Visible-light Promoted Atom Transfer Radical Addition–Elimination (ATRE) Reaction for the Synthesis of Fluoroalkylated Alkenes Using DMA as Eectron-donor

Wen-Wen Xu, ^{1, †} Le Wang,^{2, †} Ting Mao, ¹ Jiwei Gu,⁴ Xiao-Fei Li ^{2, 3}* and Chun-Yang He^{1, 3}*

- 1 Key Laboratory of Biocatalysis & Chiral Drug Synthesis of Guizhou Province, Generic Drug Research Center of Guizhou Province. School of Pharmacy, Zunyi Medical University, Zunyi, Guizhou, P.R. China
- 2 Basic Medical School, Zunyi Medical University, Zunyi, Guizhou, China
- 3 Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education. School of Pharmacy, Zunyi Medical University, Zunyi, Guizhou, P.R. China
- 4 School of MedicineWashington, University in St. Louis, St. Louis, Missouri, United States

List of Contents

1) General procedure	S 3
2) Data for compounds 3	S 3
3) Mechanism studies	S10
4) References	S17
5) Copies of NMR spectra of 3	S18

1. General procedure.

General procedure for visible-light promoted atom transfer radical addition–elimination (ATRE) reaction for the synthesis of fluoroalkylated alkenes using DMA as electron-donor. To a 25 mL of Schlenk tube equipped with a Teflon septum were added KOAc (0.6 mmol, 2.0 equiv.) under Ar, followed by DMA (2 mL). Then, alkene (1) (0.3 mmol, 1.0 equiv.), and IR_F (2) (0.45 mmol, 1.5 equiv.) were added subsequently. After stirring under purple light for 16 hours, the residue was diluted with ethyl acetate, washed with H₂O and brine, dried over Na₂SO₄, filtered and concentrated. The residue was purified with silica gel chromatography to provide pure product.

2. Data for compounds 3

BocNH CF₂CO₂Et

Ethyl (*E*)-5-((tert-butoxycarbonyl)amino)-2,2-difluoropent-3-enoate (3a). This compound is known.¹ The product (100 mg, 84% yield, *Z*:*E* =1:40) was purified with silica gel chromatography (Petroleum ether/Ethyl acetate = 5:1) as colorless liquid. ¹H NMR (400 MHz, CDCl₃) δ 6.25 (d, *J* = 16.0 Hz, 1H), 5.85–5.73 (m, 1H), 4.80 (br, 1H), 4.29 (q, *J* = 7.1 Hz, 2H), 3.84 (s, 2H), 1.42 (s, 9H), 1.31 (t, *J* = 7.1 Hz, 3H). ¹⁹F NMR (376 MHz, CDCl₃) δ -103.5 (s, 2F). ¹³C NMR (101 MHz, CDCl₃) δ 163.7 (t, *J* = 34.6 Hz), 155.5, 136.1 (t, *J* = 8.7 Hz), 121.4 (t, *J* = 25.5 Hz), 112.1 (t, *J* = 249.2 Hz), 79.8, 63.0, 41.0, 28.2, 13.8.

CF2CO2Et

Ethyl (*E*)-2,2-difluorodec-3-enoate (3b). This compound is known.² The product (62.5 mg, 89% yield, Z:E = 1:9) was purified with silica gel chromatography (Petroleum ether/Ethyl acetate = 100:1) as colorless liquid. ¹H NMR (400 MHz, CDCl₃) δ 6.31–6.21 (m, 1H), 5.71–5.60 (m, 1H), 4.31 (q, *J* = 6.8 Hz, 2H), 2.17–2.08

(m, 2H), 1.45–1.20 (m, 11H), 0.87 (t, J = 6.8 Hz, 3H). ¹⁹F NMR (376 MHz, CDCl₃) δ -103.0 (m, 2F). ¹³C NMR (101 MHz, CDCl₃) δ 164.1 (t, J = 35.0 Hz), 139.9 (t, J = 9.1 Hz), 120.9 (t, J = 25.0 Hz), 112.3 (t, J = 248.6 Hz), 62.8, 31.8, 31.5, 28.6, 28.0, 22.5, 13.9, 13.8.

Ethyl (*E*)-5-acetoxy-2,2-difluoropent-3-enoate (3c). This compound is known.¹ The product (39.6 mg, 59% yield, *Z*:*E* = 1:8.7) was purified with silica gel chromatography (Petroleum ether/Ethyl acetate = 5:1) as colorless liquid. ¹H NMR (400 MHz, CDCl₃) δ 6.37–6.29 (m, 1H), 6.00–5.89 (m, 1H), 4.70–4.65 (m, 2H), 4.33 (q, *J* = 7.2 Hz, 2H), 2.11 (s, 3H), 1.35 (t, *J* = 7.2 Hz, 3H). ¹⁹F NMR (376 MHz, CDCl₃) δ -111.5 (d, *J* = 10.2 Hz, 2F). ¹³C NMR (101 MHz, CDCl₃) δ 170.2, 163.5 (t, *J* = 34.4 Hz), 132.8 (t, *J* = 9.2 Hz), 122.7 (t, *J* = 25.6 Hz), 111.8 (t, *J* = 249.5 Hz), 63.1, 62.3, 20.7, 13.9.

CF₂CO₂Et

Ethyl (*E*)-5-ethoxy-2,2-difluoropent-3-enoate (3d). The product (43.1 mg, 69% yield, *Z*:*E* = 1:14) was purified with silica gel chromatography (Petroleum ether/Ethyl acetate = 50:1) as colorless liquid. ¹H NMR (400 MHz, CDCl₃) δ 6.37–6.28 (m, 1H), 6.01–5.90 (m, 1H), 4.31 (q, *J* = 7.2 Hz, 2H), 4.09–4.04 (m, 2H), 3.51 (q, *J* = 7.2 Hz, 2H), 1.34 (t, *J* = 7.2 Hz, 3H), 1.22 (t, *J* = 7.2 Hz, 3H). ¹⁹F NMR (376 MHz, CDCl₃) δ -111.0 (s, 2F). ¹³C NMR (101 MHz, CDCl₃) δ 163.8 (t, *J* = 34.8 Hz), 135.9 (t, *J* = 8.8 Hz), 121.2 (t, *J* = 25.4 Hz), 112.3 (t, *J* = 248.9 Hz), 68.8, 66.4, 63.0, 15.1, 13.9. MS (EI): m/z (%) 208 (M+, 100), 188, 107. HRMS (EI): Calculated for C₉H₁₄F₂O₃ (M⁺): 208.0911; Found: 208.0909.

Ethyl (*E*)-2,2-difluoro-5-(2-hydroxyphenyl)pent-3-enoate (3e). This compound is known.³ The product (36.2 mg, 47% yield) was purified with silica gel chromatography (Petroleum ether/Ethyl acetate = 20:1) as colorless liquid. ¹H NMR (400 MHz, CDCl₃) δ 7.16–7.06 (m, 2H), 6.92–6.87 (m, 1H), 6.79–6.75 (m, 1H), 6.52–6.43 (m, 1H), 5.75–5.64 (m, 1H), 5.04 (br, 1H), 4.32 (q, *J* = 7.2 Hz, 2H), 3.51–3.45 (m, 2H), 1.33 (t, *J* = 7.2 Hz, 3H). ¹⁹F NMR (376 MHz, CDCl₃) δ -103.0 (s, 2F). ¹³C NMR (101 MHz, CDCl₃) δ 164.2 (t, *J* = 34.5 Hz), 153.5, 137.7 (t, *J* = 9.1 Hz), 130.5, 128.1, 124.2, 121.9 (t, *J* = 25.0 Hz), 121.0, 115.5, 112.3 (t, *J* = 249.1 Hz), 63.0, 32.5, 13.9.

CF₂CO₂Et

Ethyl (*E*)-2,2-difluoro-4-phenylbut-3-enoate (3f). This compound is known.³ The product (55 mg, 81% yield) was purified with silica gel chromatography (Petroleum ether/Ethyl acetate = 50:1) as colorless liquid. ¹H NMR (400 MHz, CDCl₃) δ 7.46 (d, J = 6.4 Hz, 2H), 7.38 (d, J = 6.4 Hz, 3H), 7.09 (d, J = 16.4 Hz, 1H), 6.37–6.26 (m, 1H), 4.36 (q, J = 7.2 Hz, 2H), 1.37 (t, J = 7.0 Hz, 3H). ¹⁹F NMR (376 MHz, CDCl₃) δ -110.5 (dd, J = 10.2 Hz, 1.9 Hz, 2F). ¹³C NMR (101 MHz, CDCl₃) δ 169.3 (t, J = 35.1 Hz), 136.8 (t, J = 9.4 Hz), 134.0, 129.6, 128.8, 127.4, 118.8 (t, J = 25.1 Hz), 112.7 (t, J = 250.5 Hz), 63.1, 13.9.

Ethyl (*E*)-4-(4-bromophenyl)-2,2-difluorobut-3-enoate (3g). This compound is known.³ The product (59.3 mg, 65% yield) was purified with silica gel chromatography (Petroleum ether/Ethyl acetate = 20:1) as colorless liquid. ¹H NMR (400 MHz, CDCl₃) δ 7.50 (d, *J* =8.4 Hz, 2H), 7.31 (d, *J* = 8.4 Hz, 2H), 7.02 (dt, *J* = 16.0 Hz, 2.4 Hz, 1H), 6.35–6.25 (m, 1H), 4.35 (q, *J* = 7.2 Hz, 2H), 1.36 (t, *J* = 7.2 Hz, 3H), ¹⁹F NMR (376 MHz, CDCl₃) δ -103.4 (d, *J* =11.3 Hz, 2F). ¹³C NMR (101 MHz,

CDCl₃) δ 163.7 (t, *J* = 34.9 Hz), 135.6 (t, *J* =9.6 Hz), 133.0 (t, *J* =1.2 Hz), 132.0, 128.9, 123.7, 119.5 (t, *J* = 25.0 Hz), 112.5 (t, *J* = 250.0 Hz), 63.2, 13.9.

Ethyl (*E*)-4-(4-chlorophenyl)-2,2-difluorobut-3-enoate (3h). This compound is known.³ The product (55.9 mg, 72% yield) was purified with silica gel chromatography (Petroleum ether/Ethyl acetate = 50:1) as colorless liquid. ¹H NMR (400 MHz, CDCl₃) δ 7.40–7.32 (m, 4H), 7.03 (dt, J = 16.0 Hz, 2.4 Hz, 1H), 6.34–6.23 (m, 1H), 4.35 (q, J = 7.2 Hz, 2H), 1.36 (t, J = 7.2 Hz, 3H). ¹⁹F NMR (376 MHz, CDCl₃) δ -103.4 (d, J = 10.9 Hz, 2F). ¹³C NMR (101 MHz, CDCl₃) δ 163.7 (t, J = 34.8 Hz), 135.5 (t, J = 9.5 Hz), 135.4, 132.5, 129.0, 128.6, 119.4 (t, J = 25.0 Hz), 112.5 (t, J = 250.0 Hz), 63.2, 13.9.

Ethyl (*E*)-2,2-difluoro-4-(4-fluorophenyl)but-3-enoate (3i). This compound is known.³ The product (61.1 mg, 83% yield) was purified with silica gel chromatography (Petroleum ether/Ethyl acetate = 50:1) as colorless liquid. ¹H NMR (400 MHz, CDCl₃) δ 7.46–7.40 (m, 2H), 7.09–7.01 (m, 3H), 6.27–6.17 (m 1H), 4.35 (q, *J* = 7.2 Hz, 2H), 1.37 (t, *J* = 7.2 Hz, 3H). ¹⁹F NMR (376 MHz, CDCl₃) δ -103.2 (d, *J* = 11.3Hz, 2F), -110.9 (s, 1F). ¹³C NMR (101 MHz, CDCl₃) δ 163.8 (t, *J* = 35.0 Hz), 163.4 (d, *J* = 251.3 Hz), 135.6 (t, *J* = 9.5 Hz), 130.3–130.2 (m), 129.2 (d, *J* = 8.5 Hz), 118.8–118.2 (m), 115.9 (d, *J* = 22.0 Hz), 112.6 (t, *J* = 249.8 Hz), 63.1, 13.9.

Ethyl (*E*)-2,2-difluoro-4-(p-tolyl)but-3-enoate (3j). This compound is known.³ The product (60.2 mg, 86% yield) was purified with silica gel chromatography (Petroleum

ether/Ethyl acetate = 50:1) as colorless liquid. ¹H NMR (400 MHz, CDCl₃) δ 7.35 (d, J = 7.6 Hz, 2H), 7.18 (d, J = 8.0 Hz, 2H), 7.06 (d, J = 16.4 Hz, 1H), 6.32–6.21 (m, 1H), 4.35 (q, J = 7.2 Hz, 2H), 2.37 (s, 3H), 1.37 (t, J = 7.2 Hz, 3H). ¹⁹F NMR (376 MHz, CDCl₃) δ -106.0 (d, J = 10.9 Hz, 2F). ¹³C NMR (101 MHz, CDCl₃) δ 163.9 (t, J = 35.1 Hz), 139.8, 136.7 (t, J = 9.8 Hz), 131.3, 129.5, 127.3, 117.7 (t, J = 24.8 Hz), 112.8 (t, J = 247.8 Hz), 63.0, 21.2, 13.9.

Ethyl (*E*)-4-(4-(tert-butyl)phenyl)-2,2-difluorobut-3-enoate (3k). This compound is known.⁴ The product (76.6 mg, 90% yield) was purified with silica gel chromatography (Petroleum ether/Ethyl acetate = 50:1) as colorless liquid. ¹H NMR (400 MHz, CDCl₃) δ 7.41 (s, 4H), 7.11–7.05 (m, 1H), 6.34–6.23 (m, 1H), 4.36 (q, J =7.2 Hz, 2H), 1.37 (t, J = 7.2 Hz, 3H), 1.34 (s, 9H). ¹⁹F NMR (376 MHz, CDCl₃) δ -98.9 (d, J =10.5 Hz, 2F). ¹³C NMR (101 MHz, CDCl₃) δ 163.9 (t, J = 35.3 Hz), 153.0, 136.6 (t, J = 9.6 Hz), 131.3, 127.2, 125.7, 117.9 (t, J = 25.0 Hz), 112.8 (t, J = 249.7 Hz), 63.0, 34.7, 31.1, 13.9.

Ethyl (*E*)-4-(4-acetoxyphenyl)-2,2-difluorobut-3-enoate (3l). This compound is known.⁴ The product (71.5 mg, 84% yield) was purified with silica gel chromatography (Petroleum ether/Ethyl acetate = 10:1) as colorless liquid. ¹H NMR (400 MHz, CDCl₃) δ 7.46 (d, J = 8.4 Hz, 2H), 7.10 (d, J = 8.4 Hz, 2H), 7.05 (d, J = 16.0 Hz, 1H), 6.26 (dt, J = 16.0 Hz, 11.4 Hz, 1H), 4.34 (q, J = 7.2 Hz, 2H), 2.30 (s, 3H), 1.35 (t, J = 7.2 Hz, 3H). ¹⁹F NMR (376 MHz, CDCl₃) δ -103.3 (s, 2F). ¹³C NMR (101 MHz, CDCl₃) δ 169.2, 163.8 (t, J = 34.9 Hz), 151.5, 135.8 (t, J = 9.5 Hz), 131.8, 128.5, 122.1, 119.0 (t, J = 25.1 Hz), 112.6 (t, J = 249.9 Hz), 63.1, 21.1, 13.9.

CF₂CO₂Et

Ethyl (*E*)-2,2-difluoro-4-(naphthalen-2-yl)but-3-enoate (3m). This compound is known.³ The product (49.9 mg, 60% yield) was purified with silica gel chromatography (Petroleum ether/Ethyl acetate = 50:1) as colorless liquid. ¹H NMR (400 MHz, CDCl₃) δ 7.83 (d, *J* = 8.0 Hz, 4H), 7.61 (d, *J* = 8.8 Hz, 1H), 7.51 (q, *J* = 3.2 Hz, 2H), 7.27–7.21 (m, 1H), 6.44 (dt, *J* = 16.0 Hz, 11.6 Hz, 1H), 4.38 (q, *J* = 7.2 Hz, 2H), 1.39 (t, *J* = 7.2 Hz, 3H). ¹⁹F NMR (376 MHz, CDCl₃) δ -110.3 (d, *J* = 11.3 Hz, 2F). ¹³C NMR (101 MHz, CDCl₃) δ 163.9 (t, *J* = 34.9 Hz), 136.9 (t, *J* = 9.5 Hz), 133.8, 133.2, 131.5, 128.8 (d, *J* = 1.1 Hz), 128.6, 128.3, 127.7, 126.9, 126.6, 123.2, 118.9 (t, *J* = 25.1 Hz), 112.8 (t, *J* = 249.8 Hz), 63.1, 13.9.

Ethyl 2,2-difluoro-4,4-diphenylbut-3-enoate (**3n**). This compound is known.³ The product (70.6 mg, 78% yield) was purified with silica gel chromatography (Petroleum ether/Ethyl acetate = 50:1) as colorless liquid. ¹H NMR (400 MHz, CDCl₃) δ 7.40–7.35 (m, 3H), 7.35–7.29 (m, 3H), 7.29–7.24 (m, 2H), 7.23–7.18 (m, 2H), 6.28 (t, J = 11.8 Hz, 1H), 3.91 (q, J = 7.2 Hz, 2H), 1.17 (t, J = 7.2 Hz, 3H). ¹⁹F NMR (376 MHz, CDCl₃) δ -98.2 (d, J = 11.7 Hz, 2F). ¹³C NMR (101 MHz, CDCl₃) δ 163.4 (t, J = 34.1 Hz), 150.9 (t, J = 9.5 Hz), 140.4, 137.0, 129.8 (t, J = 1.9 Hz), 129.0, 128.5, 128.3, 127.9, 127.8, 119.4 (t, J = 28.5 Hz), 112.5 (t, J = 246.1 Hz), 62.7, 13.6.

Ethyl (*E*)-2,2-difluoro-3-methyl-4-phenylbut-3-enoate (30). This compound is known.³ The product (42.5 mg, 59% yield, Z:E = 1:8.8) was purified with silica gel chromatography (Petroleum ether/Ethyl acetate = 100:1) as colorless liquid. ¹H NMR (400 MHz, CDCl₃) δ 7.43–7.36 (m, 2H), 7.34–7.28 (m, 3H), 6.96 (s, 1H), 4.37 (q, *J* = 7.2 Hz, 2H), 2.00 (s, 3H), 1.37 (t, *J* = 7.2 Hz, 3H). ¹⁹F NMR (376 MHz, CDCl₃) δ

-106.7 (s, 2F). ¹³C NMR (101 MHz, CDCl₃) δ 164.0 (t, *J* = 35.4 Hz), 135.1, 130.9 (t, *J* = 9.3 Hz), 129.1, 128.3, 127.9, 114.3 (t, *J* = 252.6 Hz), 63.0, 13.9, 12.5 (t, *J* = 2.8 Hz).

BocHN C4F9

Tert-butyl (*E*)-(4,4,5,5,6,6,7,7,7-nonafluorohept-2-en-1-yl)carbamate (3p). The product (66.4 mg, 59% yield) was purified with silica gel chromatography (Petroleum ether/Ethyl acetate = 50:1) as colorless liquid. ¹H NMR (400 MHz, CDCl₃) δ 6.45–6.36 (m, 1H), 5.80–5.69 (m, 1H), 4.80 (s, 1H), 3.91 (s, 2H), 1.44 (s, 9H). ¹⁹F NMR (376 MHz, CDCl₃) δ -88.5 (m, 3F), -119.1 (m, 2F), -131.7 (m, 2F), -133.1 (m, 2F). ¹³C NMR (101 MHz, CDCl₃) δ 155.5, 139.6 (t, *J* = 8.1 Hz), 120.2–107.0 (m), 117.2 (t, *J* = 23.4 Hz), 80.1, 41.1, 28.2. MS (ESI): m/z (%) 398 (M+ Na⁺), 276 (100). HRMS (ESI): Calculated for C₁₂H₁₄O₂NF₉Na (M+Na⁺): 398.0773; Found: 398.0770.

C₄F₉

(*E*)-(3,3,4,4,5,5,6,6,6-nonafluorohex-1-en-1-yl)benzene (3q). This compound is known.⁵ The product (60.6 mg, 63% yield) was purified with silica gel chromatography (Petroleum ether) as colorless liquid. ¹H NMR (400 MHz, CDCl₃) δ 7.51–7.46 (m, 2H), 7.43–7.38 (m, 3H), 7.22–7.15 (m, 1H), 6.26–6.15 (m, 1H). ¹⁹F NMR (376 MHz, CDCl₃) δ -81.2 (m, 3F), -111.5 (m, 2F), -124.3 (m, 2F), -125.9(m, 2F). ¹³C NMR (101 MHz, CDCl₃) δ 139.8 (t, *J* = 9.6 Hz), 133.5, 130.2, 129.0, 127.6, 120.0–112.0 (m), 114.2 (t, *J* = 23.0 Hz).

BocHN C₆F₁₃

Tert-butyl (*E*)-(4,4,5,5,6,6,7,7,8,8,9,9,9-tridecafluoronon-2-en-1-yl)carbamate (3r). The product (102.6 mg, 72% yield) was purified with silica gel chromatography (Petroleum ether/Ethyl acetate = 15:1) as colorless liquid. ¹H NMR (400 MHz, CDCl₃) δ 6.40 (s, 1H), 5.85–5.65 (m, 1H), 5.10–4.85 (m, 1H), 3.89 (s, 2H), 1.52–1.36 (m, 9H). ¹⁹F NMR (376 MHz, CDCl₃) δ -81.0 (m, 3F), -111.7 (m, 2F), -121.8 (s, 2F), -123.1 (s, 2F), -123.6 (s, 2F), -126.4 (m, 2F). ¹³C NMR (101 MHz, CDCl₃) δ 155.5, 139.6 (t, *J* = 8.8 Hz), 120.2–110.0 (m), 117.3 (t, *J* = 22.4 Hz), 80.1, 41.1, 28.2. MS (ESI): m/z (%) 398 (M+ Na⁺), 276 (100). HRMS (ESI): Calculated for C₁₄H₁₄O₂NF₁₃Na (M+Na⁺): 498.0709; Found: 498.0707.

C₈F₁₇

(*E*)-(3,3,4,4,5,5,6,6,7,7,8,8,9,9,10,10,10-heptadecafluorodec-1-en-1-yl)benzene (3s). This compound is known.⁵ The product (90.3 mg, 58% yield) was purified with silica gel chromatography (Petroleum ether) as colorless liquid. ¹H NMR (400 MHz, CDCl₃) δ 7.52–7.42 (m, 2H), 7.45–7.35 (m, 3H), 7.20–7.10 (m, 1H), 6.26–6.12 (m, 1H). ¹⁹F NMR (376 MHz, CDCl₃) δ -81.1 (m, 3F), -111.3 (m, 2F), -121.6 (s, 2F), -122.1 (s, 4F), -122.9 (s, 2F), -123.4 (s, 2F). ¹³C NMR (101 MHz, CDCl₃) δ 139.7 (t, *J* = 9.2 Hz), 133.6, 130.2, 129.0, 127.6, 120.0–110.0 (m), 114.4 (t, *J* = 23.5 Hz).

3. Mechanism study.

3.1 Addition of radical and SET inhibitors:

When the radical scavenger TEMPO (2,2,6,6-tetromethyl-1-piperidinyloxy, 1.0 equiv.) was added under standard conditions, 80% product (4) was observed.

Ethyl 2,2-difluoro-2-((2,2,6,6-tetramethylpiperidin-1-yl)oxy)acetate (5). This compound is known.⁴ The product (66.9 mg, 80% yield) was purified with silica gel chromatography (Petroleum ether/Ethyl acetate = 50:1) as colorless liquid. ¹H NMR (400 MHz, CDCl₃) δ 4.35 (q, *J* = 7.2 Hz, 2H), 1.61–1.52 (m, 5H), 1.37 (t, *J* = 7.2 Hz,

4H), 1.19 (s, 6H), 1.16 (s, 6H). ¹⁹F NMR (376 MHz, CDCl₃) δ -73.5 (t, *J* = 2.3 Hz, 2F). ¹³C NMR (101 MHz, CDCl₃) δ 160.7, 115.4, 63.0, 61.4, 40.1, 33.4 (t, *J* = 4.4 Hz), 20.7, 16.9, 13.9.

3.2 Trapping of intermediates:

Typical procedure: To a 25 mL of Schlenk tube equipped with a Teflon septum were added KOAc (0.6 mmol, 2.0 equiv.) under Ar, followed by DMA (2.0 mL). ICF₂COOEt (2a) (0.45 mmol, 1.5 equiv.) and (1-cyclopropylvinyl)benzene (6) (0.45 mmol, 1.5 equiv.) were added subsequently. After stirring under purple light for 16 hours, the mixture was purified with silica gel chromatography to provide product (7). Ethyl(E)-2,2-difluoro-4-phenylhepta-4,6-dienoate(7). The product (11.98 mg, 15%) yield) was purified with silica gel chromatography (Petroleum ether/Ethyl acetate = 50:1) as colorless liquid. ¹H NMR (400 MHz, CDCl₃) δ 7.39–7.29 (m, 5H), 6.76–6.66 (m, 1H), 6.56–6.51 (m, 1H), 5.45–5.38 (m, 1H), 5.35–5.31(m, 1H), 3.94 (q, J = 7.2Hz, 2H), 3.46 (t, J = 15.2 Hz, 2H), 1.17 (t, J = 7.2 Hz, 3H). MS (EI): m/z (%) 266, 129 (100). HRMS (EI): Calculated for C₁₅H₁₆O₂F₂ (M): 266.1118; Found: 266.1116.

7.378 7.360 7.349 7.331 7.331 7.331 7.331 7.331 7.331 7.331 6.666 6.692 6.662 6.666 6.554 6.554 5.439 5.398 5.342 -5.317 8.97(8.952 8.932 8.916 8.501 8.501 8.463 8.463 8.463

3.3 Control experiment.

Typical procedure: To a 25 mL of Schlenk tube equipped with a Teflon septum were added KOAc (0.6 mmol, 2.0 equiv.) under Ar, followed by DMA (2 mL), Ethyl 5-((tert-butoxycarbonyl)amino)-2,2-difluoro-4-iodopentanoate (**4a**) (0.3 mmol, 1.0 equiv.) was added subsequently. After stirring for 16 hours in the dark, the mixture detected by F-NMR (yield 75% Z/E=1:17.5).

3.4 UV-vis spectroscopic measurement.

Solution 1: KOAc (58.9 mg, 0.6 mmol) and 2a (60 µL, 0.4 mmol) was added in DMA (4.0 mL). The mixture was stirred for 20 minutes, filtered before use.

Solution 2: **2a** (60 μ L, 0.4 mmol) was added in DMA (4.0 mL). The mixture was stirred for 20 minutes, filtered before use.

Solution 3: KOAc (58.9 mg, 0.6 mmol) was added in DMA (4.0 mL). The mixture was stirred for 20 minutes, filtered before use.

Solution 4: **2a** (60 μ L, 0.4 mmol) was added in Cyclohexane (4.0 mL). The mixture was stirred for 20 minutes, filtered before use.

Performed on UV visible spectrophotometer, recorded in 1cm path quartz cuvettes using T6 Xinyue UV-visible spectrophotometer (PERSEETM), pure DMA as blank sample.

λ (nm) Δ	2a + KOAc +DMA	2a + DMA	KOAc + DMA	2a + cyclohexane
	A1	A_2	A ₃	A_4
330	3.09	3.092	0.098	2.197
340	3.142	3.119	0.041	1.697
350	3.367	3.333	0.019	0.975
360	3.341	3.593	0.012	0.504
370	2.616	3.621	0.01	0.272
380	2.459	3.662	0.009	0.145
390	1.845	2.601	0.007	0.082
400	1.034	2.653	0.005	0.055
410	0.558	2.54	0.006	0.042
420	0.324	2.054	0.006	0.039
430	0.196	1.55	0.007	0.046
440	0.132	1.143	0.007	0.064
450	0.092	0.804	0.007	0.097
460	0.065	0.558	0.007	0.155
470	0.047	0.361	0.006	0.222
480	0.033	0.239	0.006	0.312
490	0.026	0.164	0.007	0.425
500	0.021	0.123	0.007	0.524
510	0.018	0.103	0.007	0.601
520	0.016	0.093	0.006	0.633
530	0.016	0.087	0.007	0.619
540	0.016	0.081	0.007	0.568
550	0.015	0.074	0.007	0.484
560	0.015	0.065	0.006	0.387
570	0.014	0.056	0.006	0.297
580	0.014	0.046	0.007	0.214
590	0.013	0.039	0.006	0.154
600	0.013	0.031	0.007	0.109
610	0.012	0.026	0.007	0.079

620	0.012	0.021	0.007	0.062
630	0.012	0.018	0.007	0.051
640	0.013	0.015	0.007	0.047
650	0.012	0.018	0.007	0.044
660	0.012	0.015	0.007	0.042

3.5 Stoichiometry of the weak intermolecular interaction.

The stoichiometry of the EDA complexes was calculated using the Job's plot method (P. Job, *Ann. Chim.*, **1928**, *9*, 113.). The Job's plot of the EDA complex between DMA and ethyl difluoroiodoacetate (**2a**) was calculated measuring the absorption of cyclohexane solutions at 420 nm with different donor/acceptor ratios with constant concentration (0.12 M) of the two components. The absorbance values were plotted against the molar fraction (%) of **2a**. The Job's plot analysis of the EDA complex between DMA and **2a** showed a maximal absorbance at 50% molar fraction of **2a**.

4. References:

[1] E. Zhu, X-X. Liu, A-J. Wang, T. Mao, L. Zhao, X. Zhang and C-Y. He, *Chem. Commun.*, **2019**, *55*, 12259.

[2] M-L. Ke, Q. Feng, K. Yang and Q-L. Song, Org. Chem. Front., 2016, 3, 150.

[3] X-Y. Wang, S. Zhao, J. Liu, D-S. Zhu, M-J. Guo, X-G. Tang, G-W. Wang, *Org. Lett.*, **2017**, *19*, 4187.

[4] L. Zhao, Y. Huang, Z. Wang, E. Zhu, T. Mao, J. Jia, J. Gu, X.-F. Li and C.-Y. He, Org. Lett., 2019, 21, 6705.

[5] D-S. Lee, E-J. Cho, Org. Biomol. Chem., 2019, 17, 4317.

5. Copies of NMR spectras of 3.

Ethyl (E)-2,2-difluorodec-3-enoate (3b).


```
CF2CO2Et
```


Ethyl (E)-5-acetoxy-2,2-difluoropent-3-enoate (3c).

O CF₂CO₂Et

Ethyl (E)-2,2-difluoro-4-phenylbut-3-enoate (3f).

Ethyl (E)-4-(4-bromophenyl)-2,2-difluorobut-3-enoate (3g).

Ethyl (E)-4-(4-chlorophenyl)-2,2-difluorobut-3-enoate (3h).

Ethyl (*E*)-2,2-difluoro-4-(4-fluorophenyl)but-3-enoate (3i).

Ethyl (E)-2,2-difluoro-4-(p-tolyl)but-3-enoate (3j).

Ethyl (*E*)-4-(4-(tert-butyl)phenyl)-2,2-difluorobut-3-enoate (3k).

-10 -20

-30

-40

-50 -60

-70

-80

-90

-100 -110 -120 -130 -140 -150 -160 -170 -180 -190 fl (ppm)

Ethyl (E)-4-(4-acetoxyphenyl)-2,2-difluorobut-3-enoate (3l).

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 fl (ppm)

Ethyl 2,2-difluoro-4,4-diphenylbut-3-enoate (3n).

Ethyl (E)-2,2-difluoro-3-methyl-4-phenylbut-3-enoate (30).

Tert-butyl (*E*)-(4,4,5,5,6,6,7,7,7-nonafluorohept-2-en-1-yl)carbamate (3p).

(*E*)-(3,3,4,4,5,5,6,6,7,7,8,8,9,9,10,10,10-heptadecafluorodec-1-en-1-yl)benzene(3s).

