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Abstract: Here, we describe a mild, catalyst-free and operationally-simple strategy for the direct
fluoroalkylation of olefins driven by the photochemical activity of an electron donor−acceptor (EDA)
complex between DMA and fluoroalkyl iodides. The significant advantages of this photochemical
transformation are high efficiency, excellent functional group tolerance, and synthetic simplicity,
thus providing a facile route for further application in pharmaceuticals and life sciences.
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1. Introduction

Owing to their tendency to alter the lipophilicity, metabolic stability, and electronic properties of
organic molecules, fluorinated organic compounds have been widely used in medicinal chemistry,
and material sciences [1–9]. Therefore, the development of safer, less toxic and more selective methods
to introduce fluorinated functional groups into organic molecules has become an intensive topic of
synthetic organic chemistry [10–19].

Alkenes play a ubiquitous role in the realm of chemical synthesis due to their enriched
reactivity and abundance, fluoroalkylation of carbon-carbon double bonds is an attractive method
for accessing fluorine containing compounds. Since 1945, atom transfer radical addition (ATRA)
has extensively been utilized for fluoroalkylation of alkenes [20–29]. However, the preparation of
alkenes containing fluorinated functional groups via Heck-type reaction were less studied owning
to the lack of efficient and general strategies [30–32]. In the past 10 years, some powerful strategies
have been developed to realize such transformation [20,21,33–36]. One of the major improvements
has been made via photo-excited catalyst such as Ru/Ir complexes and organic dyes [21,33]. Very
recently, non-covalent interaction initiated fluoroalkylation reaction has emerged as an attractive
strategy [37–47]. Inspired by our previous studies in this field [48–51], we envision that if the solvent
can serve as an electron donor compound, the reactions would be simpler. Here, we demonstrate a
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mild, catalyst-free and operationally-simple strategy for the direct fluoroalkylation of olefins driven by
the photochemical activity of electron donor−acceptor (EDA) complex between DMA and fluoroalkyl
iodides. The significant advantages of this photochemical transformation are high efficiency, excellent
functional group tolerance, and synthetic simplicity [52].

2. Results

We initially probed this catalyst-free fluoroalkylation reaction by using readily available tert-butyl
allylcarbamate 1a and ethyl iododifluoroacetate 2a (1.5 equiv) as model substrates. 29% yield of atom
transfer radical addition (ATRA) product 4a was obtained when the reaction was performed with
K3PO4 (2.0 equiv) in MeCN and irradiated by blue LEDs for 16 h. After a series of reaction media were
screened (Table 1, entries 2–8), THF, Toluene and dioxane were not suitable for this transformation,
and 10% yield of desired product was obtained when DMSO was used as solvent. Both 3a and 4a
were obtained when DMA and DMF were used. To improve the selectivity of this transformation,
a variety of different bases were examined utilizing DMA as solvent for this reaction (Table 1, entries
8–11). Among them, KOAc was the best choice and afforded 3a in 64% yield (Table 1, entry 11).
Finally, different light sources were tested, the yield increased to 95% when the reaction mixtures
were irradiated under purple LEDs (Table 1, entry 13), no desired product was observed when control
experiments were carried out in the absence of light or base, demonstrating the photochemical nature
of this transformation (Table 1, entries 14, 15).

Table 1. Representative results for optimization of visible light-mediated reaction of 1a and 2a.

a,b
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Entry Light Source Base (equiv) Sovent 3a, yield (%) 4a, yield (%) 

1 Blue LEDs K3PO4 (2) MeCN ---- 29 

2 Blue LEDs K3PO4 (2) DCE ---- 55 

3 Blue LEDs K3PO4 (2) THF ---- ---- 

4 Blue LEDs K3PO4 (2) Toluene ---- 7 

5 Blue LEDs K3PO4 (2) Dioxane ---- trace 

6 Blue LEDs K3PO4 (2) DMSO 10 ---- 

7 Blue LEDs K3PO4 (2) DMF 21 51 

8 Blue LEDs K3PO4 (2) DMA 45 36 

9 Blue LEDs K2CO3 (2) DMA 43 26 

10 Blue LEDs Cs2CO3 (2) DMA 59 5 

11 Blue LEDs KOAc (2) DMA 64 ---- 

12 Green LEDs KOAc (2) DMA 50 ---- 

13 Purple LEDs KOAc (2) DMA 95(84) ---- 

14 Purple LEDs None DMA ---- ---- 

15 c none KOAc (2) DMA ---- ---- 

Entry Light Source Base (equiv) Sovent 3a, yield (%) 4a, yield (%)

1 Blue LEDs K3PO4 (2) MeCN —- 29
2 Blue LEDs K3PO4 (2) DCE —- 55
3 Blue LEDs K3PO4 (2) THF —- —-
4 Blue LEDs K3PO4 (2) Toluene —- 7
5 Blue LEDs K3PO4 (2) Dioxane —- trace
6 Blue LEDs K3PO4 (2) DMSO 10 —-
7 Blue LEDs K3PO4 (2) DMF 21 51
8 Blue LEDs K3PO4 (2) DMA 45 36
9 Blue LEDs K2CO3 (2) DMA 43 26

10 Blue LEDs Cs2CO3 (2) DMA 59 5
11 Blue LEDs KOAc (2) DMA 64 —-
12 Green LEDs KOAc (2) DMA 50 —-
13 Purple LEDs KOAc (2) DMA 95(84) —-
14 Purple LEDs None DMA —- —-

15 c none KOAc (2) DMA —- —-
a Reaction conditions: (unless otherwise specified): 1a (0.3 mmol, 1.0 equiv), 2a (0.45 mmol, 1.5 equiv), anhydrous
solvent (2 mL), r.t. under Ar, irritated under visible light for 16 h. b Determined by 19F NMR spectroscopy using
fluorobenzene as an internal standard, and the number within parentheses represents the yield of the isolated
product. c The reaction was performed without light.

With the optimum reaction conditions established, various alkenes were explored. As shown
in Scheme 1, The reaction exhibited good functional group tolerance. A range of functional groups,
such as esters (3c), methoxyl (3d), and even unprotected hydroxyl group (3e) generally were compatible
with the reaction and moderate to good yields were obtained. Then, styrenes were also evaluated,
and we were pleased to find that styrenes all performed well under the optimized reaction conditions,
providing the corresponding products in good to excellent yields (3f–n). Importantly, substrate with
steric hindrance could also undergo this transformation smoothly (3o). This reaction system is also
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amenable to the use of other commercial perfluoroalkyl iodides, such as C4F9I, C6F13I and C8F17I
(Scheme 1, 3p–s).
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Scheme 1. Atom Transfer Radical Addition−Elimination (ATRE) reaction for the synthesis of
fluoroalkylated alkenes a,b. a Reaction conditions (unless otherwise specified): 1 (0.3 mmol, 1.0 equiv),
2 (0.45 mmol, 1.5 equiv), KOAc (0.6 mmol, 2.0 equiv) in anhydrous DMA (2.0 mL), r.t. under Ar, purple
LEDs, for 16 h. b Yield of isolated product.

To gain insight into the mechanism of this reaction, several experiments were performed.
The reaction was completely suppressed when a radical scavenger TEMPO (1.0 equiv) was added
as an additive under the standard reaction conditions (Scheme 2a). Furthermore, a radical clock
experiment was conducted. The ring-expanded product 7 was formed when 2a was treated with
α-cyclopropylstyrene (6) in the absence of 1a (Scheme 2b). Optical absorption spectra of the reactants
found that the absorption was obvious strengthened when DMA and RFI were mixed (Scheme 2c,
for details, see Supplementary Materials), which indicated a non-covalent interaction occurred between
them. Moreover, this conclusion was further confirmed by a Job’s plot (Scheme 2d, for details,
see Supplementary Materials). Finally, compound 4a was totally converted to 3a under optimized
condition in the dark (Scheme 2e, for details, see Supplementary Materials). This result indicated that
the reaction was performed via atom transfer radical addition elimination pathway.
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Scheme 2. Mechanistic investigation. (a) Addition of radical and SET inhibitors. (b) Trapping of
intermediates. (c) Optical absorption spectra study. (d) Job’s plot. (e) Control experiment.

Based on these preliminary results and previous reports [53,54], a plausible mechanism was
depicted in Scheme 3. Initially, non-covalent interactions occurred between DMA and C–I bond. Then
fluoroalkyl radical was generated under the irradition of purple LEDs. Subsequently, fluoroalkyl
radical reacted with alkenes (1) and generated a carbon radical A, which abstracted an iodine atom
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from RFI to afford ATRA product 4 along with RF radical that sustains the chain. Finally, elimination of
4 with base could afford the corresponding fluoroalkylated-ATRE products (3).
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