Supplementary Materials for:

Theoretical Prediction on the New Types of Noble Gas Containing Anions OBONgO⁻ and OCNNgO⁻ (Ng = He, Ar, Kr and Xe)

Cheng-Cheng Tsai, Yu-Wei Lu and Wei-Ping Hu* Department of Chemistry and Biochemistry, National Chung Cheng University, Chia-Yi 621, Taiwan *Correspondence: chewph@ccu.edu.tw; Tel.: +886-5-272-0411 (ext. 66402)

3 Tables and 10 Figures

Submitted to Molecules, 2020

Table S1. The calculated three- and two-body dissociation energies, the two-bodydissociation barriers, and the vertical singlet-triplet gaps of NCONgO-. All energies areBorn-Oppenheimer energies in kcal/mol.

NCONgO-	$NCO^{-} + Ng + O$	$Ng + NC(O)_2^{-}$	Barrier	S–T gap
Ng=He				
MP2/apdz	13.2	-97.1	11.4	76.2
MP2/aptz	17.4	-97.0	14.7	88.0
CCSD(T)/aptz ^a	4.4[4.8]	-91.7[-92.1]	3.1	79.5[56.7]
CCSD(T)/apqz ^a	4.9	-91.8	9.2	80.2
Ng=Ar				
MP2/apdz	30.6	-79.7	19.6	38.1
MP2/aptz	39.3	-75.0	21.9	52.7
CCSD(T)/aptz ^a	23.9[24.9]	-72.2[-72.8]	17.2	40.0[30.7]
CCSD(T)/apqz ^a	24.2	-72.4	18.5	40.1
Ng=Kr				
MP2/apdz	49.6	-60.7	26.4	49.6
MP2/aptz	58.7	-55.7	28.0	61.4
CCSD(T)/aptz ^a	40.7	-55.5	23.5	49.0
CCSD(T)/apqz ^a	41.0	-55.6	23.7	49.0
Ng=Xe				
MP2/apdz	73.5	-36.8	33.2	58.1
MP2/aptz	84.5	-29.8	34.7	67.8
CCSD(T)/aptz ^a	63.2	-33.0	30.0	54.0
$CCSD(T)/apqz^a$	63.8	-32.8	30.4	53.8

^{*a*} Single-point calculation using MP2/apdz structures. For Ng = He and Ar, energies in

brackets are obtained using CCSD(T)/aptz structures.

NCONgO-	V^{\star}	OCNNgO-	
Ng=Ar			
MP2/apdz	1.9	-2.7	
MP2/aptz	2.1	-3.0	
CCSD(T)/aptz ^a	0.5	-1.2	
CCSD(T)/apqz ^a	0.6	-2.3	
Ng=Kr			
MP2/apdz	0.2	-3.5	
MP2/aptz	3.4	-3.9	
CCSD(T)/aptz ^a	1.3	-1.2	
CCSD(T)/apqz ^a	1.5	-2.9	
Ng=Xe			
MP2/apdz	5.0	-4.8	
MP2/aptz	4.8	-5.2	
CCSD(T)/aptz ^a	3.9	-2.1	
CCSD(T)/apqz ^a	4.0	-3.9	

Table S2. The interconversion energetics from NCONgO⁻ to OCNNgO⁻. All energies are Born-Oppenheimer energies in kcal/mol.

^aSingle-point calculation using MP2/apdz structures

Figure S1. Calculated structures of OBONgO[–] (Ng = He, Ar, Kr and Xe). The bond distances are in angstroms and bond angles in degrees. The numbers in black, red, and green are values calculated by MP2/apdz, B3LYP/aptz, and MPW1B95/aptz methods, respectively.

Figure S2. Calculated structures of OCNNgO[–] (Ng = He, Ar, Kr and Xe). The bond distances are in angstroms and bond angles in degrees. The numbers in black, red, green are values calculated by MP2/apdz, B3LYP/aptz, and MPW1B95/aptz methods, respectively.

Figure S3. Calculated structures of NCONgO[–] (Ng = He, Ar, Kr and Xe). The bond distances are in angstroms and bond angles in degrees. The numbers in black, red, and green are values calculated by MP2/apdz, B3LYP/aptz, and MPW1B95/aptz methods, respectively.

Figure S4._Calculated structures of OBO- and OCN-. The bond distances are in angstroms. The numbers in black, blue, red, green and brown are values calculated by MP2/apdz, MP2/aptz, B3LYP/aptz, MPW1B95/aptz, and CCSD(T)/aptz methods, respectively.

Figure S5. Calculated two-body dissociation transition state geometry of OBONgO⁻ (Ng = He, Ar, Kr, and Xe). The bond lengths are in angstrom and bond angles in degrees. The black, blue, red and green values are calculated by MP2/apdz \cdot MP2/aptz \cdot B3LYP/aptz, and MPW1B95/aptz methods respectively.

Figure S6. Calculated two-body dissociation transition state geometry of OCNNgO[–] (Ng = He, Ar, Kr, and Xe). The bond lengths are in angstrom and bond angles in degrees. The black, blue, red and green values are calculated by MP2/apdz, MP2/aptz, B3LYP/aptz, and MPW1B95/aptz methods respectively.

Figure S7. Calculated two-body dissociation transition state geometry of NCONgO⁻ (Ng = He, Ar, Kr, and Xe). The bond lengths are in angstrom and bond angles in degrees. The black, blue, red and green values are calculated by MP2/apdz, MP2/aptz, B3LYP/aptz, and MPW1B95/aptz methods respectively.

Figure S8. Transition state structure for the interconversion from OCNNgO- to OCNNgO-.

	MP2/apdz	MP2/aptz	B3LYP/ aptz	MPW1B95/ aptz
Ng=Ar				
R(O-Ar)	1.721	1.672	1.778	1.738
R(O-C)	1.246	1.235	1.228	1.221
R(C-N)	1.218	1.203	1.186	1.18
R(Ar-C)	2.913	2.867	2.962	2.929
A(O-C-N)	177.4	177.2	178	177.9
A(Ar-C-N)	97.9	97.8	99.4	99.1
Ng=Kr				
R(O-Ar)	1.807	1.768	1.851	1.814
R(O-C)	1.246	1.235	1.228	1.221
R(C-N)	1.218	1.203	1.185	1.18
R(Kr-C)	2.957	2.911	3.041	2.989
A(O-C-N)	177	176.9	177.8	177.6
A(Kr-C-N)	97.0	97.0	98.7	98.4
Ng=Xe				
R(O-Xe)	1.91	1.892	1.955	1.921
R(O-C)	1.246	1.235	1.229	1.221
R(C-N)	1.219	1.203	1.185	1.18
R(Xe-C)	3.009	2.984	3.13	3.063
A(O-C-N)	176.5	176.4	177.4	177.1
A(Xe-C-N)	96.2	96.2	97.9	97.5

Table S3. Calculated transition state geometries as shown in Figure S8 (bond length in Å, angle in degrees) for the interconversion reaction from NCONgO⁻ to OCNNgO⁻.

Figure S9. Contour plots of the calculated electron density of NCONgO-

Figure S10. Contour plots of the calculated Laplace concentration of NCONgO⁻. The red contour lines are in regions of charge concentration and the black contour lines are in regions of charge depletion.