Supplementary materials

Figure S1. - Results of the optimization of extraction conditions obtained by experimental design: A) Pareto Chart of Effects relative to the sum of the peak areas of the HPLC-PDA chromatographic profiles of the extracts, obtained through the Box, Hunter \& Hunter Design; B) Surface Response and

Critical Values relative to the sum of the peak areas of the HPLC-PDA chromatographic profiles of the extracts, obtained through the Central Composite Design.

Figure S2- Results of the optimization of the extraction conditions obtained by the experimental design. Pareto Chart of Effects relative to the main components of the extracts obtained through the Box, Hunter \& Hunter Design: a1) peak 2, a2) peak9, a3) peak 10, a4) peak 11. Surface Response and Critical Values relative to the main components of the extracts obtained through the Central Composite Design: b1) peak 2, b2) peak9, b3) peak 10, b4) peak 11.

GPR
Leaves
B)

Figure S3. Box Plots (A) and histograms (B) relative to the Folin-Ciocalteu Assay. Total phenols content is expressed as mg GAE/g matrix for both the GPRs and leaves extracts.

Figure S4. - Box Plots relative to the HPLC-PDA quantitative results on the main components of grapevine GPRs and leaves: A) caftaric acid, B) myricetin glucuronide, C) rutin and hyperoside, D) quercetin 3-O-glucoside, E) quercetin 3-O-glucuronide, F) kaempferol-3-O-rutinoside, G) kaempferol-$3-\mathrm{O}$-glucoside and quercetin malonyl hexoside and H) isorhamnetin glucuronide.

Figure S5. -Histograms relative to the in vitro colorimetric antioxidant assays for all GPRs and leaves extracts: EC50 (mg matrix) by DPPH Assay (A) and TEAC by ABTS Assay expressed as mmol Trolox/kg matrix (B).

Table S1. - Variables, levels and the design matrices evaluated in the two experimental design.

Table S2. - Pearson's correlation matrix between HPLC-DAD quantitation results (in terms of sum of the concentrations of the main phenolics) and in-vitro colorimetric antioxidant assays results.

Correlation matrix (Pearson (n-1))

Variable	Folin	ABTS	EC_{50} (DPPH)	HPLC
Folin	1	0.6526	-0.4054	0.5612
ABTS	0.6526	1	-0.5701	0.6696
EC_{50} (DPPH)	-0.4054	-0.5701	1	-0.3257
HPLC	0.5612	0.6696	-0.3257	1

Values in bold type differ from 0 at a significance level $\alpha=0.05$

Table S3. -List of the analyzed samples with their acronyms and sampling year.

Cultivar	Code	Sampling year	Cultivar	Code	Sampling year
Nebbiolo	N1 - N2	2016	Cabernet Franc	CAB	2017
Barbera	B1 - B2	2016	Canaiolo Nero	CAN	2017
Sirah	S1- S2	2016	Carignano	CAR	2017
Grenache	G1-G2	2016	Lambrusco Salamino	LAM	2017
Pinot Nero	PN1-PN2	2016	Sangiovese	SAN	2017
Cabernet Sauvignon	CS1-CS2	2016	Malvasia Bianca	MAL	2017
Moscato Bianco	MOS	2017	Verdicchio	VER	2017
Sauvignon Blanc	SAU	2017	Vernaccia	VSG	2017

Table S4. Wavelenghts, calibration ranges, equations of the curves and linearity of the target compounds used for quantification.

Compound	$\lambda \max (\mathrm{nm})$	Linearity range (mg/l)	R^{2}	Calibration curve equation
Caftaric acid	325	$100-1000$	0.9994	$\mathrm{y}=21869 \mathrm{x}-260461$
Quercetin 3-O-glucuronide	350	$100-1000$	0.9992	$\mathrm{y}=14009 \mathrm{x}-235766$
Rutin	350	$5-250$	0.9972	$\mathrm{y}=13724 \mathrm{x}-5740.1$
Quercetin 3-O-glucoside	350	$5-250$	0.9979	$\mathrm{y}=16561 \mathrm{x}-9313.8$
Kaempferol 3-O-glucoside	350	$5-250$	0.9979	$\mathrm{y}=3864 \mathrm{x}-3225.3$

