

Supplementary Materials:

Comparative study of the chemical compositions and antioxidant activities of fresh juices from Cucurbitaceae species grown in Romania

Anna Cazanevscaia (Busuioc) ¹, Andreea-Veronica Dediu (Botezatu) ¹, Bianca Furdui ^{1,*}, Costel Vanatoru ³, Filippo Maggi ², Giovanni Caprioli ² and Rodica-Mihaela Dinica ^{1,*}

- ¹ Department of Chemistry, Physics and Environment, "Dunărea de Jos" University of Galati, 111 Domnească Street, 800201 Galati, Romania; email: <u>anna.cazanevscaia@ugal.ro</u> (A.C.B.); <u>veronica.dediu@ugal.ro</u> (A.V.B.); <u>bianca.furdui@ugal.ro</u> (B.F.);
- ² School of Pharmacy, University of Camerino, Via S. Agostino 1, 62032 Camerino, Italy; <u>filippo.maggi@unicam.it</u>; <u>giovanni.caprioli@unicam.it</u>

³ Buzău Vegetable Research and Development Station, 23, Mesteacănului Street, 120 024, Buzau, Romania; <u>costel_vinatorul@yahoo.com</u>

* Correspondence: rodica.dinica@ugal.ro (R.-M.D.); bianca.furdui@ugal.ro (B.F.)

M. charantia

Figure S1. HPLC chromatogram of M. charantia sample. 210nm Ursolic acid (RT-45.9) and Oleanolic acids (RT-45.8)

Figure S2. HPLC chromatogram of M. charantia sample. 230nm Procyanidin A2 (RT-24.3) and Procyanidin B2 (RT-29.9)

Figure S3. HPLC chromatogram of M. charantia sample. 265nm Rutin (RT-31.47), Quercetin-3-D-galactoside (RT-32) and Kaempferol-3-glucoside (RT-33.6)

Figure S4. HPLC chromatogram of M. charantia sample.272nm - Gallic acid RT -5.9

Figure S5. HPLC chromatogram of M. charantia sample. 280nm (+)-catechin hydrate (RT-17.6), (-)-epicatechin (RT-23.9)

Figure S6. HPLC chromatogram of M. charantia sample. 325nm Neochlorogenic acid (RT-10.58), Chlorogenic acid (RT-22.3), Caffeic acid (RT-22.9), p-Coumaric acid (RT- 28.9) and trans-ferulic acid (RT-30.5)

Figure S7. HPLC chromatogram of M. charantia sample. 365nm Kaempferol (RT-37.8) and Quercetin (RT-35.8)

Figure S8. HPLC chromatogram of T. cucumerina sample. 210nm Ursolic acid (RT-45.9) and Oleanolic acids (RT-45.8)

DAD1 A, Sig=210,4 Ref=off (MELAV191119000002.D)						
mAU 1000 8000 8000 8000 8000 8000 8000 800	12.356 12.825 13.941 15.785 16.284 16.294	50.181	20, 388 27, 501 27, 501 27, 501 27, 501 30, 118 30, 118			
•		20	30	40		

Figure S9. HPLC chromatogram of T. cucumerina sample. 230nm Procyanidin A2 (RT-24.3) and Procyanidin B2 (RT-29.9)

Figure S10. HPLC chromatogram of T. cucumerina sample. 265nm Rutin (RT-31.47), Quercetin-3-D-galactoside (RT-32) and Kaempferol-3-glucoside (RT-33.6)

Figure S11. HPLC chromatogram of T. cucumerina sample. 272nm - Gallic acid RT -5.9

Figure S12. HPLC chromatogram of T. cucumerina sample. 280nm (+)-catechin hydrate (RT-17.6), (-)-epicatechin (RT-23.9)

Figure S13. HPLC chromatogram of T. cucumerina sample. 325nm Neochlorogenic acid (RT-10.58), Chlorogenic acid (RT-22.3), Caffeic acid (RT-22.9), p-Coumaric acid (RT- 28.9) and trans-ferulic acid (RT-30.5)

Figure S14. HPLC chromatogram of T. cucumerina sample. 365nm Kaempferol (RT-37.8) and Quercetin (RT- 35.8)

Figure S15. HPLC chromatogram of *B. hispida* sample. 210nm Ursolic acid (RT-45.9) and Oleanolic acids (RT-45.8)

DAD1 A, Sig=210,4 Ref=off (MELA\19111900000	11.D)				
mau 10000	18271 18272 20115 13.566	20131		28 601 29,940 20,130 20,1000 20,1000 20,1000 20,1000 20,10000000000	
· · · · · · · · · · · · · · · · · · ·	10	20	30	40	

Figure S16. HPLC chromatogram of *B. hispida* sample. 230nm Procyanidin A2 (RT-24.3) and Procyanidin B2 (RT-29.9)

DAI	01 H, Sig=230,4 Ref=off (MELA\191119000001	1.D)				
mAU 250 200 150 100 50 0	2,228 2,228 2,228 2,480 1,480 0,480 0,480 0,480 0,616 0,616	0 6 10 0 7	13.678			
-50-		10	l.	20	30	40

Figure S17. HPLC chromatogram of *B. hispida* sample. 265nm Rutin (RT-31.47), Quercetin-3-D-galactoside (RT-32) and Kaempferol-3-glucoside (RT-33.6)

Figure S18. HPLC chromatogram of B. hispida sample. 272nm - Gallic acid RT -5.9

Figure S19. HPLC chromatogram of *B. hispida* sample. 280nm (+)-catechin hydrate (RT-17.6), (-)-epicatechin (RT-23.9)

BIDADI C. Sig=2804 Refeat IMELA T Jy QQ L IA 10 10 10 10 10 10 10 10 10 10 10 10 10					
DAD1 C.	Sig=280,4 Ref=off (MELA\19111900000	1.D)			
mAU 12 10 8 6 4 2 0	2.785 <u> </u>	0 0 1 5			
·		10	20	30	40
4					

Figure S20. HPLC chromatogram of *B. hispida* sample. 325nm Neochlorogenic acid (RT-10.58), Chlorogenic acid (RT-22.3), Caffeic acid (RT-22.9), p-Coumaric acid (RT- 28.9) and trans-ferulic acid (RT-30.5)

Figure S21. HPLC chromatogram of *B. hispida* sample. 365nm Kaempferol (RT-37.8) and Quercetin (RT-35.8)

Figure S22. HPLC chromatogram of *C. metuliferus* sample. 210nm Ursolic acid (RT-45.9) and Oleanolic acids (RT-45.8)

Figure S23. HPLC chromatogram of *C. metuliferus* sample. 230nm Procyanidin A2 (RT-24.3) and Procyanidin B2 (RT-29.9)

Figure S24. HPLC chromatogram of *C. metuliferus* sample. 265nm Rutin (RT-31.47), Quercetin-3-D-galactoside (RT-32) and Kaempferol-3-glucoside (RT-33.6)

Figure S25. HPLC chromatogram of C. metuliferus sample. 272nm - Gallic acid RT -5.9

Figure S26. HPLC chromatogram of *C. metuliferus* sample. 280nm (+)-catechin hydrate (RT-17.6), (-)-epicatechin (RT-23.9)

Figure S27. HPLC chromatogram of *C. metuliferus* sample. 325nm Neochlorogenic acid (RT-10.58), Chlorogenic acid (RT-22.3), Caffeic acid (RT-22.9), p-Coumaric acid (RT- 28.9) and trans-ferulic acid (RT-30.5)

Figure S28. HPLC chromatogram of *C. metuliferus* sample. 365nm Kaempferol (RT-37.8) and Quercetin (RT- 35.8)

