Figure S1: Map of Korea HEHA INUL JIME LIDA North east region HESH Middle region SHJI South region HUHU ZHPI ANHU **FULO** ILIL **GUSH GUBA** Figure S2: Map of China 1 2 3 Figure S3: Map of North America: (a) Canada, (b) the United States. Fig S4: Morphological characteristics of the 17 soybean samples cultivation from Korea.; (1) Gyeonggi province Anseong; (2) Gyeonggi province Icheon; (3) Gangwon province Chuncheon; (4) Gangwon province Yeongwol; (5) Chungcheongbuk province Eumseong; (6) Chungcheongnam province Cheonan; (7) Chungcheongnam province Gonju; (8) Jeollabuk province Gimje; (9) Jeollabuk province Imsil; (10) Jeollanam province Naju; (11) Jeollanam province Yeonggwang; (12) Kyeongsangbuk province Cheongdo; (13) Kyeongsangbuk province Uiseong; (14) Kyeongsangbuk province Yeongcheon; (15) Kyeongsangnam province Changnyeong; (16) Kyeongsangnam province Miryang; (17) Kyeongsangnam province Geochang. Fig S5: Morphological characteristics of the 13 soybean samples cultivation from China.; (1) Neimenggu province Ulanhot; (2) Heilongjiang province Harbin; (3) Jilin province Meihekou; (4) Liaoning province Dandong; (5) Hebei province Shijiazhuang; (6) Shandong province Jining; (7) Anhui province Huaibei; (8) Hubei province Huangshi; (9) Zhejiang province Pinghu; (10) Jiangxi province Jiujiang; (11) Fujian province Longyan; (12) Guangdong province Shaoguan; (13) Guangxi province Hechi. **Fig S6:** Morphological characteristics of the 6 soybean samples cultivation from North America.; (1) Illinois province; (2) Indiana province; (3) Minnesota province; (4) Michigan province; (5) Quebec province; (6) Ontario province. Table S1: Volatile metabolites of soybeans cultivated in Korea | N- 1 | RI cal ² | RI ref ³ | V-1-01- C 1- | | | | | | | | Rela | tive Peak A | Area ⁴ | | | | | | | | - ID 6 | |------|---------------------|---------------------|------------------------------|-----------------|----------------|-----------------|--------|-----------------|-----------------|-----------------|-----------------|-------------|-------------------|-----------------|-------------|--------|-----------------|--------|--------|--------|--------| | No.1 | KI Cal - | KI rei | Volatile Compounds | CBES 7 | CNCA | CNGJ | GGAS | GGIC | GWCC | GWYW | JBGJ | JBIS | JNNJ | JNYG | KBCD | KBES | KBYC | KNCN | KNGC | KNMY | ID. | | | | | Acids | - | | | | | | | | | | | | | | | | | | | 1 | 1449 | | Acetic acid | 1.214 | 1.03 | 0.284 | 1.1 | 1.491 | 1.167 | 0.898 | 0.711 | 0.384 | 1.241 | 0.404 | 0.202 | N.D.5 | 0.376 | 1.181 | 0.377 | 0.098 | A | | | 1117 | | 7 rectic acid | ±0.100 | ±0.057 | ±0.057 | ±0.211 | ±0.080 | ±0.160 | ±0.212 | ±0.057 | ±0.136 | ±0.708 | ±0.039 | ±0.039 | IV.D. | ±0.126 | ±0.065 | ±0.151 | ±0.013 | 71 | | | | | Alcohols | 2 | 924 | | Propan-2-ol | N.D. | N.D. | 0.045 | N.D. | N.D. | N.D. | 0.165 | N.D. | N.D. | 0.045 | N.D. | N.D. | N.D. | N.D. | N.D. | 0.067 | N.D. | Α | | - | 721 | | rropair 2 or | | | ±0.007 | | | | ±0.233 | | | ±0.043 | | TV.D. | | | 14.5. | ±0.022 | | | | 3 | 928 | | Ethanol | 1.293 | 2.099 | 1.852 | 1.285 | 0.495 | 2.497 | 5.416 | 4.1 | 2.928 | 5.302 | 2.052 | N.D. | 0.351 | 1.673 | N.D. | 3.123 | 1.473 | Α | | | | | | ±0.091 | ±0.267 | ±0.335 | ±0.18 | ±0.031 | ±0.323 | ±0.462 | ±0.793 | ±1.975 | ±2.205 | ±0.298 | | ±0.049 | ±0.718 | | ±0.756 | ±0.22 | | | 4 | 1024 | | Butan-2-ol | 1.089
±0.189 | N.D. | 1.439
±0.146 | N.D. | 1.291
±0.029 | 1.898
±0.298 | 1.466
±0.157 | N.D. | N.D. | N.D. | 1.248
±0.079 | N.D. | N.D. | 0.107
±0.185 | N.D. | N.D. | N.D. | A | | | | | | ±0.169 | | ±0.146 | | ±0.029 | ±0.296 | 0.224 | | | | ±0.079 | | 0.063 | ±0.163 | | | | | | 5 | 1101 | | 2-Methylpropan-1-ol | N.D. | N.D. | N.D. | N.D. | N.D. | N.D. | ±0.006 | N.D. | N.D. | N.D. | N.D. | N.D. | ±0.011 | N.D. | N.D. | N.D. | N.D. | Α | | | | | | 1.464 | 1.579 | 0.769 | 0.75 | 1.655 | 1.233 | 0.293 | 0.551 | 1.292 | 1.449 | 1.083 | 1.309 | 0.222 | 0.975 | 0.443 | 0.709 | 3.063 | | | 6 | 1129 | | 1-Methoxypropan-2-ol | ±0.093 | ±0.03 | ±0.103 | ±0.085 | ±0.09 | ±0.097 | ±0.046 | ±0.025 | ±0.45 | ±0.33 | ±0.07 | ±0.428 | ±0.037 | ±0.257 | ±0.119 | ±0.091 | ±0.34 | A | | _ | 4454 | | D | 0.81 | 0.279 | 0.368 | 0.193 | 0.745 | 0.649 | 1.009 | 0.188 | NID | 0.329 | 0.369 | 3.35 | | 0.108 | 0.499 | 0.165 | 0.493 | | | 7 | 1151 | | Butan-1-ol | ±0.096 | ±0.038 | ±0.038 | ±0.04 | ±0.074 | ±0.313 | ±0.109 | ±0.009 | N.D. | ±0.141 | ±0.009 | ±1.359 | N.D. | ±0.188 | ±0.136 | ±0.052 | ±0.118 | Α | | 8 | 1194 | | 2,5-Dimethylhexan-2-ol | 0.274 | 0.227 | 0.224 | N.D. | N.D. | 0.258 | 0.275 | 0.217 | 0.233 | 0.27 | 0.23 | 0.226 | 0.356 | 0.174 | 0.293 | 0.313 | 0.344 | С | | 0 | 11/4 | | 2,5-Difficulty friexali-2-01 | ±0.006 | ±0.021 | ±0.025 | IV.D. | IN.D. | ±0.027 | ±0.034 | ±0.011 | ±0.009 | ±0.087 | ±0.021 | ± 0.144 | ±0.035 | ±0.302 | ±0.013 | ±0.031 | ±0.059 | C | | 9 | 1211 | | 3-Methylbutan-1-ol | N.D. | N.D. | N.D. | N.D. | N.D. | N.D. | 1.241 | 0.537 | N.D. | 4.1 | N.D. | N.D. | 0.645 | N.D. | 1.05 | N.D. | N.D. | Α | | | | | v | | | | | | | ±0.019 | ±0.05 | | ±5.626 | | | ±0.091 | | ±0.059 | | | | | 10 | 1255 | | Pentan-1-ol | 0.367 | 0.723 | 0.502 | 0.507 | 0.136 | 0.333 | 0.301 | 0.424 | N.D. | 1.979 | 0.332 | 0.383 | 0.274 | 0.476 | 0.493 | 0.409 | 0.728 | A | | | | | | ±0.019 | ±0.25
0.152 | ±0.038 | ±0.18 | ±0.011 | ±0.018
0.087 | ±0.055
0.129 | ±0.011
0.069 | | ±1.892
0.194 | ±0.03 | ±0.137 | ±0.021 | ±0.287
0.21 | ±0.162 | ±0.086 | ±0.184 | | | 11 | 1304 | | 2-Methylpentan-1-ol | N.D. | ±0.027 | N.D. | N.D. | N.D. | ±0.007 | ±0.002 | ±0.002 | N.D. | ±0.105 | N.D. | N.D. | N.D. | ±0.098 | N.D. | N.D. | N.D. | В | | | | | | 0.568 | 1.777 | 1.566 | 0.813 | 0.071 | 0.209 | 1.001 | 1.54 | 0.604 | 6.45 | 0.585 | 0.465 | 1.252 | 0.611 | 1.938 | 0.641 | 2.145 | | | 12 | 1344 | | Hexan-1-ol | ±0.052 | ±0.467 | ±0.226 | ±0.491 | ±0.007 | ±0.021 | ±0.286 | ±0.100 | ±0.228 | ±7.518 | ±0.07 | ±0.092 | ±0.08 | ±0.65 | ±0.632 | ±0.178 | ±0.046 | A | | | | | | | | 0.059 | | 0.054 | | | | 0.079 | | | | | | 0.089 | | 0.1 | | | 13 | 1402 | | 2-Butoxyethanol | N.D. | N.D. | ±0.012 | N.D. | ±0.007 | N.D. | N.D. | N.D. | ±0.0100 | N.D. | N.D. | N.D. | N.D. | N.D. | ±0.043 | N.D. | ±0.035 | A | | 14 | 1449 | | Oct-1-en-3-ol | N.D. 0.674 | N.D. | N.D. | N.D. | N.D. | A | | 14 | 1447 | | Oct-1-e11-5-01 | IN.D. | IN.D. | N.D. | IV.D. | N.D. | N.D. | N.D. | N.D. | IN.D. | IN.D. | IN.D. | N.D. | ±0.035 | N.D. | N.D. | N.D. | IN.D. | А | | 15 | 1493 | | 2-Ethylhexan-1-ol | 8.806 | 10.443 | 13.104 | 9.74 | 5.697 | 6.864 | 10.167 | 8.925 | 8.434 | 11.863 | 5.995 | 7.06 | 2.517 | 4.624 | 3.85 | 14.73 | 8.315 | Α | | 10 | 1170 | | 2 Zury mozum 1 or | ±0.692 | ±0.929 | ±0.546 | ±1.446 | ±0.23 | ±0.262 | ±0.402 | ±0.309 | ±2.989 | ±1.932 | ±0.502 | ±1.883 | ±0.445 | ±1.299 | ±3.381 | ±0.700 | ±0.577 | | | 16 | 1565 | | Octan-1-ol | N.D. | N.D. | N.D. | 0.114 | 0.043 | N.D. | N.D. | N.D. | N.D. | N.D. | N.D. | 0.098 | N.D. | 0.095 | 0.102 | N.D. | 0.254 | A | | | | | | 0.198 | 0.092 | | ±0.027 | ±0.004 | | | | | 0.366 | | ±0.041 | | ±0.015 | ±0.017 | | ±0.021 | | | 17 | 1582 | 1580 | Butane-2,3-diol | ±0.021 | ±0.024 | N.D. ±0.560 | N.D. В | | | | | | 10.021 | 10.024 | | | | | | | | 10.500 | | | | | | | | | | | | | 5-Methyl-2-propan-2- | | 0.104 | | 0.068 | 0.061 | | | 0.064 | | | | | | | 0.32 | | | | | 18 | 1643 | 1631 | | N.D. | ±0.011 | N.D. | ±0.06 | ±0.002 | N.D. | N.D. | ±0.020 | N.D. | N.D. | N.D. | N.D. | N.D. | N.D. | ±0.044 | N.D. | N.D. | В | | | | | ylcyclohexan-1-ol | | -0.011 | | ±0.00 | 20.002 | | | -0.020 | | | | | | | 20.011 | | | | | | | | | | | | | | | | 0.18 | | | | | | 0.055 | | | 0.141 | | | 19 | 1669 | | Nonan-1-ol | N.D. ±0.017 | N.D. | N.D. | N.D. | N.D. | N.D. | ±0.048 | N.D. | N.D. | ±0.032 | A | 20 | 1759 | | 2-Phenylpropan-2-ol | N.D. 0.166
±0.029 | 0.238
±0.05 | N.D. | N.D. | 0.422
±0.009 | A | |----|------|------|-----------------------------------|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|----| | 21 | 1832 | | 1-Phenylethanol | N.D. 0.218
±0.012 | A | | 22 | 1877 | | Phenylmethanol | 0.161
±0.021 | 0.122
±0.008 | N.D. | 0.168
±0.026 | N.D. | 0.1
±0.016 | N.D. | N.D. | N.D. | 0.3
±0.073 | 0.148
±0.007 | N.D. | N.D. | N.D. | N.D. | N.D. | 0.179
±0.311 | A | | 23 | 1898 | | 2-Phenylethanol | N.D. 0.019
±0.002 | N.D. | 0.004
±0.006 | A | | 24 | 2087 | 2087 | 2-(Phenoxy)ethanol | N.D. 0.014
±0.005 | N.D. | N.D. | В | | | | | Aldehydes | 25 | 605 | | Acetaldehyde | N.D. | 0.11 | 0.029 | N.D. | 0.049 | 0.064 | 0.081 | N.D. | 0.106 | N.D. | 0.071 | N.D. | N.D. | N.D. | N.D. | 0.073 | N.D. | Α | | | | | , | 0.015 | ±0.018
0.017 | ±0.002
0.018 | 0.018 | ±0.016
0.011 | ±0.017
0.013 | ±0.025
0.02 | 0.017 | ±0.01
0.018 | 0.035 | ±0.019
0.012 | | | | | ±0.01
0.025 | | | | 26 | 861 | | 2-Methylprop-2-enal | ±0.001 | ±0.002 | ±0.001 | ±0.004 | ±0.001 | ±0.003 | ±0.007 | ±0.001 | ±0.005 | ±0.010 | ±0.003 | N.D. | N.D. | N.D. | N.D. | ±0.005 | N.D. | A | | | 968 | | Dontonal | N.D. | | | | N.D. | N.D. | N.D. | | 0.13 | N.D. | N.D. | N.D. | ND | N.D. | N.D. | N.D. | N.D. | Α. | | 27 | 968 | | Pentanal | | N.D. | N.D. | N.D. | | | | N.D. | ±0.110 | | | | N.D. | | N.D. | N.D. | N.D. | A | | 20 | 1074 | | Hexanal | 0.604 | 4.607 | 1.973 | 3.815 | 0.324 | 0.834 | 0.555 | 1.052 | 4.518 | 2.108 | 0.445 | 3.055 | 1.253 | 3.224 | N.D. | N.D. | N.D. | Α | | 28 | | | | ±0.097 | ±4.338
0.264 | ±0.857
0.198 | ±4.195
0.3 | ±0.034
0.102 | ±0.042
0.149 | ±0.167 | ±0.076
0.171 | ±1.02 | ±2.591 | ±0.388
0.105 | ±0.857
0.005 |
±0.372
0.133 | ±3.711
0.42 | | | | | | 29 | 1181 | | Heptanal | N.D. | ±0.077 | ±0.021 | ±0.080 | ±0.010 | ±0.026 | N.D. | ±0.011 | N.D. | N.D. | ±0.008 | ±0.008 | ±0.028 | ±0.290 | N.D. | N.D. | N.D. | A | | | 4840 | | (T) 77 A 1 | | | | 0.255 | | | | | | | | 0.103 | | | | | | | | 30 | 1210 | | (E)-Hex-2-enal | N.D. | N.D. | N.D. | ±0.033 | N.D. ±0.090 | N.D. | N.D. | N.D. | N.D. | N.D. | Α | | | 1285 | 1287 | Octanal | 0.057 | 0.12 | 0.093 | 0.349 | 0.12 | 0.071 | 0.068 | 0.187 | 0.107 | 0.123 | 0.094 | 0.174 | 0.156 | 0.407 | 0.16 | 0.234 | 0.247 | В | | 31 | 1200 | 1207 | Octuriar | ±0.019 | ±0.051 | ±0.009 | ±0.083 | 4±0.02 | ±0.005 | ±0.029 | ±0.025 | ±0.02 | ±0.013 | ±0.003 | ±0.034 | ±0.027 | ±0.363 | ±0.009 | ±0.017 | ±0.099 | D | | 22 | 1391 | | Nonanal | 0.421 | 0.663 | 0.601 | 1.668 | 0.674 | 0.628 | 0.333 | 0.959 | 0.796 | 1.093 | 0.68 | 1.136 | 0.767 | 2.783 | 0.836 | 1.161 | 1.782 | Α | | 32 | | | | ±0.159 | ±0.189 | ±0.012 | ±0.256 | ±0.101 | ±0.059 | ±0.196 | ±0.063 | ±0.165 | ±0.172 | ±0.107 | ±0.267 | ±0.192 | ±1.754 | ±0.079 | ±0.1 | ±0.762 | | | 33 | 1515 | | Benzaldehyde | 0.191
±0.008 | 0.198
±0.027 | 0.197
±0.044 | 0.217
±0.021 | 0.119
±0.012 | 0.152
±0.004 | N.D. | N.D. | 0.178
±0.023 | 0.241
±0.074 | 0.204
±0.016 | 0.382
±0.088 | 0.094
±0.007 | 0.595
±0.237 | 0.114
±0.005 | 0.122
±0.021 | 0.693
±0.062 | A | | | | | Benzenes | ±0.006 | ±0.027 | ±0.044 | ±0.021 | ±0.012 | ±0.004 | | | ±0.023 | ±0.074 | ±0.016 | ±0.000 | ±0.007 | ±0.237 | ±0.003 | ±0.021 | ±0.062 | | | | | | Delizelles | | 0.094 | 0.148 | | | 0.055 | 0.48 | 0.061 | 0.031 | 0.475 | 0.064 | 0.164 | 0.205 | 0.925 | 0.152 | | 1.326 | | | 34 | 1119 | | Ethylbenzene | N.D. | ±0.063 | ±0.132 | N.D. | N.D. | ±0.005 | ±0.053 | ±0.01 | ±0.053 | ±0.217 | ±0.009 | ±0.064 | ±0.294 | ±0.581 | ±0.042 | N.D. | ±0.302 | A | | | 1100 | | 1.4.V.1 | NID | | 0.022 | ND | ND | | 0.345 | | | | | | 0.013 | | | ND | | | | 35 | 1126 | | 1,4-Xylene | N.D. | N.D. | ±0.038 | N.D. | N.D. | N.D. | ±0.038 | N.D. | N.D. | N.D. | N.D. | N.D. | ±0.023 | N.D. | N.D. | N.D. | N.D. | Α | | 36 | 1133 | | 1,3-Xylene | N.D. | N.D. | 0.078
±0.135 | N.D. | N.D. | N.D. | 1.24
5±0.112 | N.D. | N.D. | N.D. | 0.009
±0.008 | 0.146
±0.094 | 0.182
±0.083 | 0.129
±0.069 | 0.138
±0.068 | 0.582
±0.215 | 0.128±
0.026 | A | | 37 | 1175 | | 1,2-Xylene | N.D. | N.D. | 0.042
±0.072 | N.D. | N.D. | N.D. | 1.613
±0.159 | N.D. | N.D. | N.D. | 0.043
±0.002 | N.D. | 0.109
±0.056 | 0.048
±0.023 | N.D. | 1.027
±0.28 | 0.086
±0.035 | A | | 0, | | | | 0.355 | 0.725 | 0.532 | 0.66 | 0.165 | 0.392 | 0.963 | 0.317 | 0.424 | 2.647 | 0.461 | 0.55 | 0.801 | 1.618 | 0.382 | 0.708 | 1.588 | | | 38 | 1250 | | Styrene | ±0.033 | ±0.209 | ±0.148 | ±0.111 | ±0.034 | ±0.04 | ±0.116 | ±0.027 | ±0.256 | ±0.89 | ±0.041 | ±0.232 | ±0.141 | ±0.956 | ±0.328 | ±0.114 | ±0.371 | A | | 39 | 1264 | | 1-Methyl-3-propan-2-
ylbenzene | 0.036
±0.006 | N.D. 0.25
±0.248 | N.D. A | | | | | yiberizerie | ±0.006 | | | | | | | | | IU.240 | | | | | | | | | Esters 0.257 0.187 0.151 0.208 0.316 0.481 0.331 0.124 0.351 0.241 0.133 810 Methyl acetate N.D. N.D. N.D. N.D. N.D. N.D. Α 40 ±0.047 ±0.023 ±0.005 ±0.066 ±0.017 ±0.067 ±0.038 ±0.024 ±0.087 ±0.185 ±0.027 0.255 0.373 0.227 0.03 0.068 0.09 0.076 0.645 0.149 0.117 0.475 0.401 0.048 0.0470.1 0.116 0.041 872 Ethyl acetate Α 41 ±0.006 ±0.017 ±0.037 ±0.396 ± 0.038 ±0.006 ±0.12 ±0.027 ±0.01 ± 0.461 ± 0.147 ±0.158 ±0.022 ± 0.006 ±0.017 ± 0.088 ± 0.046 0.951 0.074 0.133 1.052 1174 Butyl prop-2-enoate N.D. Α 42 ±0.02 ±0.053 ±1.003 ±0.394 0.232 0.196 1220 Butyl butanoate N.D. Α 43 ±0.113 ±0.182 **Furans** 0.014 0.006 0.003 44 775 N.D. Furan N.D. Α ±0.002 ±0.001 ±0.003 0.038 0.049 0.036 0.065 0.034 0.03 0.09 0.045 0.042 0.106 0.0240.02 0.015 0.017 0.021 0.061 0.037 45 850 2-Methylfuran ±0.008 ±0.005 ±0.011 ±0.01 ±0.011 ±0.001 ±0.009 ±0.009 ±0.001 ±0.011 ±0.029 ±0.007 ±0.008 ± 0.003 ±0.004 ±0.020 ±0.017 0.005 0.009 0.058 2,5-Dihydrofuran N.D. 46 861 N.D. N.D. Α ± 0.001 ±0.004 ±0.100 0.004 0.033 0.007 0.004 0.133 0.042 832 N.D. 47 826 3-Methylfuran N.D. В ±0.004 ±0.003 ±0.000 ±0.003 ±0.23 ±0.009 0.137 0.242 0.117 0.297 0.037 0.069 0.319 0.178 0.167 0.515 0.063 0.0740.069 0.126 0.1 0.353 0.182 48 940 2-Ethylfuran ±0.024 ±0.047 ±0.019 ±0.095 ± 0.003 ±0.092 ±0.005 ±0.002 ±0.047 ± 0.018 ± 0.073 ±0.189 ±0.007 ± 0.01 ± 0.068 ± 0.028 ±0.075 0.044 0.129 0.035 0.169 0.045 0.083 0.072 0.092 0.099 0.328 0.037 0.036 0.264 1230 2-Pentylfuran N.D. N.D. N.D. 49 N.D. Α ±0.004 ±0.146 ± 0.015 ±0.167 ±0.009 ±0.014 ±0.028 ±0.028 ±0.039 ±0.440 ± 0.038 ±0.009 ±0.145 Ketones 2.116 3.387 3.193 2.845 2.991 2.127 8.92 6.879 5.325 9.086 2.599 1.207 0.892 1.081 1.729 5.909 3.266 50 792 Propan-2-one Α ±0.565 ±0.275 ±0.548 ±0.256 ±0.924 ±0.318 ±0.07 ±0.419 ±0.938 ±0.965 ±0.224 ±0.12 ±0.647 ±0.94 ±4.373 ±0.214 ±0.459 0.308 0.608 0.534 0.571 0.13 0.269 $1.268 \pm$ 0.539 0.514 1.019 0.405 0.133 0.289 0.314 16.19 1.02 0.453 51 889 Butan-2-one Α ±0.04 ±0.041 ±0.078 ±0.058 ± 0.03 ±0.022 0.117 ±0.474 ±0.05 ±0.321 ±0.092 ±0.029 ±0.029 ±0.163 ±27.353 ±0.24 ±0.063 0.042 0.312 0.133 0.602 0.026 0.227 52 966 Pentan-2-one N.D. Α ±0.004 ±0.038 ±0.004 ±0.061 ±0.009 ±0.317 0.073 0.023 0.012 0.4 0.102 0.02 53 1120 1121 (E)-Pent-3-en-2-one N.D. В ±0.03 ±0.009 ±0.011 ±0.093 ±0.029 ±0.005 0.026 0.038 54 1178 Heptan-2-one N.D. Α ±0.023 ±0.033 0.029 55 1279 3-Hydroxybutan-2-one N.D. Α ±0.006 0.051 N.D. 56 1297 Oct-1-en-3-one N.D. Α ±0.012 6-Methylhept-5-en-2-0.05 0.034 0.042 0.102 0.043 0.0440.045 0.442 57 1336 N.D. N.D. N.D. N.D. N.D. N.D. N.D. N.D. N.D. Α ±0.009 one ±0.008 ±0.014 ±0.031 ±0.011 ±0.012 ±0.014 ±0.045 0.153 58 1490 1495 2-Decanone N.D. В ±0.061 0.339 0.416 0.653 2.84 59 1641 1645 1-Phenylethanone N.D. В ±0.078 ±0.196 ±0.102 ±0.039 Lactones 0.071 60 1600 N.D. 5-Methyloxolan-2-one N.D. Α ±0.014 | 61
62 | 1613
1688 | 1694 | Oxolan-2-one
5-Ethyloxolan-2-one | 0.22
±0.012
N.D. | 0.387
±0.073
0.071 | 0.437
±0.603
0.065 | 0.146
±0.02
0.098 | 0.114
±0.003
N.D. | 0.145
±0.015
N.D. | 0.215
±0.171
0.056 | 0.161
±0.008
0.075 | 0.09
±0.04
N.D. | 0.589
±0.396
0.137 | 0.177
±0.018
0.074 | 0.124
±0.027
0.046 | 0.429
±0.13
0.041 | 0.272
±0.047
0.074 | 0.317
±0.063
0.079 | 0.196
±0.027
N.D. | 0.13
±0.095
0.189 | A
B | |----------|--------------|------|---|---------------------------|--------------------------|--------------------------|--------------------------|---------------------------|---------------------------|---------------------------|--------------------------|---------------------------|---------------------------|---------------------------|---------------------------|--------------------------|---------------------------|---------------------------|---------------------------|---------------------------|--------| | | 1000 | 1071 | | | ±0.011 | ±0.002 | ±0.024 | | | ±0.004 | ±0.006 | | ±0.049 | ±0.004 | ±0.007 | ±0.004 | ±0.022 | ±0.020 | | ±0.017 | | | 63 | <600 | | N-containing compounds N,N- Dimethylmethanamine | N.D. 0.024
±0.005 | N.D. | 0.038
±0.029 | 0.028
±0.010 | N.D. | 0.157
±0.012 | A | | 64 | 1178 | | Pyridine | N.D. 0.03
±0.005 | N.D. | N.D. | 0.055
±0.051 | N.D. | N.D. | N.D. | A | | 65 | 1782 | | Methyl (<i>Z</i>)-N-hydroxybenzenecarboxi | 0.058
±0.011 | N.D. | N.D. | 0.054
±0.027 | 0.048
±0.015 | N.D. | N.D. | N.D. | N.D. | N.D. | N.D. | 0.095
±0.029 | 0.071
±0.017 | 0.073
±0.052 | N.D. | N.D. | N.D. | С | | | | | midate S-containing compounds | 66 | 716 | | Methylsulfanylmethane | 0.114 | 0.121 | 0.083 | 0.076 | 0.006 | 0.029 | 0.621 | 0.423 | 0.053 | 0.566 | 0.039 | 0.033 | 0.198 | 0.127 | 0.221 | 0.64 | 0.307 | A | | 67 | 1937 | | 1,3-Benzothiazole | ±0.073
0.169
±0.065 | ±0.01
0.203
±0.102 | ±0.015
0.14
±0.048 | ±0.039
0.163
±0.05 | ±0.002
0.167
±0.011 | ±0.003
0.156
±0.014 | ±0.123
0.157
±0.043 | ±0.08
0.157
±0.006 | ±0.045
0.136
±0.062 | ±0.078
0.232
±0.073 | ±0.003
0.114
±0.027 | ±0.023
0.415
±0.079 | ±0.223
0.256
±0.09 | ±0.041
0.683
±0.239 | ±0.048
0.388
±0.106 | ±0.197
0.159
±0.042 | ±0.069
0.409
±0.219 | A | | | | | Hydrocarbons | ±0.003 | ±0.102 | ±0.046 | ±0.03 | ±0.011 | ±0.014 | ±0.043 | ±0.000 | ±0.002 | ±0.073 | ±0.027 | ±0.079 | ±0.09 | ±0.239 | ±0.100 | ±0.042 | ±0.219 | | | 68 | <600 | | 2-Methylprop-1-ene | 0.022
±0.002 | 0.035
±0.007 | 0.025
±0.005 | 0.017
±0.005 | 0.022
±0.001 | 0.044
±0.012 | 0.031
±0.004 | 0.022
±0.001 | 0.029
±0.006 | 0.026
±0.006 | 0.043
±0.007 | 0.045
±0.008 | 0.045
±0.005 | 0.043
±0.021 | 0.036
±0.005 | 0.029
±0.003 | 0.036
±0.004 | С | | 69 | <600 | | Pentane | N.D. | 0.026
±0.019 | 0.025
±0.004 | N.D. | 0.006
±0.001 | 0.011
±0.001 | 0.02
±0.004 | 0.014
±0.000 | N.D. | 0.225
±0.36 | 0.011
±0.000 | N.D. | N.D. | N.D. | N.D. | 0.015
±0.001 | 0.011
±0.006 | A | | 70 | 600 | | Hexane | 0.048
±0.005 | 0.111
±0.011 | 0.137
±0.066 | 0.059
±0.008 | 0.039
±0.004 | 0.078
±0.025 | 0.101
±0.039 | 0.088
±0.01 | 0.129
±0.108 | 0.187
±0.019 | 0.101
±0.016 | 0.205
±0.052 | N.D. | N.D. | 0.157
±0.046 | 0.192
±0.117 | N.D. | A | | 71 | 613 | | 1,1-Dichloro-1-
fluoroethane | N.D. 0.006
±0.01 | N.D. | N.D. | 0.011
±0.008 | N.D. | N.D. | N.D. | 0.022
±0.024 | N.D. | С | | 72 | 700 | | Heptane | N.D. | 0.031
±0.007 | 0.044
±0.024 | 0.033
±0.002 | 0.022
±0.003 | 0.028
±0.004 | 0.044
±0.008 | 0.027
±0.003 | 0.03
±0.006 | 0.05
±0.005 | 0.023
±0.001 | 0.022
±0.007 | 0.023
±0.002 | 0.036
±0.018 | 0.022
±0.005
| 0.04
±0.003 | 0.035
±0.005 | A | | 73 | 735 | 725 | Methylcyclohexane | N.D. 0.002
±0.004 | 0.013
±0.005 | 0.017
±0.001 | N.D. | N.D. | 0.015
±0.004 | В | | 74 | 800 | | Octane | 0.025
±0.004 | 0.03
±0.005 | 0.043
±0.046 | 0.045
±0.007 | N.D. | 0.013
±0.002 | 0.037
±0.003 | 0.024
±0.003 | 0.023
±0.011 | 0.083
±0.029 | 0.012
±0.001 | 0.028
±0.011 | 0.021
±0.003 | 0.043
±0.033 | 0.031
±0.01 | 0.068
±0.028 | 0.056
±0.006 | A | | 75 | 1198 | | Dodecane | 0.05
±0.087 | N.D. 0.256
±0.135 | 0.108
±0.027 | 0.24
±0.041 | 0.17
±0.082 | N.D. | 0.161
±0.015 | A | | 76 | 1277 | | Pentylcyclopentane | N.D. 0.022
±0.037 | N.D. | N.D. | 0.178
±0.118 | N.D. | N.D. | С | | 77 | 1399 | 1400 | Tetradecane | N.D. 0.042
±0.058 | N.D. | N.D. | 0.111
±0.073 | 0.072
±0.012 | 0.094
±0.038 | 0.057
±0.002 | N.D. | 0.107
±0.008 | В | | | | | Terpenes | 78 | 1092 | | β-Pinene | N.D. | N.D. | 0.097
±0.014 | N.D. A | | 79 | 1157 | | l-Phellandrene | 0.087
±0.039 | N.D. A | | 80 | 1190 | | Limonene | 0.039
±0.011 | N.D. | 0.028
±0.003 | N.D. | N.D. | N.D. | N.D. | N.D. | N.D. | 0.196
±0.132 | N.D. | 0.43
±0.519 | N.D. | 0.134
±0.231 | 0.127
±0.083 | N.D. | 0.065
±0.022 | A | | 81 | 1198 | | Sabinene | 0.142 | N.D. 0.042 | N.D. | 0.022 | N.D. | N.D. | N.D. | A | | | | | | ±0.143 | | | | | | | | | | | ±0.072 | | ±0.038 | | | | | |----|------|------|-------------|--------|------|------|-----------------|-----------------|-----------------|------|------|------|---------------|------|----------------|----------------|-----------------|------|------|-----------------|---| | 82 | 1243 | | γ-Terpinene | N.D. 0.5
±0.723 | N.D. A | | 83 | 1736 | 1736 | Azulene | N.D. 0.109
±0.019 | В | | | | | Phenols | 84 | 1956 | | Phenol | N.D. | N.D. | N.D. | 0.004
±0.006 | 0.037
±0.003 | 0.014
±0.003 | N.D. | N.D. | N.D. | N.D. | N.D. | 0.031
±0.01 | 0.02
±0.005 | 0.025
±0.025 | N.D. | N.D. | 0.034
±0.001 | A | ¹ All volatile metabolites are listed by the order of their RI values; ² Retention indices were determined using n-alkanes C₆ to C₃₀ as an external standard; ³ Retention indices were obtained from NIST database(http://webbook.nist.gov/chemistry); ⁴ Mean values of relative peak area to that of internal standard ± standard deviation; ⁵ Not detected; ⁶ Identification of the compounds was based as follows; A, mass spectrum and retention index agree with the authentic compounds under similar conditions (positive identification); B, mass spectrum and retention index were consistent with those from NIST database; C, mass spectrum was consistent with that of W9N08 (Wiley and NIST) and manual interpretation (tentative identification); ⁷ Abbreviation are defined as shown in Table 4. Table S2: Volatile metabolites of soybeans cultivated in China | NI - 1 | DI12 | DI (2 | V-1-til- C | | | | | | Relativ | e Peak Are | a ⁴ | | | | | | - ID 6 | |--------|---------------------|---------------------|------------------------------|-----------------|-----------------|-----------------|-----------------|-----------------|----------------|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|--------| | No.1 | RI cal ² | RI ref ³ | Volatile Compounds | INUL 7 | HEHA | JIME | LIDA | HESH | SHJI | HUHU | ANHU | ZHPI | FULO | JIJI | GUSH | GUBA | ID 6 | | | | | Acids | | | | | | | | | | | | | | | | 1 | 1448 | | Acetic acid | 2.803 | N.D. 5 | N.D. | N.D. | 0.033 | 0.021 | N.D. | 0.035 | 2.07 | 9.045 | N.D. | 7.543 | 2.55 | Α | | | | | | ±0.023 | | | | ±0.014 | ±0.013 | | ±0.012 | ±0.048 | ±3.215 | | ±1.880 | ±0.266 | | | 2 | 1861 | 1854 | Hexanoic acid | N.D. 1.355
±0.489 | N.D. | N.D. | N.D. | В | | | | | Alcohols | | | | | | | | | | | | | | | | 3 | 925 | | Propan-2-ol | N.D. | N.D. | N.D. | 0.02
±0.035 | N.D. A | | 4 | 930 | | Ethanol | 4.229 | 0.86 | 4.304 | 0.96 | 9.618 | 3.465 | 4.822 | 25.695 | 8.165 | 20.333 | 3.426 | 4.168 | 2.998 | A | | - | 750 | | Ethanoi | ±1.103 | ±0.098 | ±1.362 | ±0.033 | ±3.136 | ±0.890 | ±5.155 | ±3.938 | ±0.833 | ±11.479 | ±0.827 | ±0.999 | ± 0.478 | 11 | | 5 | 1024 | | Butan-2-ol | 0.278 | 0.148 | 0.253 | 0.084 | 0.346 | 0.162 | 0.159 | 0.275 | 0.269 | 0.755 | 0.399 | 0.626 | 0.259 | Α | | | | | | ±0.033 | ±0.009 | ±0.151 | ±0.006 | ±0.178 | ±0.035 | ±0.189 | ±0.044 | ±0.029 | ±0.305 | ±0.104 | ±0.303 | ±0.049 | | | 6 | 1098 | | 2-Methylpropan-1-ol | 0.158
±0.012 | N.D. 0.27
±0.101 | 0.598
±0.560 | N.D. | N.D. | N.D. | A | | | | | | 0.349 | 0.321 | 0.357 | 0.147 | 0.611 | 0.371 | 0.646 | 0.772 | 1.612 | 4.209 | 2.695 | 2.996 | 4.071 | | | 7 | 1129 | | 1-Methoxypropan-2-ol | ±0.034 | ±0.027 | ±0.135 | ±0.018 | ±0.114 | ±0.036 | ±0.379 | ±0.017 | ±0.165 | ±0.863 | ±0.637 | ±0.366 | ±0.463 | Α | | | | | | 1.867 | 3.356 | 4.218 | 2.114 | 7.326 | 5.08 | 16.827 | 13.653 | 19.744 | 22.487 | 14.498 | 13.835 | 10.915 | | | 8 | 1151 | | Butan-1-ol | ±0.267 | ±0.095 | ±2.108 | ±0.268 | ±2.199 | ±0.928 | ±12.654 | ±0.435 | ±1.306 | ±6.99 | ±3.180 | ±3.352 | ±1.360 | A | | 9 | 1194 | | 2,5-Dimethylhexan-2-ol | N.D. | N.D. | N.D. | 0.334
±0.029 | N.D. | N.D. | N.D. | N.D. | N.D. | 0.51
±0.140 | N.D. | 0.231
±0.013 | N.D. | C | | 10 | 1212 | | 3-Methylbutan-1-ol | 2.162
±0.051 | N.D. 1.732
±0.955 | 2.792
±1.953 | N.D. | N.D. | N.D. | A | | 11 | 1055 | | Denten 1 al | 0.356 | 0.159 | 0.342 | 0.348 | 0.347 | 0.348 | 1.138 | 0.827 | 0.811 | 3.591 | 0.221 | 0.679 | 1.173 | Α. | | 11 | 1255 | | Pentan-1-ol | ±0.005 | ±0.021 | ±0.066 | ±0.043 | ±0.222 | ± 0.046 | ±1.256 | ±0.160 | ±0.371 | ±1.275 | ±0.030 | ±0.208 | ±0.306 | A | | 12 | 1289 | 1288 | Heptan-4-ol | 0.031 | 0.048 | 0.062±0.02 | 0.023 | 0.138 | 0.103 | 0.233 | 0.247 | 0.148 | 0.245 | 0.217 | 0.072 | 0.105 | В | | | 1207 | 1200 | Treptuit 1 of | ±0.011 | ±0.005 | 0.002_0.02 | ±0.002 | ±0.087 | ±0.026 | ±0.156 | ±0.027 | ±0.022 | ±0.121 | ±0.052 | ±0.032 | ±0.012 | - | | 13 | 1345 | | 3-Methylheptan-4-ol | N.D. 0.147
±0.026 | N.D. | N.D. | 0.086
±0.071 | N.D. | 0.069
±0.008 | A | | 14 | 1358 | | Hexan-1-ol | 1.492 | 0.969 | 1.52 | 3.028 | 1.89 | 1.532 | 8.174 | 4.77 | 2.757 | 9.973 | 1.009 | 0.903 | 1.834 | Α | | | | | | ±0.028 | ±0.186 | ±0.492 | ±0.329 | ±1.579 | ±0.345 | ±10.29 | ±0.994 | ±0.901 | ±3.294 | ±0.116 | ±0.018 | ±0.330 | | | 15 | 1398 | | Octan-3-ol | N.D. 0.239
±0.111 | 0.571
±0.170 | N.D. | N.D. | N.D. | A | | 16 | 1402 | | 2-Butoxyethanol | 0.136
±0.007 | N.D. | N.D. | N.D. | 0.533
±0.232 | N.D. | N.D. | N.D. | 0.041
±0.004 | N.D. | 0.197
±0.053 | N.D. | N.D. | A | | 17 | 1428 | | 3-Methoxy-3-methylbutan-1-ol | N.D. 0.234
±0.032 | 1.235
±0.450 | 7.942
±1.853 | 0.432
±0.088 | 0.303
±0.049 | A | | | | | | | | | 0.123 | | 0.104 | | 0.184 | | | | | | | | 18 | 1448 | | Oct-1-en-3-ol | N.D. | N.D. | N.D. | ±0.035 | N.D. | ±0.031 | N.D. | ±0.106 | N.D. | N.D. | N.D. | N.D. | N.D. | A | | 19 | 1454 | | Heptan-1-ol | N.D. 0.151
±0.016 | N.D. | N.D. | N.D. | N.D. | N.D. | A | | 20 | 1493 | | 2-Ethylhexan-1-ol | 1.899
±0.203 | 1.605
±0.608 | 1.862
±0.228 | 0.529
±0.028 | 3.59
±2.246 | 2.29
±0.443 | 4.065
±1.931 | 4.641
±0.438 | 3.341
±0.213 | 4.323
±1.250 | 3.787
±0.732 | 0.871
±0.377 | 2.303
±0.562 | A | | 21 | 1565 | | Octan-1-ol | N.D. | N.D. | 0.11
±0.038 | 0.205
±0.028 | 0.234
±0.124 | N.D. | 0.339
±0.313 | N.D. | N.D. | 0.559
±0.163 | 0.121
±0.026 | N.D. | N.D. | A | |----|-------|------|---|-----------------|-----------------|-----------------|-----------------|-----------------|----------------|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|----| | 22 | 1582 | 1580 | Butane-2,3-diol | 0.074
±0.004 | N.D. | N.D. | N.D. | N.D. | N.D. | 0.387
±0.306 | N.D. | N.D. | 0.399
±0.184 | N.D. | N.D. | N.D. | В | | 23 | 1594 | | Propane-1,2-diol | N.D. 0.612 | N.D. | N.D. | A | | 23 | 1574 | | • | | | IV.D. | | | IV.D. | | | | | ±0.267 | | | 11 | | 24 | 1642 | 1631 | 5-Methyl-2-propan-2-
ylcyclohexan-1-ol | 0.185
±0.006 | 0.167
±0.025 | N.D. | 0.106
±0.012 | 0.246
±0.078 | N.D. | 0.2
±0.115 | 0.229
±0.038 | 0.213
±0.016 | 0.418
±0.150 | 0.175
±0.018 | 0.689
±0.061 | 0.248
±0.034 | В | | 25 | 1666 | | Nonan-1-ol | N.D. | N.D. | N.D. | 0.221
±0.035 | 0.285
±0.245 | N.D. | 0.336
±0.443 | N.D. | N.D. | 0.41
1±0.161 | N.D. | N.D. | N.D. | A | | 26 | 1759 | | 2-Phenylpropan-2-ol | N.D. | N.D. | N.D. | N.D. | 0.041
±0.019 | N.D. A | | 27 | 1875 | | Phenylmethanol | 0.27
±0.009 | N.D. | N.D. | N.D. | 0.579
±0.248 | 0.23
±0.028 | 0.328
±0.192 | N.D. | N.D. | N.D. | N.D. | 1.737
±0.875 | 0.286
±0.025 | A | | | | | Aldehydes | ±0.009 | | | | ±0.246 | ±0.028 | ±0.192 | | | | | ±0.673 | ±0.023 | | | | | | Aldellydes | | | 0.181 | | 0.189 | 0.09 | 0.229 | 0.495 | 0.161 | | 0.097 | | 0.054 | | | 28 | 605 | | Acetaldehyde | N.D. | N.D. | ±0.084 | N.D. | ±0.061 | ±0.023 | ±0.191 | ±0.043 | ±0.059 | N.D. | ±0.048 | N.D. | ±0.016 | A | | | | | | | 0.016 | | | | | 0.639 | 0.091 | 0.143 | | 0.114 | | 0.019 | | | 29 | 857 | | Butanal | N.D. | ±0.002 | N.D. | N.D. | N.D. | N.D. | ±0.824 | ±0.006 | ±0.054 | N.D. | ±0.037 | N.D. | ±0.005 | A | | | | | | | 0.011 | | | | | | | | | | | 0.026 | | | 30 | 863 | | 2-Methylprop-2-enal | N.D. | ±0.006 | N.D. ±0.000 | A | | 24 | 4.054 | | ** 1 | 0.406 | 1.889 | 2.878 | 2.468 | 2.456 | 2.43 | 5.467 | 6.196 | 0.767 | 10.439 | 1.429 | 1.721 | 5.322 | | | 31 | 1074 | | Hexanal | ±0.012 | ±0.312 | ±0.389 | ±0.076 | ±0.340 | ±0.636 | ±2.274 | ±1.010 | ±0.121 | ±3.156 | ±0.245 | ±0.489 | ±2.829 | A | | 32 | 1181 | | II-ut-u-1 | N.D. | 0.337 | 0.3 |
0.291 | 0.739 | 0.353 | 0.65 | 0.598 | ND | 1.021 | 0.417 | N.D. | 0.331 | | | 32 | 1181 | | Heptanal | N.D. | ±0.048 | ±0.032 | ±0.019 | ±0.127 | ±0.047 | ±0.306 | ± 0.074 | N.D. | ±0.330 | ±0.094 | N.D. | ±0.025 | A | | 33 | 1210 | | (E)-Hex-2-enal | N.D. | 0.511 | 0.4 | N.D. | 0.409 | 0.37 | 1.27 | 0.895 | N.D. | N.D. | N.D. | N.D. | 0.515 | ۸ | | 33 | 1210 | | (<i>E</i>)-Hex-2-enai | N.D. | ±0.103 | ±0.131 | N.D. | ±0.186 | ±0.049 | ±0.901 | ±0.202 | N.D. | N.D. | N.D. | N.D. | ±0.125 | A | | 34 | 1285 | 1287 | Octanal | 0.15 | 0.472 | 0.349 | 0.426 | 0.861 | 0.372 | 0.614 | 0.485 | 0.093 | 1.032 | 0.662 | 0.223 | 0.397 | В | | 54 | 1200 | 1207 | Octava | ±0.015 | ±0.070 | ±0.065 | ±0.045 | ±0.088 | ±0.100 | ±0.190 | ± 0.070 | ±0.002 | ± 0.154 | ±0.134 | ±0.063 | ±0.060 | Б | | 35 | 1317 | | (E)-Hept-2-enal | N.D. | N.D. | 0.069 | N.D. | 0.076 | 0.04 | 0.133 | 0.1 | N.D. | N.D. | N.D. | N.D. | N.D. | A | | 33 | 1517 | | (E)-Hept-2-char | | | ±0.033 | | ±0.015 | ±0.015 | ±0.112 | ±0.020 | | | | | | 71 | | 36 | 1391 | | Nonanal | 0.571 | 2.673 | 2.068 | 3.235 | 6.729 | 2.079 | 3.405 | 2.15 | 0.86 | 3.724 | 3.92 | 0.709 | 2.361 | A | | | 1071 | | Ttoriuriar | ±0.074 | ±0.323 | ±0.325 | ±0.193 | ± 0.874 | ±0.734 | ±0.612 | ±0.244 | ±0.124 | ±0.958 | ±0.625 | ±0.183 | ±0.137 | | | 37 | 1420 | | (E)-Oct-2-enal | N.D. | N.D. | 0.145
±0.064 | N.D. | 0.164
±0.065 | N.D. | 0.317
±0.265 | N.D. | N.D. | N.D. | N.D. | N.D. | N.D. | A | | 38 | 1495 | | Decanal | N.D. | N.D. | N.D. | 0.212
±0.019 | N.D. A | | 39 | 1514 | | Benzaldehyde | 0.527 | 0.369 | 0.487 | 0.208 | 0.842 | 0.402 | 0.651 | 0.486 | 0.369 | 0.685 | 0.517 | 17.114 | 1.229 | A | | 39 | 1314 | | belizaidellyde | ±0.054 | ±0.022 | ±0.038 | ±0.003 | ±0.152 | ±0.061 | ±0.125 | ±0.032 | ±0.304 | ±0.185 | ±0.072 | ±14.95 | ±0.248 | А | | 40 | 1532 | 1542 | (E)-Non-2-enal | N.D. | 0.167
±0.017 | N.D. | 0.364
±0.023 | N.D. В | | | | | Benzenes | | | | | | | | | | | | | | | | | 46 | | m 1 | 17.019 | 5.657 | 2.736 | 2.259 | 10.099 | 2.709 | 13.237 | 5.453 | 5.707 | | 3.99 | 7.867 | 1.45 | | | 41 | 1027 | | Toluene | ±2.87 | ±0.743 | ±0.872 | ±0.017 | ±10.187 | ±1.22 | ±19.586 | ±1.022 | ±1.842 | N.D. | ±2.072 | ±3.989 | ±0.030 | A | | 40 | 1110 | | EdII- | 0.221 | 0.162 | 0.156 | 0.059 | | 0.145 | 0.784 | 0.187 | 0.208 | 0.336 | 0.325 | 0.195 | | | | 42 | 1119 | | Ethylbenzene | ±0.047 | ±0.016 | ±0.048 | ±0.005 | N.D. | ±0.074 | ±1.239 | ±0.014 | ±0.069 | ±0.226 | ±0.196 | ±0.199 | N.D. | A | | 43 | 1126 | | 1,4-Xylene | N.D. | 0.091 | 0.064 | 0.03 | 0.129 | 0.07 | 0.265 | 0.072 | 0.053 | N.D. | 0.256 | N.D. | N.D. | Α | | | | | • | ±0.011 | ±0.025 | ±0.015 | ±0.186 | ±0.045 | ±0.432 | ±0.011 | ±0.018 | | ±0.151 | | | | |------------|------|------|-----------------------------------|-----------------|-----------------|-----------------|-----------------|--------|-----------------|-----------------|----------------|-----------------|-----------------|-----------------|-------------|--------|----| | 44 | 1133 | | 1,3-Xylene | 0.358 | 0.202 | 0.249 | 0.14 | 0.569 | 0.231 | 0.702 | 0.17 | 0.232 | 0.812 | 0.564 | 0.37 | 0.077 | A | | | 1133 | | 1,5-Aylene | ±0.079 | ±0.022 | ±0.099 | ±0.011 | ±0.591 | ±0.138 | ±1.032 | ±0.022 | ±0.078 | ±0.523 | ±0.335 | ±0.317 | ±0.003 | 11 | | 45 | 1250 | | Charren | ND | ND | 0.106 | ND | 0.246 | 0.122 | 0.283 | 0.099 | ND | 0.758 | 0.571 | 0.219 | 0.077 | | | 45 | 1250 | | Styrene | N.D. | N.D. | ±0.017 | N.D. | ±0.177 | ±0.031 | ±0.262 | ±0.05 | N.D. | ±0.334 | ±0.296 | ±0.143 | ±0.02 | A | | | | | 1-Methyl-3-propan-2- | 0.016 | | | | 0.192 | 0.047 | 0.145 | 0.059 | 0.219 | 0.657 | 0.074 | 0.241 | 0.046 | | | 46 | 1264 | | ylbenzene | ±0.004 | N.D. | N.D. | N.D. | ±0.212 | ±0.030 | ±0.181 | ±0.014 | ±0.126 | ±0.403 | ±0.046 | ±0.239 | ±0.015 | A | | | | | • | 0.033 | 0.034 | 0.039 | 0.02 | 0.186 | 0.055 | 0.145 | 0.058 | 0.046 | 0.272 | 0.109 | 0.109 | | | | 47 | 1273 | | 1,2,3-Trimethylbenzene | ±0.009 | ±0.011 | ±0.017 | ±0.008 | ±0.177 | ±0.028 | ±0.180 | ±0.010 | ±0.015 | ±0.219 | ±0.057 | ±0.129 | N.D. | Α | | | | | 1 M (1 4 F/F) 1 | 10.007 | 10.011 | 10.017 | ±0.000 | 10.177 | 10.020 | 10.100 | ±0.010 | 10.013 | 10.217 | 0.152 | 10.127 | | | | 48 | 1820 | 1817 | 1-Methoxy-4-[(<i>E</i>)-prop-1- | N.D. | N.D. | N.D. | В | | | | | enyl]benzene | | | | | | | | | | | ±0.028 | | | | | | | | Esters | | | | | | | | | | | | | | | | 49 | 810 | | Methyl acetate | N.D. 0.611 | 0.179 | 0.408 | 0.23 | A | | | | | | | | | | | | | | | ±0.225 | ± 0.044 | ±0.103 | ±0.031 | | | 50 | 873 | | Ethyl acetate | 0.481 | N.D. | 0.114 | N.D. | 0.28 | N.D. | N.D. | 0.421 | 0.401 | 1.775 | 0.496 | 0.796 | 0.273 | Α | | 30 | 075 | | Entyracetate | ±0.044 | IV.D. | ± 0.048 | IV.D. | ±0.221 | IV.D. | IV.D. | ±0.076 | ±0.111 | ±1.085 | ±0.220 | ± 0.386 | ±0.092 | 11 | | 51 | 947 | | Ethyl propanoate | N.D. 0.031 | N.D. | N.D. | N.D. | N.D. | N.D. | A | | 31 | 747 | | Ethyl propanoate | N.D. | N.D. | N.D. | IN.D. | IN.D. | IN.D. | IN.D. | ±0.003 | IN.D. | IN.D. | N.D. | IV.D. | N.D. | А | | 52 | 1007 | | Posted contate | 4.851 | 0.373 | 2.314 | 0.438 | 6.813 | 1.439 | 6.744 | 2.022 | 0.475 | 5.451 | 5.333 | 4.264 | 2.507 | | | 52 | 1067 | | Butyl acetate | ±1.253 | ±0.035 | ±0.372 | ±0.103 | ±6.189 | ±0.818 | ±8.587 | ±0.543 | ±0.047 | ±3.763 | ±2.749 | ±1.760 | ±0.340 | A | | | | | | 1.965 | 0.931 | 2.016 | 0.545 | 4.842 | 1.73 | 6.1 | 3.112 | 0.36 | 4.284 | 3.599 | 1.438 | 1.306 | | | 53 | 1141 | | Butyl propanoate | ±0.636 | ±0.035 | ±0.229 | ±0.103 | ±4.519 | ±0.902 | ±7.201 | ±0.451 | ±0.141 | ±2.817 | 1.821 | ±1.303 | ±0.155 | A | | | | | | 1.139 | 1.022 | 1.127 | 0.467 | 2.585 | 1.182 | 3.213 | 1.832 | 0.516 | 3.469 | 1.91 | 1.35 | 0.661 | | | 54 | 1175 | | Butyl prop-2-enoate | ±0.325 | ±0.080 | ±0.189 | ±0.054 | ±2.434 | ±0.461 | ±3.434 | ±0.225 | ±0.078 | ±2.101 | ±0.887 | ±1.185 | ±0.05 | A | | | | | | 3.191 | 3.425 | 4.822 | 1.452 | 10.555 | 5.871 | 13.69 | 12.291 | 1.681 | 15.808 | 8.919 | 3.205 | 3.145 | | | 55 | 1217 | | Butyl butanoate | ±1.332 | ±0.271 | ±0.995 | ±0.208 | ±8.953 | ±3.489 | ±12.426 | ±1.299 | ±0.327 | ±9.685 | ±4.203 | ±3.700 | ±0.311 | A | | | | | | ±1.332 | ±0.271 | | ±0.206 | | | | | ±0.327 | | ±4.203 | ±3.700 | | | | 56 | 1234 | | Ethyl hexanoate | N.D. | N.D. | 0.059 | N.D. | 0.283 | 0.052 | 0.083 | 0.159 | N.D. | 0.359 | N.D. | N.D. | 0.082 | A | | | | | • | | | ±0.053 | | ±0.125 | ±0.017 | ±0.040 | ±0.021 | | ±0.150 | | | ±0.018 | | | 57 | 1384 | | 2-Ethylhexyl acetate | N.D. | N.D. | N.D. | N.D. | N.D. | N.D. | 0.124 | N.D. | N.D. | N.D. | N.D. | N.D. | N.D. | Α | | | | | , , | | | | | | | ±0.099 | | | | | | | | | 58 | 1479 | | 2-Ethylhexyl prop-2-enoate | 0.111 | 0.195 | N.D. | N.D. | N.D. | N.D. | 0.405 | 1.095 | N.D. | N.D. | N.D. | N.D. | N.D. | Α | | - | | | = ==:; | ±0.119 | ±0.062 | | | | | ±0.162 | ±0.309 | | | | | | | | 59 | 1664 | 1672 | Triethyl phosphate | N.D. 1.992 | N.D. | N.D. | N.D. | N.D. | N.D. | В | | 33 | 1004 | 10/2 | mentyr phosphate | IN.D. | IN.D. | IN.D. | IN.D. | IN.D. | N.D. | IN.D. | ±1.250 | IN.D. | IN.D. | IN.D. | IN.D. | IN.D. | ь | | 60 | 1765 | | Mathrel 2 hardwarehan | N.D. 0.486 | N.D. | N.D. | N.D. | 0.39 | N.D. | A | | 60 | 1763 | | Methyl 2-hydroxybenzoate | N.D. ±0.068 | N.D. | N.D. | N.D. | ±0.131 | N.D. | А | | | | | 3-Hydroxy-2,4,4- | 0.06 | 0.399 | 0.218 | 0.235 | | | | | | | | 0.446 | | | | 61 | 1850 | | trimethylpentyl 2- | | | | | N.D. | N.D. | C | | | | | methylpropanoate | ±0.004 | ±0.245 | ±0.202 | ±0.099 | | | | | | | | ±0.153 | | | | | | | Furans | 0.035 | 0.01 | | | 0.033 | 0.019 | 0.183 | 0.021 | | 0.013 | _ | | 62 | 863 | 851 | 3-Methylfuran | N.D. | N.D. | N.D. | ±0.014 | ±0.001 | N.D. | N.D. | ±0.010 | ±0.003 | ±0.069 | ±0.003 | N.D. | ±0.002 | В | | | | | | 0.039 | 0.009 | 0.013 | 0.004 | ±0.001 | 0.018 | 0.05 | 0.02 | 0.003 | 0.055 | 0.018 | | 0.076 | | | 63 | 873 | | 2-Methylfuran | ±0.004 | ±0.005 | ±0.004 | ±0.004 | N.D. | ±0.002 | ±0.064 | ±0.007 | ±0.004 | ±0.021 | ±0.008 | N.D. | ±0.001 | A | | | | | | ±0.004
0.088 | ±0.005
0.116 | ±0.004
0.142 | ±0.001
0.181 | 0.064 | ±0.002
0.154 | ±0.064
0.793 | ±0.007
0.38 | ±0.004
0.113 | ±0.021
0.742 | ±0.008
0.113 | 0.213 | ±0.001 | | | 64 | 941 | | 2-Ethylfuran | | | | | | | | | | | | | | A | | (= | 1000 | | 2 Per t. 16 | ±0.014 | ±0.034 | ±0.040 | ±0.015 | ±0.014 | ±0.047 | ±1.026 | ±0.084 | ±0.041 | ±0.306 | ±0.024 | ±0.099 | ±0.033 | | | 65 | 1230 | | 2-Pentylfuran | 0.057 | 0.104 | 0.314 | 0.074 | 0.369 | 0.334 | 0.745 | 0.357 | N.D. | 0.57 | 0.079 | 0.139 | 0.155 | A | No. | | | | | ±0.004 | ±0.019 | ±0.140 | ±0.015 | ±0.139 | ±0.015 | ±0.534 | ±0.103 | | ±0.163 | ±0.011 | ±0.008 | ±0.057 | |
--|-----|-------|-------|-----------------------------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|---------|--------|----| | | | | | Ketones | | | | | | | | | | | | | | | | 100 | 66 | 805 | | Propan-2-one | | ND | | | | | | | | | | | | Α | | See | 00 | 000 | | 110pun-2-010 | | | | | | | | | | | | | | 11 | | 100 | 67 | 890 | | Butan-2-one | | | | | | | | | | | | | | Α | | | | | | | ±0.032 | ±0.046 | ±0.043 | ±0.043 | ±0.116 | ±0.071 | ±1.375 | ±0.154 | | ±0.39 | ±0.072 | ±0.302 | ±0.127 | | | Perstand | 68 | 944 | | Bicyclo[4.1.0]heptan-5-one | | N.D. | | | | | N.D. | N.D. | ±.0180 | | | | | C | | 100 | 60 | 966 | | Pontan 2 one | 0.081 | ND | 0.038 | 0.155 | 0.03 | | ND | ND | 0.834 | 2.211 | 0.034 | 0.141 | 0.84 | Δ | | 112 112 112 112 112 (E)-Pent-3-en-2-one N.D. | 0) | 700 | | r critari-2-oric | ±0.011 | IV.D. | ±0.006 | ±0.021 | ±0.017 | ±0.015 | IV.D. | IV.D. | ±0.376 | ±0.911 | ±0.014 | ±0.026 | | 21 | | The column | 70 | 1097 | | 1-Methoxypropan-2-one | N.D. | A | | Part | 71 | 1121 | 1121 | (E)-Pent-3-en-2-one | N.D. | N.D. | N.D. | N.D. | | N.D. | N.D. | N.D. | N.D. | | N.D. | N.D. | | В | | 145 3-Methylheptan-4-one 0.187 0.049 0.197 0.032 0.035 0.036 0.036 0.036 0.035 0.036 | 70 | 4400 | | TT | NIB | 0.167 | 0.148 | NID | | 0.194 | 0.473 | 0.419 | 0.33 | | 0.291 | ND | | | | 145 3-Methylheptan-4-one 20.07 20.03 20.05
20.05 | 72 | 1122 | | Heptan-4-one | N.D. | ±0.028 | ±0.003 | N.D. | N.D. | ±0.048 | ±0.387 | ±0.046 | ±0.004 | N.D. | ±0.081 | N.D. | N.D. | А | | The color of | 72 | 1145 | | 2 Mathyllamton 4 and | 0.187 | 0.499 | 0.411 | 0.177 | 0.909 | 0.596 | 1.855 | 1.119 | 0.789 | 2.281 | 0.962 | 1.074 | 0.254 | C | | No. | 73 | 1145 | | 3-Metnylneptan-4-one | ±0.077 | ±0.032 | ±0.052 | ±0.020 | ±0.850 | ±0.239 | ±2.112 | ±0.115 | ±0.234 | ±1.624 | ±0.515 | ±1.047 | ±0.024 | C | | 118 | 74 | 1171 | | 2,6-Dimethylheptan-4-one | N.D. | N.D. | N.D. | N.D. | N.D. | N.D. | | N.D. | N.D. | N.D. | N.D. | N.D. | N.D. | A | | 1000 | 75 | 1170 | | Hanton 2 and | ND | ND | 0.049 | 0.065 | 0.025 | 0.063 | 0.17 | 0.107 | 0.091 | 0.348 | ND | 0.06 | 0.118 | | | No. | 75 | 1178 | | Heptan-2-one | N.D. | N.D. | ±0.005 | ±0.004 | ±0.019 | ±0.008 | ±0.155 | ±0.020 | ±0.019 | ±0.136 | N.D. | ±0.007 | ±0.065 | А | | 1279 3-Hydroxybutan-2-one N.D. | 76 | 1252 | | Octan-3-one | N.D. | N.D. | N.D. | N.D. | N.D. | A | | 182 Octan-2-one N.D. N | 77 | 1279 | | 3-Hydroxybutan-2-one | N.D. | N.D. | N.D. | N.D. | N.D. | N.D. | | N.D. | 0.074 | | N.D. | N.D. | | A | | N.D. | | | | | | | | 0.088 | | | 10.130 | | | | | | | | | Part | 78 | 1282 | | Octan-2-one | N.D. | N.D. | N.D. | | N.D. | N.D. | N.D. | N.D. | | N.D. | N.D. | N.D. | N.D. | Α | | 1335 6-Methylhept-5-en-2-one ±0.019 ±0.014 ±0.098 ±0.010 ±0.040 ±0.013 N.D. ±0.017 ±0.006 N.D. ±0.01 ±0.03 ±0.032 A | | | | | 0.099 | 0.097 | 0.153 | | 0.271 | 0.092 | | 0.106 | | | 0.085 | 0.063 | 0.1 | | | 80 1402 1414 (E)-Oct-3-en-2-one N.D. N.D. N.D. N.D. N.D. N.D. N.D. N.D | 79 | 1335 | | 6-Methylhept-5-en-2-one | | | | | | | N.D. | | | N.D. | | | | Α | | 80 1402 1414 (E)-Oct-3-en-2-one N.D. N.D. N.D. N.D. N.D. N.D. N.D. N.D | | | | (7) 0 . 0 | | | | | | | | | | 0.531 | | | | _ | | 81 1489 1495 2-Decanone N.D. N.D. N.D. N.D. N.D. N.D. N.D. N.D | 80 | 1402 | 1414 | (E)-Oct-3-en-2-one | N.D. | N.D. | N.D. | | В | | 82 1584 3-Methylcyclohex-2-en-1-one N.D. | 01 | 1.400 | 1.405 | 2.5 | ND | ND | ND | ND | ND | 0.162 | NID | ND | NID | ND | NID | ND | ND | ъ | | S2 1584 3-Methylcyclohex-2-en-1-one N.D. | 81 | 1489 | 1495 | 2-Decanone | N.D. | N.D. | N.D. | N.D. | N.D. | ±0.040 | N.D. В | | Solution | 02 | 1504 | | 2 Mathadanalahan 2 an 1 ana | ND 0.171 | ND | ND | ND | | | 83 1596 5-Methyloxolan-2-one N.D. N.D. N.D. N.D. N.D. N.D. N.D. N.D | 82 | 1584 | | 3-Methylcyclonex-2-en-1-one | N.D. ±0.114 | N.D. | N.D. | N.D. | Α | | 83 1596 5-Methyloxolan-2-one N.D. N.D. N.D. N.D. N.D. N.D. N.D. N.D | | | | Lactones | | | | | | | | | | | | | | | | 84 1613 | 83 | 1506 | | 5 Mathylavalan 2 ena | ND | | ND | | ND | Δ | | 84 1613 Oxolan-2-one ±0.006 N.D. ±0.023 ±0.029 ±0.092 N.D. ±0.838 ±0.013 ±0.219 ±0.670 ±0.066 ±0.014 ±0.022 A ±0.029 ±0.092 ±0.015 0.146 0.244 0.151 0.149 0.152 0.585 0.339 0.162 0.352 N.D. 0.14 0.169 B ±0.002 ±0.002 ±0.002 ±0.002 ±0.019 ±0.078 ±0.013 ±0.458 ±0.043 ±0.021 ±0.165 N.D. 0±0.015 ±0.032 B ±0.019 ±0.078 ±0.019 ±0.078 ±0.013 ±0.458 ±0.043 ±0.021 ±0.165 N.D. 0±0.015 ±0.032 B ±0.019 | 63 | 1390 | | 3-Methyloxolan-2-one | N.D. | N.D. | N.D. | IN.D. | IV.D. | N.D. | IN.D. | IN.D. | ±0.007 | ±0.103 | IN.D. | ±0.018 | N.D. | А | | #0.006 #0.023 #0.029 #0.092 #0.838 #0.013 #0.219 #0.670 #0.066 #0.014 #0.022 #0.023 #0.029 #0.021 #0.023 #0.029 #0.015 #0.024 #0.022 #0.022 #0.029 #0.015 #0.024 #0.022 #0.029 #0.019 #0.078 #0.013 #0.458 #0.043 #0.021 #0.021 #0.066 #0.014 #0.022 #0.029 #0.019 #0.078 #0.013 #0.025 #0.013 #0.025 #0.021 #0.025 #0.025 #0.013 #0.025 #0 | 84 | 1613 | | Oxolan-2-one | | ΝD | | | | ND | | | | | | | | А | | 85 1688 1694 5-Ethyloxolan-2-one ±0.002 ±0.002 ±0.029 ±0.019 ±0.078 ±0.013 ±0.458 ±0.043 ±0.021 ±0.165 N.D. 0±0.015 ±0.032 B 86 1991 2005 5-Pentyloxolan-2-one N.D. N.D. N.D. N.D. N.D. N.D. N.D. N.D | 0-1 | 1015 | | Oxolair-2-one | | | | | | | | | | | ±0.066 | | | 11 | | 86 1991 2005 5-Pentyloxolan-2-one N.D. N.D. N.D. N.D. N.D. N.D. N.D. N.D | 85 | 1688 | 1694 | 5-Ethyloxolan-2-one | | | | | | | | | | | ND | | | В | | 86 1991 2005 5-Pentyloxolan-2-one N.D. N.D. N.D. N.D. N.D. N.D. N.D. N.D | 00 | 1000 | 1071 | 5 Ediyloxoldi 2 olic | ±0.002 | ±0.002 | ±0.029 | ±0.019 | ±0.078 | ±0.013 | ±0.458 | ±0.043 | ±0.021 | | 11.2. | 0±0.015 | ±0.032 | D | | N-containing compounds | 86 | 1991 | 2005 | 5-Pentyloxolan-2-one | N.D. | N.D. | N.D. | N.D. | В | | | | | | N-containing compounds | | | | | | | | | | | | | | | | 87 | <600 | | N,N-Dimethylmethanamine | 0.065
±0.045 | 0.056
±0.018 | N.D. | 0.064
±0.012 | 0.032
±0.011 | N.D. | N.D. | 0.061
±0.015 | N.D. | 0.244
±0.228 | 0.081
±0.039 | 0.05
±0.038 | 0.012
±0.004 | A | |-----|-------------|------
--|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|----| | 88 | 995 | | Acetonitrile | N.D. 1.392
±0.102 | 3.495
±1.868 | 2.29
±0.640 | 3.031
±1.475 | 2.048
±0.675 | A | | 89 | 1725 | | Naphthalene | N.D. | 0.097
±0.004 | 0.084
±0.038 | N.D. | 0.197
±0.108 | 0.068
±0.025 | N.D. A | | | | | S-containing compounds | | | | | | | | | | | | | | | | 90 | <800 | | Methylsulfanylmethane | 0.258 | 0.176 | 0.116 | 0.092 | 0.083 | 0.137 | 0.276 | 0.191 | 0.176 | 0.905 | 0.044 | 0.081 | 0.291 | A | | 70 | 1000 | | Methylsularlymethane | ±0.192 | ±0.057 | ±0.056 | ±0.015 | ±0.035 | ±0.032 | ±0.336 | ±0.049 | ±0.004 | ±0.628 | ±0.006 | ±0.006 | ±0.100 | 11 | | 91 | 1937 | | 1,3-Benzothiazole | 0.29 | 0.611 | 0.182 | 0.359 | 0.599 | 0.348 | 0.395 | 0.202 | 0.277 | 0.571 | 0.28 | 0.285 | 0.276 | Α | | | | | , | ±0.135 | ±0.09 | ±0.034 | ±0.327 | ±0.267 | ±0.084 | ±0.120 | ±0.059 | ±0.115 | ±0.770 | ±0.080 | ±0.013 | ±0.030 | | | | | | Hydrocarbons | | | | | | | | | | | | | | | | 92 | <600 | | 2-Methylprop-1-ene | N.D. | 0.043 | 0.047 | 0.04 | 0.076 | 0.01 | 0.059 | 0.033 | 0.033 | 0.029 | 0.026 | 0.021 | 0.019 | С | | 72 | 4000 | | 2 Methylprop Tene | 14.2. | ±0.003 | ±0.011 | ±0.003 | ±0.026 | 5±0.006 | ±0.025 | ±0.009 | ±0.005 | ± 0.004 | ±0.006 | ±0.003 | ±0.006 | C | | 93 | <600 | | Pentane | N.D. | N.D. | 0.003
±0.003 | N.D. | N.D. | N.D. | 0.023
±0.006 | N.D. | 0.046
±0.006 | 0.052
±.052 | N.D. | N.D. | N.D. | A | | 94 | 600 | | Hexane | N.D. | 0.064 | 0.051 | 0.038 | 0.037 | 0.028 | 0.097 | 0.08 | 0.115 | 0.205 | 0.115 | 0.139 | 0.082 | Α | | | | | 233.32.2 | | ±0.005 | ±0.012 | ±0.006 | ±0.019 | ±0.008 | ±0.129 | ±0.036 | ±0.023 | ±0.075 | ±0.041 | ±0.056 | ±0.039 | | | 95 | 700 | | Heptane | 0.039 | N.D. | 0.053 | 0.032 | 0.057 | 0.05 | 0.139 | 0.044 | 0.057 | 0.386 | 0.046 | 0.081 | 0.046 | Α | | | | | • | ±0.004 | 0.000 | ±0.037 | ±0.002 | ±0.036 | ±0.024 | ±0.201 | ±0.004 | ±0.013 | ±0.165 | ±0.014 | 0.024 | ±0.004 | | | 96 | 763 | | 2-tert-Butylperoxy-2- | 0.267 | 0.088 | 0.151 | 0.063 | 1.31 | N.D. | 2.404 | 0.143 | 0.787 | 2.789 | 0.566 | 1.554 | 0.114 | C | | | | | methylpropane | ±0.100 | ±0.046 | ±0.07 | ±0.041 | ±1.858 | | ±4.060 | ±0.069 | ±0.464 | ±1.511 | ±0.557 | ±0.925 | ±0.016 | | | 97 | 800 | | Octane | 0.17
±0.050 | N.D. | 0.056
±0.017 | 0.075
±0.012 | N.D. | N.D. | N.D. | 0.083
±0.011 | N.D. | N.D. | 0.102
±0.024 | 0.428
±0.103 | 0.086
±0.009 | A | | 98 | 875 | | Ethylcyclohexane | N.D. | N.D. | N.D. | N.D. | N.D. | 0.516
±0.354 | N.D. С | | 99 | 959 | 968 | 1-Butoxybutane | 1.163
±0.527 | 0.702
±0.065 | 0.808
±0.324 | 0.259
±0.059 | 2.88
±3.553 | 0.934
±0.715 | 5.776
±9.205 | 0.035
±0.016 | 1.631
±0.812 | 6.569
±4.542 | 1.576
±1.165 | 3.233
±2.813 | 0.355
±0.024 | В | | 100 | 999 | | Decane | 0.121
±0.020 | N.D. | N.D. | 0.026
±0.010 | 0.139
±0.176 | 0.241
±0.229 | N.D. | N.D. | N.D. | N.D. | N.D. | 0.47
±0.429 | N.D. | A | | 101 | 1093 | 1100 | Undecane | N.D. | N.D. | N.D. | N.D. | N.D. | N.D. | 1.506
±2.508 | N.D. | N.D. | N.D. | N.D. | N.D. | N.D. | В | | 102 | 1198 | | Dodecane | 0.159
±0.031 | 0.108
±0.014 | 0.171
±0.079 | 0.115
±0.009 | 0.632
±0.542 | 0.312
±0.203 | 1.131
±1.628 | 0.164
±0.038 | N.D. | N.D. | 0.383
±0.143 | 0.443
±0.384 | 0.179
±0.063 | A | | 103 | 1299 | 1300 | Tridecane | N.D. | N.D. | N.D. | N.D. | 0.545
±0.3 | N.D. | 0.22
±0.232 | N.D. | N.D. | 0.175
±0.086 | N.D. | N.D. | N.D. | В | | 104 | 1399 | 1400 | Tetradecane | 0.089
±0.005 | 0.156
±0.016 | 0.119
±0.062 | 0.133
±0.014 | 0.162
±0.067 | 0.15
±0.025 | 0.159
±0.091 | N.D. | N.D. | N.D. | 0.209
±0.057 | N.D. | 0.062
±0.015 | В | | 105 | 1456 | | 1-Chloro-2-(1-chloropropan-2-
yloxy)propane | N.D. | N.D. | N.D. | N.D. | N.D. | N.D. | 7.688
±9.274 | N.D. | N.D. | N.D. | N.D. | N.D. | N.D. | С | | 106 | 1460 | | 1-Chloro-3-(3-
chloropropoxy)propane | N.D. | N.D. | N.D. | N.D. | N.D. | N.D. | 6.413
±8.046 | N.D. | N.D. | N.D. | N.D. | N.D. | N.D. | С | | 107 | 1466 | | 2-Chloro-2-(2-chloropropan-2-
yloxy)propane | N.D. | N.D. | N.D. | N.D. | N.D. | N.D. | 7.518
±8.897 | N.D. | N.D. | N.D. | N.D. | N.D. | N.D. | С | | | | | Terpenes | | | | | | | | | | | | | | | | 108 | 1013 | | α-Pinene | N.D. 0.201 | N.D. | 0.29 | N.D. | Α | 109 | 1018 | 1019 | lpha-Thujene | N.D. | N.D. | N.D. | 0.026
±0.005 | N.D. | N.D. | N.D. | N.D. | 0.512
±0.570 | ±0.158
1.1
±0.857 | N.D. | ±0.188
0.191
±0.169 | N.D. | В | |-----|------|------|----------------------|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|-------------------------|-----------------|---------------------------|-----------------|---| | 110 | 1112 | | Sabinene | N.D. | N.D. | N.D. | 0.016
±0.003 | N.D. | N.D. | N.D. | N.D. | 0.576
±0.656 | 1.429
±1.261 | N.D. | 0.245
±0.262 | N.D. | A | | 111 | 1157 | | l-Phellandrene | N.D. 0.041
±0.002 | 0.123
±0.05 | N.D. | N.D. | N.D. | A | | 112 | 1162 | | Myrcene | N.D. | N.D. | N.D. | N.D. | 0.415
±0.485 | 0.114
±0.093 | 0.447
±0.646 | 0.067
±0.021 | 0.077
±0.023 | 0.518
±0.423 | 0.152
±0.106 | 0.642
±0.752 | 0.073
±0.028 | A | | 113 | 1172 | | lpha-Terpinene | N.D. 0.187
±0.108 | 0.642
±0.455 | N.D. | 0.091
±0.079 | N.D. | A | | 114 | 1190 | | Limonene | 0.212
±0.042 | 0.139
±0.026 | 0.31
±0.096 | 0.095
±0.018 | 1.967
±2.177 | 0.464
±0.371 | 1.7
±2.451 | 0.471
±0.11 | 0.675
±0.193 | 3.23
±2.326 | 0.783
±0.520 | 2.149
±2.310 | 0.319
±0.124 | A | | 115 | 1198 | 1196 | β-Phellandrene | N.D. 0.205
±0.035 | 0.594
±0.250 | N.D. | N.D. | N.D. | В | | 116 | 1240 | | γ-Terpinene | N.D. | N.D. | N.D. | N.D. | 0.138
±0.130 | 0.04
±0.029 | N.D. | N.D. | 0.316
±0.200 | 1.131
±0.792 | 0.041
±0.027 | 0.252
±0.247 | 0.031
±0.014 | A | | 117 | 1277 | | Terpinolene | N.D. 0.065
±0.031 | 0.24
±0.169 | N.D. | N.D. | N.D. | Α | | 118 | 1559 | | α-Cedrene | N.D. 0.889
±0.881 | N.D. | A | | | | | Phenols | | | | | | | | | | | | | | | | 119 | 1956 | | Phenol | 0.028
±0.004 | N.D. | 0.028
±0.003 | N.D. | 0.377
±0.157 | N.D. | N.D. | N.D. | N.D. | 0.126
±0.044 | 0.082
±0.017 | N.D. | N.D. | A | | 120 | 2054 | | 4-Methylphenol | N.D. | N.D. | N.D. | N.D. | 0.046
±0.019 | N.D. | N.D. | N.D. | N.D. | 0.128
±0.064 | N.D. | N.D. | N.D. | A | | 121 | 2059 | | 3-Methylphenol | N.D. | N.D. | N.D. | N.D. | 0.096
±0.037 | N.D. A | | | | | Pyrazines | | | | | | | | | | | | | | | | 122 | 1261 | 1263 | 2-Methylpyrazine | 0.096
±0.001 | N.D. В | | 123 | 1317 | | 2,5-Dimethylpyrazine | 0.066
±0.003 | N.D. A | | 124 | 1324 | | 2,6-Dimethylpyrazine | 0.07
±0.006 | N.D. A | ¹ All volatile metabolites are listed by the order of their RI values; ² Retention indices were determined using n-alkanes C₆ to C₃₀ as an external standard; ³ Retention indices were obtained from NIST database(http://webbook.nist.gov/chemistry); ⁴ Mean values of relative peak area to that of internal standard ± standard deviation; ⁵ Not detected; ⁶ Identification of the compounds was based as follows; A, mass spectrum and retention index agree with the authentic compounds under similar conditions (positive identification); B, mass spectrum and retention index were consistent with those from NIST database; C, mass spectrum was consistent with that of W9N08 (Wiley and NIST) and manual interpretation (tentative identification); ⁷ Abbreviation are defined as shown in Table 4. Table S3: Volatile metabolites of soybeans cultivated in North America | NT 1 | Dr. 12 | DI (2 | V1.01.6 | | | Relative F | 'eak Area ⁴ | | | ID. | |------|---------------------|---------------------|---|-------------|-------------------|-------------|------------------------|-------------|-----------------|--------| | No.1 | RI cal ² | RI ref ³ | Volatile Compounds - | IL 7 | IN | MI | MN | ON | QB | - ID 6 | | | | | Acids | | | | | | | | | 1 | 1445 | | Acetic acid | 2.637±0.079 | N.D. ⁵ | N.D. | 2.389±0.695 | 5.617±1.504 | N.D. | A | | | | | Alcohols | | | | | | | | | 2 | 928 | | Ethanol | 6.584±0.519 | N.D. | N.D. | 3.026±1.061 | N.D. | N.D. | A | | 3 | 1022 | | Butan-2-ol | 0.799±0.045 | 0.281±0.017 | 0.481±0.072 | 0.371±0.082 | N.D. | 0.364 ± 0.080 | A | | 4 | 1098 | | 2-Methylpropan-1-ol | 0.104±0.037 | 0.369±0.054 | 0.145±0.009 | N.D. | N.D. | 0.106±0.024 | A | | 5 | 1128 | | 1-Methoxypropan-2-ol | N.D. | N.D. | 0.592±0.098 | N.D. | N.D. | N.D. | A | | 6 | 1150 | | Butan-1-ol | N.D. | N.D. | N.D. | 0.327±0.112 | 0.272±0.065 | N.D. | A | | 7 | 1209 | | 2-Methylbutan-1-ol | N.D. | 3.793±0.454 | N.D. | N.D. | N.D. | N.D. | C | | 8 | 1209 | | 3-Methylbutan-1-ol | 1.674±0.525 | N.D. | N.D. | N.D. | 2.890±1.063 | N.D. | A | | 9 | 1253 | | Pentan-1-ol | 0.759±0.176 | 0.124±0.010 | 0.175±0.063 | 0.067±0.029 | 0.571±0.168 | N.D. | A | | 10 | 1355 | | Hexan-1-ol | 2.837±0.601 | 0.432±0.086 | 1.014±0.567 | N.D. | 2.456±0.851 | N.D. | A | | 11 | 1387 | | Octan-3-ol | N.D. | 0.165±0.111 | N.D. | N.D. | N.D. | N.D. | A | | 12 | 1400 | | 2-Butoxyethanol | 0.190±0.044 | N.D. | N.D. | 0.082±0.023 | 0.146±0.03 | N.D. | A | | 13 | 1447 | | Oct-1-en-3-ol | 2.929±0.280 | 7.134±0.957 | 4.160±0.65 | N.D. | 4.168±1.256 | 2.481±0.760 | A | | 14 | 1492 | | 2-Ethylhexan-1-ol | 2.938±0.233 | 3.151±0.361 | 1.667±0.163 | 0.811±0.182 | 1.696±0.367 | 2.895±0.269 | A | | 15 | 1587 | 1589 | 2-(2-Methoxyethoxy)ethanol | 0.078±0.024 | N.D. |
N.D. | N.D. | N.D. | N.D. | В | | 16 | 1828 | | Phenylmethanol | N.D. | N.D. | N.D. | 0.168±0.085 | N.D. | N.D. | A | | 17 | 1920 | | 2,2,4-Trimethylpentane-1,3-diol | N.D. | 3.087±0.516 | N.D. | N.D. | N.D. | N.D. | C | | | | | Aldehydes | | | | | | | | | 18 | 1073 | | Hexanal | 2.776±0.713 | N.D. | 0.932±0.164 | 0.837±0.463 | 1.566±0.509 | 0.259±0.133 | A | | 19 | 1180 | | Heptanal | 0.121±0.005 | N.D. | N.D. | 0.084±0.062 | N.D. | N.D. | A | | 20 | 1282 | | Octanal | N.D. | N.D. | N.D. | 0.134±0.157 | 0.104±0.013 | N.D. | В | | 21 | 1389 | | Nonanal | 1.110±0.179 | N.D. | 0.523±0.036 | 1.106±0.843 | 0.721±0.270 | 0.341±0.424 | A | | 22 | 1513 | | Benzaldehyde | 0.082±0.019 | N.D. | N.D. | 0.094±0.014 | N.D. | N.D. | A | | | | | Benzenes | | | | | | | | | 23 | 1025 | | Toluene | N.D. | N.D. | N.D. | 0.721±0.533 | N.D. | 1.178±0.333 | А | | 24 | 1118 | | Ethylbenzene | N.D. | 0.079±0.012 | N.D. | 0.04±0.024 | 0.208±0.092 | 0.092±0.001 | A | | 25 | 1131 | | 1,2-Xylene | N.D. | 0.082±0.032 | 0.135±0.043 | 0.047±0.032 | 0.349±0.143 | 0.082±0.006 | A | | 26 | 1170 | | 1,3-Xylene | 0.078±0.022 | N.D. | N.D. | N.D. | 0.239±0.085 | 0.049±0.012 | A | | | | | Esters | | | | | | | | | 27 | 866 | | Ethyl acetate | N.D. | N.D. | N.D. | N.D. | 0.039±0.015 | N.D. | A | | 28 | 1140 | | Butyl propanoate | N.D. | N.D. | N.D. | 0.083±0.048 | N.D. | N.D. | Α | | 29 | 1215 | | Butyl butanoate | N.D. | N.D. | N.D. | 0.252±0.160 | N.D. | N.D. | A | | 30 | 1850 | | 3-Hydroxy-2,4,4-trimethylpentyl
2-methylpropanoate | N.D. | 21.510±4.828 | 0.151±0.017 | 0.107±0.060 | 0.164±0.067 | 0.093±0.014 | C | | | | | Furans | | | | | | | | | 31 | 938 | | 2-Ethylfuran | 0.142±0.078 | 0.330±0.055 | N.D. | 0.279±0.08 | 0.395±0.042 | 0.085±0.005 | A | | 32 | 1227 | | 2-Pentylfuran | 0.098±0.011 | 0.083±0.015 | 0.063±0.018 | 0.031±0.013 | 0.149±0.025 | 0.022±0.011 | A | | | | | Ketones | | | | | | | - | | 33 | 886 | | Butan-2-one | N.D. | 0.065±0.016 | N.D. | N.D. | N.D. | N.D. | A | |----|------|------|-------------------------|-------------|-----------------|-----------------|-------------|-------------|-----------------|---| | 34 | 964 | | Pentan-2-one | N.D. | 0.340 ± 0.044 | N.D. | N.D. | 0.268±0.078 | N.D. | A | | 35 | 1177 | | Heptan-2-one | N.D. | 0.123±0.013 | N.D. | N.D. | N.D. | N.D. | A | | 36 | 1249 | | Octan-3-one | 0.088±0.055 | 2.153±0.083 | 0.140 ± 0.064 | N.D. | N.D. | 0.456±0.177 | A | | | | | Lactones | | | | | | | | | 37 | 1598 | | 4-Methyloxolan-2-one | 0.270±0.028 | N.D. | 0.238±0.028 | N.D. | 0.631±0.133 | N.D. | С | | 38 | 1612 | | Oxolan-2-one | 0.468±0.052 | 0.086±0.05 | N.D. | 0.379±0.102 | 0.701±0.106 | N.D. | A | | 39 | 1686 | 1694 | 5-Ethyloxolan-2-one | N.D. | N.D. | N.D. | 0.137±0.039 | N.D. | N.D. | В | | | | | N-containing compounds | | | | | | | | | 40 | <600 | | N,N-Dimethylmethanamine | N.D. | N.D. | N.D. | N.D. | 0.023±0.005 | N.D. | A | | | | | S-containing compounds | | | | | | | | | 41 | 1937 | | 1,3-Benzothiazole | 0.244±0.138 | 0.322±0.112 | 0.2±0.041 | 0.101±0.01 | 0.295±0.143 | 0.093±0.072 | A | | | | | Hydrocarbons | | | | | | | | | 42 | 800 | | Octane | N.D. | 0.077±0.024 | N.D. | 0.036±0.026 | 0.042±0.012 | 0.051±0.011 | A | | 43 | 900 | 900 | Nonane | N.D. | 0.068±0.023 | 0.049 ± 0.02 | 0.045±0.018 | N.D. | 0.042±0.008 | В | | 44 | 1000 | | Decane | N.D. | 0.073±0.077 | N.D. | N.D. | 0.158±0.088 | 0.094 ± 0.000 | A | | 45 | 1100 | | Dodecane | 0.210±0.034 | N.D. | 0.172±0.024 | 0.092±0.038 | 0.185±0.068 | N.D. | A | | 46 | 1397 | 1400 | Tetradecane | N.D. | N.D. | 0.167±0.093 | 0.194±0.145 | N.D. | N.D. | В | | | | | Terpenes | | | | | | | | | 47 | 1165 | | Cumene | N.D. | N.D. | N.D. | 0.061±0.01 | N.D. | N.D. | A | | 48 | 1188 | | Limonene | 0.112±0.048 | N.D. | 0.095±0.059 | N.D. | 0.204±0.127 | N.D. | A | | | | | Phenols | | | | | | | | | 49 | 1956 | | Phenol | N.D. | N.D. | N.D. | 0.046±0.012 | N.D. | N.D. | A | | | | | Pyrazines | • | • | • | • | | • | | | 50 | 1258 | 1263 | 2-Methylpyrazine | N.D. | N.D. | N.D. | N.D. | 0.063±0.011 | N.D. | В | | | | | | | | | | | | | ¹ All volatile metabolites are listed by the order of their RI values; ² Retention indices were determined using n-alkanes C₆ to C₃₀ as an external standard; ³ Retention indices were obtained from NIST database(http://webbook.nist.gov/chemistry); ⁴ Mean values of relative peak area to that of internal standard ± standard deviation; ⁵ Not detected; ⁶ Identification of the compounds was based as follows; A, mass spectrum and retention index agree with the authentic compounds under similar conditions (positive identification); B, mass spectrum and retention index were consistent with those from NIST database; C, mass spectrum was consistent with that of W9N08 (Wiley and NIST) and manual interpretation (tentative identification); ⁷ Abbreviation are defined as shown in Table 4. **Table 54:** The provinces, cities, and geographic coordinates of soybean samples harvested in 2016 from Republic of Korea and China. | | No. | Province | City | Geographic coordinate | |---------------|-----|----------------|--------------|-----------------------| | | 1 | Gyeonggi | Anseong | N37°, E127° | | Korea | 2 | Gyeonggi | Icheon | N37°, E127° | | | 3 | Gangwon | Chuncheon | N37°, E127° | | | 4 | Gangwon | Yeongwol | N37°, E128° | | | 5 | Chungcheongbuk | Eumseong | N36°, E127° | | | 6 | Chungcheongnam | Cheonan | N36°, E127° | | | 7 | Chungcheongnam | Gongju | N36°, E127° | | | 8 | Jeollabuk | Gimje | N35°, E127° | | | 9 | Jeollabuk | Imsil | N35°, E127° | | | 10 | Jeollanam | Naju | N35°, E127° | | | 11 | Jeollanam | Yeonggwang | N35°, E127° | | | 12 | Kyeongsangbuk | Cheongdo | N36°, E128° | | | 13 | Kyeongsangbuk | Uiseong | N36°, E128° | | | 14 | Kyeongsangbuk | Yeongcheon | N36°, E128° | | | 15 | Kyeongsangnam | Changnyeong | N35°, E128° | | | 16 | Kyeongsangnam | Miryang | N35°, E128° | | | 17 | Kyeongsangnam | Geochang | N35°, E127° | | China | 1 | Neimenggu | Ulanhot | N40°, E111° | | | 2 | Heilongjiang | Harbin | N45°, E126° | | | 3 | Jilin | Meihekou | N42°, E125° | | | 4 | Liaoning | Dandong | N40°, E124° | | | 5 | Hebei | Shijiazhuang | N38°, E114° | | | 6 | Shandong | Jining | N35°, E116° | | | 7 | Anhui | Huaibei | N33°, E116° | | | 8 | Hubei | Huangshi | N30°, E115° | | | 9 | Zhejiang | Jiaxing | N30°, E120° | | | 10 | Jiangxi | Jiujiang | N29°, E115° | | | 11 | Fujian | Longyan | N25°, E117° | | | 12 | Guangdong | Shaoguan | N24°, E113° | | | 13 | Guangxi | Hechi | N24°, E108° | | North America | 1 | Illinois | | N39°, E-89° | | | 2 | Indiana | | N39°, E-86° | | | 3 | Minnesota | | N45°, E-94° | | | 4 | Michigan | | N43°, E-84° | | | 5 | Quebec | | N51°, E-72° | | | 6 | Ontario | | N51°, E-85° | $^{{\}rm *Korean\ soybean\ samples\ were\ provided\ by\ the\ National\ Agricultural\ Products\ Quality\ Management\ Service.}$