and B5 of 4. The purities of
1–4 were checked by analytical TLC.

Table 1. 11B chemical shifts (in ppm) for 1–4 with respect to BF3.OEt2. 11B NMR spectra were recorded
on a Varian Unity—500 instrument in CDCl3 solution. Computed shifts taken from ref. [3] are shown
in parentheses. The calculations were performed at the GIAO-B3LYP/II//MP2/6-31G* level (DZP + ECP
were used for 3–4).

Compound B9 B12 B4, B5 B7, B11 B3, B6 B8, B10

1 −6.6
(−7.1)

−11.2
(−11.3)

−12.6
(−14.0)

−13.6
(−15.6)

−14.6
(−16.1)

−14.6
(−16.4)

2 −4.6
(−5.1)

−6.4
(−6.8)

−10.2
(−11.6)

−10.2
(−11.6)

−10.7
(−12.3)

−11.8
(−13.5)

3 −4.2
(−4.8)

−5.3
(−6.0)

−9.2
(−11.2)

−10.8
(−12.0)

−10.8
(−12.8)

−10.8
(−13.1)

4 −3.2
(−4.4)

−3.7
(−4.5)

−7.8
(−11.2)

−9.4
(−11.6)

−9.4
(−12.6)

−10.2
(−12.8)

2.2. Structural Characterization

The crystal structure of 3 had previously been reported by Welch as well [13]. It contained a
noticeable interaction between the Br atom and the Ph ring (Br•••C contacts of 3.457 and 3.488 Å,
the Br•••Phcenter separation of 3.463 Å and the C-Br•••Phcenter angle of 175.63◦). We have solved
the single-crystal structures of 1, 2, 3, and 4 (Figures 1 and 2). The newly reported crystal structure
of 3 confirms the formation of a characteristic interaction between the Br atom and the Ph ring (the
Br1•••C7, Br1•••C8 and Br1•••Phcentroid separations of 3.416, 3.436, and 3.404 Å, respectively, and
the C2-Br1•••Phcenter angle of 175.14◦). The interaction between the I atom and the Ph ring was of
comparable length (the I1B•••C7B, I1B•••C8B and I1B•••Phcenter separations of 3.553, 3.594, and
3.483 Å) but considerably more bent (C-I•••Phcenter angle of 145.00◦).
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The unit cell of 4 contains two independent molecules. The molecular structures of all complexes
1–4 are similar (Figure 1). The distances C1-C2 and C1-C3(Ph) lie within the intervals (1.620(13)–1.706(2)
Å) and (1.476(16)–1.505(9) Å), respectively. The largest geometric differences are observed when the
relative position of phenyl rings is analyzed. The torsion angle C2-C1-C3-C8 is 70.5(6)◦ and 72.0(2)◦

in the case of 1 and 2, respectively, 87.3(13)◦ for 3, and 84.9(11)◦ and 82.9(11)◦ for 4. Such differences
can be explained by the features of crystal packing and the presence of intermolecular interactions
C-X•••π in the case of Br- and I-derivatives, not observed in F- and Cl-derivatives (Figure 2), where
usual B-H•••X and C-H•••H-B connections prevail.
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2.3. Computations

2.3.1. Heat of Formation (∆Hf
298)

The computed ∆Hf
298 values of the studied compounds and their 10-vertex analogues are

summarized in Table 2. Since all the considered compounds have a high energy level (positive ∆Hf
298

values), their thermodynamic stability should be low as they can lose a great deal of energy by reacting
to lower-energy products. The thermodynamic stability has decreased with the increasing atomic
number of the halogen atom and with the reduced size of the carborane cage. Note that the positive
values of the heat of formation do not necessarily mean experimental unavailability, as exemplified
by e.g., closo-SB9H9 with the computed ∆Hf

298 value of 11.3 kcal mol−1 [14,15]. Moreover, we have
computed the ∆Hf

298 of 26.5 kcal mol−1 for closo-1,2-C2B8H10, which was previously prepared as
well [16].

Table 2. The computed heats of formation (∆Hf
298) in kcal mol−1.

Compound ∆Hf
298

12-vertex series
1-Ph-2-F-closo-1,2-C2B10H10 (1) 2.7
1-Ph-2-Cl-closo-1,2-C2B10H10 (2) 45.7
1-Ph-2-Br-closo-1,2-C2B10H10 (3) 57.0
1-Ph-2-I-closo-1,2-C2B10H10 (4) 64.9

10-vertex series
1-Ph-2-F-closo-1,2-C2B8H8 30.9
1-Ph-2-Cl-closo-1,2-C2B8H8 73.2
1-Ph-2-Br-closo-1,2-C2B8H8 84.6
1-Ph-2-I-closo-1,2-C2B8H8 92.6

2.3.2. Electrostatic Potential (ESP)

As the studied compounds are neutral and the halogen atoms are bound to a C-vertex, one can
expect the heavier halogen atoms with highly positive σ-holes. The molecular ESP surfaces of the
studied molecules were computed in order to validate this assumption (see Figure 3). Indeed, the
top of the I and Br atoms with the VS,max values of 36.2 and 25.8 kcal mol−1, respectively, is the most
positive part of the 3 and 4 molecules. In the case of 2, the σ-hole of the Cl atom has the VS,max value of
19.5 kcal mol−1. The H atoms of the Ph ring are thus more positive (VS,max value of 23.9 kcal mol−1).
The F atom of 1 does not have a positive σ-hole (the VS,max value of −5.7 kcal mol−1) due to its large
electronegativity. The most negative values (VS,min) of the molecular surfaces of the studied molecules
are on BH(9) vertices, which are antipodal to CX(2) vertices. The VS,min values range from −14.0 to
−12.9 kcal mol−1 (for 4 and 1 compounds, respectively). Besides hydridic BH vertices, the σ-holes
on the heavier halogen can also interact with the π electrons of Ph rings, which have a negative ESP
surface as well (the VS,min values range between −6.8 and −6.4 kcal mol−1 for 4 and 2 compounds,
respectively).
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2.3.3. Interactions in the Single Crystals of 1–4

Interactions in the reported single-crystal structures were studied by computing two-body and
many-body interaction energy (∆E2 and ∆EMB) values between the central molecules and two layers of
surroundings molecules. The first layer consisted of molecules within 5 Å of the central molecule, and
the second layer was formed by molecules within 5 Å of the first layer. The obtained sums of the ∆E
values are summarized in Table 3. The computed total binding became more favorable with the increasing
atomic number of the halogen atom (i.e. −48.4, −51.4, −53.3, and −55.2 kcal mol−1 for F-, Cl-, Br-, and
I-containing compounds, respectively). The total binding thus correlated more with the molecular masses
of these molecules (R2 of 0.91) than with their experimental dipole moments (R2 of 0.76).

Table 3. Two-body and many-body interaction energies (∆E2 and ∆EMB) computed at the
DFT-D3/TPSS/TZVPP level in kcal mol−1.

Compound Σ∆E2

(1st Layer)
∆EMB

(1st Layer)
Σ∆E2

(2nd Layer)
Total

1-Ph-2-F-closo-1,2-C2B10H10 (1) −50.74 5.04 −2.69 −48.39
1-Ph-2-Cl-closo-1,2-C2B10H10 (2) −52.29 5.51 −4.60 −51.38
1-Ph-2-Br-closo-1,2-C2B10H10 (3) −53.72 4.05 −3.58 −53.25
1-Ph-2-I-closo-1,2-C2B10H10 (4) −56.31 3.45 −2.37 −55.23

The interaction motifs with the most favorable ∆E2 values are shown in Figure 4 and the
corresponding values in Table 4. This analysis confirmed the strength of the halogen•••π interaction
of 3—the motif with the C-Br•••Ph interaction had the ∆E2 of −6.91 kcal mol−1 at the DFT-D3 level.
Considering that each molecule of 3 formed two such C-Br•••Ph interactions, it thus accounted for
about 26% of the total computed binding of 3. According to the SAPT0 decomposition, this motif was
mainly stabilized by dispersion, which formed approximately 65 of the attractive terms. The second
most important term was electrostatic. It formed about 28% of the attractive terms, which was the
largest contribution to the electrostatic term among all the motifs studied (see Table 4). The second
most favorable motif of 3 had two diH-bonds and contributed considerably less to the overall binding.
With the ∆E2 of −5.67 kcal mol−1, it only formed about 11% of the total binding of 3.

In the case of 4, the motif with the halogen•••π interaction had the ∆E2 of −5.79 kcal mol−1 and
thus formed about 21% of the overall binding of 4. Therefore, it was less favorable than the motif with
the halogen•••π interaction of 3. It was surprising considering the large VS,max value of 4 (see part
2.3.2.). However, examples of a reverse hierarchy in strength of halogen interactions have already been
reported in literature [17,18]. In our case, the lack of strength of the I•••π interaction corresponded to
the bent C-I•••Phcenter angle. An optimal arrangement for a σ-hole hole interaction is linear, whereas
the C-I•••Phcenter angle was about 145◦ in the case of 4. Additionally, we have modeled a hypothetical
dimer of 4 stabilized by a halogen•••π interaction in an optimal arrangement. The obtained motif
had the I•••Phcenter separation of 3.6 Å, the C-I•••Phcenter angle of 170◦ and the ∆E2 of −8.50 kcal
mol−1 at the DFT-D3 level, which demonstrated the capability of 4 to form a very strong iodine•••π
interaction. These results indicated that crystal packing effects made the C-I•••π interaction of 4
weaker. Consequently, the most favorable crystallographic motif of 4 was the motif A•••B, which had
the diH-bond with the length of 2.26 Å and the ∆E2 value of −5.98 kcal mol−1.

The most favorable motif of 2 had the highly negative ∆E2 of −7.10 kcal mol−1 (the most negative
∆E2 of this study). This motif formed about 14% of the total binding of 2 and did not have any close
contact below the sum of van der Waals radii. The motif can be characterized by a large dispersion
term, which formed about 73% of the attractive terms of the SAPT (Symmetry Adapted Perturbation
Theory) decomposition. The second most favorable motif of 2 had multiple diH-bonds, the ∆E2 of
−7.10 kcal mol−1 and a large dispersion term (i.e., about 75% of the attractive terms).



Molecules 2020, 25, 1200 6 of 12

Table 4. Interaction energies computed at the DFT-D3/TPSS/TZVPP level. The interaction energies have
been decomposed into electrostatic (Eelec), induction (Eind), dispersion (Edisp), and exchange (Eexch)
contributions using the SAPT0/jun-cc-pVDZ methodology. All energies are in kcal mol−1. The relative
values in parentheses show the contribution to the sum of all the attractive energy terms of SAPT.

Motif DFT-D3
SAPT0

Total Eelec Eind Edisp Eexch

1-Ph-2-F-closo-1,2-C2B10H10 (1)

A•••B −6.93 −7.20 −1.92
(15.8%)

−0.57
(4.7%)

−9.65
(79.5%) 4.94

A•••C −6.58 −7.15 −2.56
(19.5%)

−0.68
(5.2%)

−9.87
(75.3%) 5.96

1-Ph-2-Cl-closo-1,2-C2B10H10 (2)

A•••B −7.10 −7.82 −3.44
(21.5%)

−0.91
(5.7%)

−11.63
(72.8%) 8.15

A•••C −5.43 −4.64 −1.68
(15.9%)

−1.03
(9.8 %)

−7.87
(74.4%) 5.95

1-Ph-2-Br-closo-1,2-C2B10H10 (3)

A•••B1 −6.91 −7.10 −4.80
(27.6%)

−1.27
(7.3%)

−11.30
(65.1%) 10.23

A•••C2 −5.67 −5.27 −2.19
(22.6%)

−0.73
(7.5%)

−6.75
(69.8%) 4.40

1-Ph-2-I-closo-1,2-C2B10H10 (4)
A•••B −5.98 − − − − −

A•••C −5.79 − − − − −

1 The analogous motif of the crystal structure by A. Welch et al. [13] was computed to have the interaction energy
of −6.73 kcal mol−1 at the MP2/CBS level [12]. 2 The analogous motif of the crystal structure by Welch [13] was
computed to have the interaction energy of −5.09 kcal mol−1 at the MP2/CBS level [12].
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positions of H atoms have been optimized at the DFT-D3/BLYP/DZVP level.

The two most favorable motifs of 1 had comparable ∆E2 of −6.93 and −6.58 kcal mol−1. Together,
they formed about 28% of the total binding of 1. Neither of them formed close contact below the sum
of van der Waals radii, and both had a large dispersion term in the SAPT decomposition, i.e., the
dispersion term ranged from 75 to 80% of the attractive terms.
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2.4. Cambridge Structural Database (CSD) search

We have searched the Cambridge structural database (CSD) [19] for X-ray structures containing
halogenated carboranes that exhibit interactions between a halogen and a Ph ring. The analysis of
CSD [19], however, did not show any analogous halogen•••Ph interactions in similar ortho-carborane
derivatives. Additionally, we analyzed short B-X•••Ph-ring contacts in various halogenated boron
compounds (for the definition of the criteria, see Figure 5). We fixed d1 and d2 to be less than sum
of van der Waals radii of the appropriate elements [20], as well as angles B1-X•••C1,2 (90◦ < α1, α2
< 180◦). A minor number of hits was excluded as clearly not suitable for the criteria of this type of
interaction. The data are presented in Table 5; the found contacts may be potential candidates for
studies of unusual B-X•••π interactions.
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Table 5. The data obtained in the analysis of the fragment in the CCDC.

X Restraints, Å
Number of
Structures

Angles (B-Hal-C)
α1, α2,◦ d1, d2, Å c, Å

F 2.8 < (d1, d2) < 3.1 4 99.08–168.80 2.871–3.090 3.235–4.013
Cl 3.1 < (d1, d2) < 3.5 19 96.77–169.76 3.156–3.497 3.172–4.287
Br 3.1 < (d1, d2) < 3.6 10 104.44–171.01 3.329–3.586 3.567–4.476
I 3.1 < (d1, d2) < 3.8 4 140.21–176.25 3.437–3.795 3.416–4.078

Specifically, the set of four fluorine-substituted compounds mostly contain the side-on
intermolecularly interacting compounds with the B-Hal bond lying in the plane of the aromatic
ring (Figure 5C). This could be attributed more or less to the non-classical C-H•••X hydrogen
bond [21,22]. Nineteen relevant chlorine-substituted compounds exhibit mainly contacts contrived
by C-H•••Cl or B-H•••H-C interactions, and only four structures of ionic compounds (halogenated
carbadodecaborate anions are compensated by tritylium, silylium, and borinium cations), which
are considered products of Cl•••π interactions [23–25]. A different situation occurs for brominated
compounds, where the Br•••π interaction has been found to be dominant in most compounds in a set
selected based on defined parameters, except for a couple of examples of type C and B (Figure 5) and
boarder-line cases [26]. Surprisingly enough, only three relevant compounds have been found in the
set of iodo compounds [27–33]. To conclude here, the most probable is an interaction of the desired
type in brominated and iodinated compounds, where the aromatic ring is not a part of the same moiety
as the halogen. The desired criteria are also accomplished for chlorinated ionic compounds, where the
weak nucleophiles, such as CHB11X11

−, are compensated for by aromatic ring-containing cations. If all
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the restrictions were removed, leaving only the Ph ring, halogen, and three boron atoms, then 418 hits
would be obtained. One can hence assume that the probability of the formation of such a motif in
crystals containing both halogenated boranes and aromatic systems is 8.9%.

3. Materials and Methods

3.1. X-Ray Crystallography

The X-ray data for the compounds 1–4 (colorless crystals obtained by slow evaporation of a
hexane solution) were collected at 150(2)K with a Bruker D8-Venture diffractometer equipped with
a Mo (Mo/Kα radiation; λ = 0.71073 Å) microfocus X-ray (IµS) source, by a Photon CMOS detector
and an Oxford Cryosystems cooling device. The frames were integrated with the Bruker SAINT
software package [34] using a narrow-frame algorithm. The data were corrected for absorption
effects using the Multi-Scan method (SADABS) [35]. The obtained data were treated by XT-version
2014/5 [36] and SHELXL-2017/1 [37] software implemented in the APEX3 v2018.1-0 (Bruker AXS
Inc., Madison, WI, USA) system. Compound 1 exhibits a disorder of B(5)-H(5) and C(2)-F(1) groups
(50:50). H atoms were placed in calculated positions and refined in the “riding model”. Rint = Σ|Fo

2

− Fo,mean
2
|/ΣFo

2, S = [Σ (w(Fo
2
− Fc

2)2)/(Ndiffrs − Nparams)]
1
2 for all data, R(F) = Σ||Fo| − |Fc||/Σ|Fo| for

observed data, wR(F2) = [Σ(w(Fo
2
− Fc

2)2)/(Σw(Fo
2)2)]

1
2 for all data. Crystallographic data for the

structural analysis have been deposited with the Cambridge Crystallographic Data Centre CCDC no.
1981411–1981414. Copies of this information may be obtained free of charge from The Director, CCDC,
12 Union Road, Cambridge CB2 1EY, UK (fax: +44-1223-336033; email: deposit@ccdc.cam.ac.uk or
www: http://www.ccdc.cam.ac.uk). For experimental findings see Table 6.

Table 6. The refinement information and crystallographic data for 1–4.

Compound 1 2 3 4

Chemical formula C8H15B10F C8H15B10Cl C8H15B10Br C8H15B10I
Formula weight 238.30 254.75 299.21 346.20
Temperature/K 150(2) 150(2) 150(2) 150(2)
Crystal system Monoclinic Monoclinic Orthorhombic Monoclinic

Space group P21/m P21/n Pbca P21
a/Å 8.6564(9) 7.2920(4) 10.257(3) 12.0950(8)
b/Å 7.5229(7) 23.9912(14) 11.448(3) 7.2033(5)
c/Å 10.5576(11) 7.7979(5) 24.132(7) 16.9983(14)
α/◦ 90 90 90 90
β/◦ 106.168(3) 93.397(2) 90 90.453(3)
γ/◦ 90 90 90 90

Volume/Å 660.33(12) 1361.80(14) 2833.8(14) 1480.91(19)
Z 2 4 8 4

ρcalc g/cm3 1.199 1.243 1.403 1.553
µ/mm−1 0.066 0.248 2.870 2.133
F(000) 244 520 1184 664

Crystal size/mm3 0.989 × 0.504 ×
0.386

0.414 × 0.225 ×
0.148

0.342 × 0.192 ×
0.150

0.753 × 0.416 ×
0.343

Radiation type MoKα

(λ = 0.71073 Å)
MoKα

(λ = 0.71073 Å)
MoKα

(λ = 0.71073 Å)
MoKα

(λ = 0.71073 Å)
2θ range for data collection/◦ 2.450 to 27.996 2.751 to 26.415 2.606 to 24.999 2.396 to 28.276

Index ranges
−11 < = h < =11,
−9 < = k < = 9,
−13 < = l < = 13

−9 < = h < = 9,
−29 < = k < = 30,
−9 < = l < = 9

−12 < = h < = 12,
−13 < = k < = 12,
−28 < = l < = 28

−14 < = h < = 16,
−9 < = k < = 9,
−22 < = l < = 22

Reflections collected 14986 33108 14758 21597

Independent reflections 1704 [R(int) =
0.0745]

2794 [R(int) =
0.0694]

2439 [R(int) =
0.1169]

6917 [R(int) =
0.0499]

Data/restraints/parameters 1704/12/115 2794/0/172 2439/264/172 6917/1/344
Goodness-of-fit on F2 1.049 1.067 1.176 1.053

Final R indexes [I > 2σ(I)] R1 = 0.0620, wR2 =
0.1615

R1 = 0.0479, wR2 =
0.1096

R1 = 0.1237, wR2 =
0.2686

R1 = 0.0370, wR2 =
0.0718

Largest diff. peak/hole/e Å-3 0.673 and −0.393 0.282 and −0.307 1.683 and −1.521 1.635 and −1.431

http://www.ccdc.cam.ac.uk
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3.2. Computations

3.2.1. Electrostatic Potential (ESP)

The molecular ESP surfaces were computed on the 0.001 a.u. molecular surfaces at the
HF/def2-TZVP level using the Gaussian09 [38] and Molekel4.3 [39,40] programs.

3.2.2. Heat of Formation (∆Hf
298)

For optimization, we used the DFT/B-P86/def2QZVP level and the LBFGS algorithm with
strict optimization criteria (i.e. ∆E < 0.0006 kcal mol−1, the maximal gradient <0.12 kcal mol−1 Å−1

and the RMS of gradient <0.06 kcal mol−1 Å−1. Harmonic vibrational calculations for the ZPVE
and other thermodynamic contributions were computed at the DFT/B-P86/def2QZVP level. The
energy calculations of the studied molecules and the atoms they constitute were performed at the
DFT/B3LYP/def2QZVP level. ∆Hf

298 values were computed by Cuby4 [41] program package, which
called Turbomole 7.0 [42] for a harmonic vibrational and energy calculations.

3.2.3. Interaction Energy

The interactions of the crystal structures were studied by using a cluster model. Hydrogen
atoms of the central molecule and the surrounding molecules of the first layer were optimized by the
DFT-D3/BLYP/DZVP method [43]. The resolution-of-identity (RI) approximation to the DFT method
was used. Hydrogen atoms of the surrounding molecules of the second layer were optimized by the
semiempirical quantum mechanical PM6-D3H4X method [44]. Heavy atoms were kept in crystallographic
positions. Interaction energies were computed at the DFT-D3/TPSS/TZVPP level. Two-body interaction
energy (∆E2) was computed as the energy difference between the energy of the dimer and the sum of
monomer energies. For the first layer, the interaction energy between the central molecule and the whole
first layer (∆E(AQ)) was computed as well. The many-body interaction energy (∆EMB) was computed as
the difference between ∆E(AQ) and the sum of ∆E2 values. ∆E values of selected motifs were decomposed
using symmetry-adapted perturbation-theory (SAPT) methodology. The simplest truncation of SAPT
(SAPT0) decomposition [45] was performed with the recommended jun-cc-pVDZ basis set [46]. Turbomole
(7.0) [42], MOPAC2016 [47], PSI4 [48], and Cuby4 [41] programs were used.

4. Conclusions

A series of 1−4 derivatives was prepared, crystallized, and computationally analyzed. Even
though their heat of formation had been computed to be positive, it was possible to prepare them. The
obtained solid-state structures were computationally analyzed and the presence of σ-holes in the case
of heavy halogens was computationally established. Interestingly, the halogen•••π interaction coming
from the Br atom was found to be more favorable than that of I.
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