Supplementary Information (Pyridine.OCS Complex)

S.I. 1. For the A complexes, the following correlations between binding energies and proton affinities (PA) (kJ/mol) or ionization potential (IP) (eV) can be calculated:
$-\Delta \mathrm{E}=0.023 \mathrm{PA}+10.35 \quad\left(\mathrm{r}^{2}=0.997\right)$
$-\Delta \mathrm{E}=-1.89 \mathrm{IP}-28.40 \quad\left(\mathrm{r}^{2}=0.979\right)$
The slopes of these correlations are somewhat larger than those reported for pyridines. CS_{2} systems, respectively 0.019 and -1.57 [46].

Table S.I.2: Results of SAPT analysis for the A-complexes between para-substituted pyridine and OCS calculated at SAPT2+/aug-cc-pVTZ Level.

Complex	$\Delta E_{\text {elst }}$	$\Delta E_{\text {exch }}$	$\Delta E_{\text {ind }}$	$\Delta E_{\text {disp }}$	$\Delta E_{\text {int }}^{\text {SAPT2+ }}$
NH_{2}-pyr.OCS	-21.11	29.23	-7.04	-17.82	-16.74
CH_{3}-pyr.OCS	-20.07	28.06	-6.48	-17.47	-15.96
pyr.OCS	-19.50	27.34	-6.12	-17.12	-15.40
F-pyr.OCS	-18.42	26.32	-5.62	-16.84	-14.56
CN -pyr.OCS	-16.76	24.73	-4.84	-16.56	-13.43
NO_{2}-pyr.OCS	-16.58	24.39	-4.65	-16.44	-13.28

S.I. 3. For the \mathbf{B} complexes, the following correlation between binding energies and PA ($\mathrm{kJ} / \mathrm{mol}$) and IP (ev) is valuable
$-\Delta \mathrm{E}=0.009 \mathrm{PA}+2.91 \quad\left(\mathrm{r}^{2}=0.978\right)$
$-\Delta \mathrm{E}=-0.75 \mathrm{IP}+18.17 \quad\left(\mathrm{r}^{2}=0.977\right)$
Table S.I.4: Results of SAPT analysis for the B-complexes between para-substituted pyridine and OCS calculated at SAPT2+/aug-cc-pVTZ Level.

Complex	$\Delta E_{\text {elst }}$	$\Delta E_{\text {exch }}$	$\Delta E_{\text {ind }}$	$\Delta E_{\text {disp }}$	$\Delta E_{\text {int }}^{\text {SAPT2+ }}$
NH_{2}-pyr.OCS	-25.22	39.05	-7.35	-24.21	-17.73
CH_{3}-pyr.OCS	-24.35	37.32	-6.72	-23.64	-17.38
pyr.OCS	-23.68	36.38	-6.37	-23.26	-16.94
F-pyr.OCS	-22.66	35.05	-5.88	-22.82	-16.32
CN-pyr.OCS	-21.76	33.51	-5.15	-22.46	-15.86

NO_{2}-pyr.OCS	-21.51	32.93	-4.94	-22.29	-15.81

S.I.5. For the \mathbf{C} complexes, the following correlations between the binding energies and PA or IP are valuable:
$-\Delta \mathrm{E}=0.0243 \mathrm{PA}+0.34 \quad\left(\mathrm{r}^{2}=0 . .783\right)$
$-\Delta \mathrm{E}=2.006 \mathrm{IP}+30.49 \quad\left(\mathrm{r}^{2}=0.786\right)$

Table S.I.6: Results of SAPT analysis for the C-complexes between para-substituted pyridine and OCS calculated at SAPT2+/aug-cc-pVTZ Level.

Complex	$\Delta E_{\text {elst }}$	$\Delta E_{\text {exch }}$	$\Delta E_{\text {ind }}$	$\Delta E_{\text {disp }}$	$\Delta E_{\text {int }}^{\text {SAPT2+ }}$
NH_{2}-pyr.OCS	-13.81	32.55	-5.56	-26.66	-13.48
CH_{3}-pyr.OCS	-14.06	33.63	-5.70	-27.18	-13.31
pyr.OCS	-11.52	28.53	-4.75	-24.02	-11.76
F-pyr.OCS	-10.75	27.99	-4.29	-23.94	-10.99
CN -pyr.OCS	-9.72	28.49	-4.04	-25.09	-10.36
NO_{2}-pyr.OCS	-9.81	28.77	-4.06	-25.33	-10.42

Table S.I.7: Gibbs Energy values (in $\mathrm{kJ} / \mathrm{mol}$) for A, B and \mathbf{C}-complexes of pyridines.OCS systems calculated at the MP2=ful//aug-cc-pvTZ//aug-cc-pVDZ Level.

System	A-complex	B-complex	C-complex
NH $_{2}$-pyr.OCS	10.36	10.78	5.16
CH $_{3}$-pyr.OCS	11.19	11.25	4.90
Pyr.OCS	11.69	11.43	8.55
F-pyr.OCS	12.04	11.38	8.88
CN-pyr.OCS	12.88	11.60	5.68
NO $_{2}$-pyr.OCS	12.75	11.35	4.43

Figure S1: Optimized geometries of the \mathbf{D} complex between para-substituted pyridine with OCS.

