Supplementary Materials for:

Theoretical Prediction on the New Types of Noble Gas
 Containing Anions OBONgO^{-}and $\mathrm{OCNNgO}^{-}(\mathrm{Ng}=\mathrm{He}$, Ar, Kr and Xe)

Cheng-Cheng Tsai, Yu-Wei Lu and Wei-Ping Hu*
Department of Chemistry and Biochemistry, National Chung Cheng University, Chia-Yi 621, Taiwan
*Correspondence: chewph@ccu.edu.tw; Tel.: +886-5-272-0411 (ext. 66402)

3 Tables and 10 Figures

Submitted to Molecules, 2020

Table S1. The calculated three- and two-body dissociation energies, the two-body dissociation barriers, and the vertical singlet-triplet gaps of NCONgO^{-}. All energies are Born-Oppenheimer energies in $\mathrm{kcal} / \mathrm{mol}$.

NCONgO^{-}	$\mathrm{NCO}^{-}+\mathrm{Ng}+\mathrm{O}$	$\mathrm{Ng}+\mathrm{NC}(\mathrm{O})_{2}{ }^{-}$	Barrier	S-T gap
$\mathrm{Ng}=\mathrm{He}$				
MP2/apdz	13.2	-97.1	11.4	76.2
MP2/aptz	17.4	-97.0	14.7	88.0
$\operatorname{CCSD}(\mathrm{T}) / \mathrm{aptz}^{a}$	4.4[4.8]	-91.7[-92.1]	3.1	79.5[56.7]
$\operatorname{CCSD}(\mathrm{T}) / \mathrm{apqz}^{\text {a }}$	4.9	-91.8	9.2	80.2
$\mathrm{Ng}=\mathrm{Ar}$				
MP2/apdz	30.6	-79.7	19.6	38.1
MP2/aptz	39.3	-75.0	21.9	52.7
$\operatorname{CCSD}(\mathrm{T}) / \mathrm{aptz}^{a}$	23.9[24.9]	-72.2[-72.8]	17.2	40.0[30.7]
$\operatorname{CCSD}(\mathrm{T}) / \mathrm{apqz}^{\text {a }}$	24.2	-72.4	18.5	40.1

$\mathrm{Ng}=\mathrm{Kr}$

MP2/apdz	49.6	-60.7	26.4	49.6
MP2/aptz	58.7	-55.7	28.0	61.4
CCSD(T)/aptz		40.7	-55.5	23.5
${\text { CCSD(T) }{ }^{a} \text { apqz }^{a}}^{41.0}$	-55.6	23.7	49.0	

$\mathbf{N g}=\mathbf{X e}$				
MP2/apdz	73.5	-36.8	33.2	58.1
MP2/aptz	84.5	-29.8	34.7	67.8
CCSD(T)/aptz				
CCSD(T)/apqz a	63.2	-33.0	30.0	54.0

a Single-point calculation using MP2/apdz structures. For $\mathrm{Ng}=\mathrm{He}$ and Ar , energies in brackets are obtained using $\operatorname{CCSD}(\mathrm{T}) /$ aptz structures.

Table S2. The interconversion energetics from NCONgO^{-}to OCNNgO^{-}. All energies are Born-Oppenheimer energies in $\mathrm{kcal} / \mathrm{mol}$.

NCONgO^{-}	V^{*}	$\mathrm{OCNNgO}{ }^{-}$
$\mathrm{Ng}=\mathrm{Ar}$		
MP2/apdz	1.9	-2.7
MP2/aptz	2.1	-3.0
$\operatorname{CCSD}(\mathrm{T}) / \mathrm{aptz}^{\text {a }}$	0.5	-1.2
$\operatorname{CCSD}(\mathrm{T}) / \mathrm{apqz}^{\text {a }}$	0.6	-2.3
$\mathrm{Ng}=\mathrm{Kr}$		
MP2/apdz	0.2	-3.5
MP2/aptz	3.4	-3.9
$\operatorname{CCSD}(\mathrm{T}) / \mathrm{aptz}^{\text {a }}$	1.3	-1.2
$\operatorname{CCSD}(\mathrm{T}) / \mathrm{apqz}^{\text {a }}$	1.5	-2.9
$\mathrm{Ng}=\mathrm{Xe}$		
MP2/apdz	5.0	-4.8
MP2/aptz	4.8	-5.2
$\operatorname{CCSD}(\mathrm{T}) / \mathrm{aptz}^{\text {a }}$	3.9	-2.1
$\operatorname{CCSD}(\mathrm{T}) / \mathrm{apqz}{ }^{\text {a }}$	4.0	-3.9

[^0]

Figure S1. Calculated structures of $\mathrm{OBONgO}^{-}(\mathrm{Ng}=\mathrm{He}, \mathrm{Ar}, \mathrm{Kr}$ and Xe$)$. The bond distances are in angstroms and bond angles in degrees. The numbers in black, red, and green are values calculated by MP2/apdz, B3LYP/aptz, and MPW1B95/aptz methods, respectively.

Figure S2. Calculated structures of $\mathrm{OCNNgO}^{-}(\mathrm{Ng}=\mathrm{He}, \mathrm{Ar}, \mathrm{Kr}$ and Xe$)$. The bond distances are in angstroms and bond angles in degrees. The numbers in black, red, green are values calculated by MP2/apdz, B3LYP/aptz, and MPW1B95/aptz methods, respectively.

Figure S3. Calculated structures of $\mathrm{NCONgO}^{-}(\mathrm{Ng}=\mathrm{He}, \mathrm{Ar}, \mathrm{Kr}$ and Xe$)$. The bond distances are in angstroms and bond angles in degrees. The numbers in black, red, and green are values calculated by MP2/apdz, B3LYP/aptz, and MPW1B95/aptz methods, respectively.

Figure S4. Calculated structures of OBO^{-}and OCN^{-}. The bond distances are in angstroms. The numbers in black, blue, red, green and brown are values calculated by MP2/apdz, MP2/aptz, B3LYP/aptz, MPW1B95/aptz, and CCSD(T)/aptz methods, respectively.

Figure S5. Calculated two-body dissociation transition state geometry of OBONgO^{-}
$(\mathrm{Ng}=\mathrm{He}, \mathrm{Ar}, \mathrm{Kr}$, and Xe$)$. The bond lengths are in angstrom and bond angles in degrees. The black, blue, red and green values are calculated by MP2/apdz, MP2/aptz, B3LYP/aptz, and MPW1B95/aptz methods respectively.

Figure S6. Calculated two-body dissociation transition state geometry of OCNNgO-
$(\mathrm{Ng}=\mathrm{He}, \mathrm{Ar}, \mathrm{Kr}$, and Xe$)$. The bond lengths are in angstrom and bond angles in degrees. The black, blue, red and green values are calculated by MP2/apdz, MP2/aptz, B3LYP/aptz, and MPW1B95/aptz methods respectively.

Figure S7. Calculated two-body dissociation transition state geometry of NCONgO^{-}
$(\mathrm{Ng}=\mathrm{He}, \mathrm{Ar}, \mathrm{Kr}$, and Xe$)$. The bond lengths are in angstrom and bond angles in degrees. The black, blue, red and green values are calculated by MP2/apdz, MP2/aptz, B3LYP/aptz, and MPW1B95/aptz methods respectively.

Figure S8. Transition state structure for the interconversion from OCNNgO^{-}to OCNNgO^{-}.

Table S3. Calculated transition state geometries as shown in Figure S8 (bond length in \AA, angle in degrees) for the interconversion reaction from NCONgO^{-}to OCNNgO^{-}.

	MP2/apdz	MP2/aptz	B3LYP/ aptz	MPW1B95/ aptz
$\mathrm{Ng}=A r$				
R (O-Ar)	1.721	1.672	1.778	1.738
$\mathrm{R}(\mathrm{O}-\mathrm{C})$	1.246	1.235	1.228	1.221
$\mathrm{R}(\mathrm{C}-\mathrm{N})$	1.218	1.203	1.186	1.18
R (Ar-C)	2.913	2.867	2.962	2.929
A(O-C-N)	177.4	177.2	178	177.9
A(Ar-C-N)	97.9	97.8	99.4	99.1
$\mathrm{Ng}=\mathrm{Kr}$				
$\mathrm{R}(\mathrm{O}-\mathrm{Ar})$	1.807	1.768	1.851	1.814
$\mathrm{R}(\mathrm{O}-\mathrm{C})$	1.246	1.235	1.228	1.221
$\mathrm{R}(\mathrm{C}-\mathrm{N})$	1.218	1.203	1.185	1.18
$\mathrm{R}(\mathrm{Kr}-\mathrm{C})$	2.957	2.911	3.041	2.989
A(O-C-N)	177	176.9	177.8	177.6
$\mathrm{A}(\mathrm{Kr}-\mathrm{C}-\mathrm{N})$	97.0	97.0	98.7	98.4
$\mathrm{Ng}=\mathrm{Xe}$				
R (O-Xe)	1.91	1.892	1.955	1.921
$\mathrm{R}(\mathrm{O}-\mathrm{C})$	1.246	1.235	1.229	1.221
$\mathrm{R}(\mathrm{C}-\mathrm{N})$	1.219	1.203	1.185	1.18
R (Xe-C)	3.009	2.984	3.13	3.063
$\mathrm{A}(\mathrm{O}-\mathrm{C}-\mathrm{N})$	176.5	176.4	177.4	177.1
A(Xe-C-N)	96.2	96.2	97.9	97.5

Figure S9. Contour plots of the calculated electron density of NCONgO^{-}

Figure S10. Contour plots of the calculated Laplace concentration of NCONgO^{-}. The red contour lines are in regions of charge concentration and the black contour lines are in regions of charge depletion.

[^0]: ${ }^{a}$ Single-point calculation using MP2/apdz structures

