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Abstract: Aromatic heterocycles are ubiquitous building blocks in bioactive natural products,
pharmaceutical and agrochemical industries. Accordingly, the carborane-fused heterocycles would be
potential candidates in drug discovery, nanomaterials, metallacarboranes, as well as photoluminescent
materials. In recent years, the transition metal catalyzed B-H activation has been proved to be an
effective protocol for selective functionalization of B-H bond of o-carboranes, which has been
further extended for the synthesis of polyhedral borane cluster-fused heterocycles via cascade B-H
functionalization/annulation process. This article summarizes the recent progress in construction of
polyhedral borane cluster-fused heterocycles via B-H activation.
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1. Introduction

Icosahedral carboranes are a class of carbon-boron molecular clusters with three dimensional
aromaticity analogues to benzene, the features of high boron content, extraordinary thermal and
chemical stability, and synthetic flexibility make the carborane derivatives be a kind of important
building blocks in functional materials [1–4], key frameworks in pharmaceuticals [5–8] and ligands in
organometallic chemistry [9–13]. Therefore, the selective functionalization of carboranes has attracted
considerable interest from chemists [14–18].

In recent years, inspired by the C-H activation for direct functionalization of carbon-based
molecules, the transition metal-catalyzed B-H activation has emerged as a powerful strategy for
selective functionalization of o-carboranes and resulted in much advancement [19–40]. This succinct
synthetic strategy offers an efficient protocol for selective functionalization of carboranes, and lead to a
class of previously unavailable three dimensional carborane derivatives.

Aromatic heterocycles are ubiquitous building blocks in bioactive natural products, pharmaceutical
and agrochemical industries. Based on the three dimensional aromaticity of carborane analogues to
benzene, the carborane fused heterocycles would be potential synthons in designing drug candidates
and molecular imaging regents for targeted radionuclide therapy [5,41,42]. This article summarizes
the recent progress in construction of carborane-fused heterocycles via transition metal-catalyzed B-H
activation, and the synthesis of carborane-fused heterocycles and carbocycles via substitution reaction
or cycloaddition reaction with cage C-H bonds not included.
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2. Synthesis of o-Carborane-Fused Heterocycles

Because of the 10 B-H bonds of o-carborane are not fully equal and the electrophilic reactivity is
reduced in the following order: B(9,12) > B(8,10) > B(4,5,7,11) > B(3,6), which makes the functionalization
of specific boron vertex to be a challenging subject [43,44]. Inspired by the transition metal catalyzed
C-H activation of arenes and the three dimensional aromaticity of o-carborane analogues to benzene, by
utilizing the palladium catalyzed electrophilic B-H activation, Cao and coworkers disclosed a selective
arylation of B(8)-H and B(9)-H bonds of o-carboranes with iodobenzene [45]. Almost at the same
time, the palladium-catalyzed intramolecular B-H/CAr-Br coupling for synthesis of o-carborane-fused
dihydroindenes was reported by Xie group [46]. These pioneering works opened the door for
selective functionalization of o-carboranes via B-H activation and further extend to polyhedral borane
clusters [18].

In 2018, Xie group disclosed a rhodium-catalyzed cascade cyclization of carboranyl N-arylimines
with vinyl ketones for synthesis of o-carborane-fused cyclopenta[b]quinolines via sequential C-H/B-H
activation [47]. This reaction displays well the compatibility for various substituents and gives a series
of unprecedented o-carborane-fused cyclopenta[b]quinolines (Figure 1).

Figure 1. Synthesis of o-carborane-fused cyclopenta[b]quinolines.

Mechanism studies indicate that the activation of cage B-H bond is preferred over the aryl
C-H bond by isolating the key intermediate D. Based on the control experiment results, a plausible
mechanism involving selective B-H activation, alkene insertion, nucleophilic cyclization, C-H activation,
nucleophilic cyclization, dehydration and oxidative aromatization was proposed (Scheme 1).
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Scheme 1. Proposed mechanism for rhodium-catalyzed cascade cyclization of carboranyl N-arylimines
with vinyl ketones.

Based on the directing group guided/transition metal-catalyzed B-H activation for selective
functionalization of o-carboranes, the copper catalyzed [4+2] annulation of carboranyl amides with
internal alkynes for synthesis of o-carborane-fused pyridones were accomplished under the assistance
of 8-aminoquinoline (Figure 2) [48]. Mechanism studies suggest a CuIII-catalyzed B-H activation based
on the isolation and structural identification of a stable CuI intermediate. This is the first example
for copper-catalyzed selective B-H activation of o-carborane, and offers an alternative catalytic active
species for functionalization of o-carboranes and boron clusters.

Figure 2. Synthesis of o-carborane-fused pyridones.

Recently, by employing a traceless carboxylic acid as directing group, the iridium-catalyzed
cascaded dehydrogenative cross coupling of B-H/C-H and B-H/N-H bonds for synthesis of
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carborano-isoquinolinones was developed in Xie’s group [49]. This reaction represents the most effective
approach for synthesis of unprecedented carborano-isoquinolinones with available benzamides and
provides important references for construction of o-carborane-fused heterocycles via dehydrogenative
coupling process (Figure 3).

This cascade cross coupling could be stopped at the first B-H/C-H coupling step and gives a
series of α-carboranyl benzamides, which indicates the forming of B-C bond is preferential over B-N
bond. Cyclic voltammetry studies suggest the IrV should be the key species for the electrophilic C-H
metallation and B-N reductive elimination steps, and a mechanism featured with Ir-nitrene species
was proposed.

Figure 3. Synthesis of carborano-isoquinolinones.

3. Synthesis of [CB11]−-Fused Heterocycle

According to the carboxylic acid directed selective B-H activation of o-carboranes [30–37],
by introducing carboxylic acid into cage carbon of monocarba-closo-dodecaborate (CB11

−), the
iridium-catalyzed B-H activation/alkenylation/annulation of CB11

− cluster with diarylacetylenes
for synthesis of 3D analogues of isocoumarins was accomplished in Duttwyler’s group [50].
This transformation displays broad substrate scope for kinds of symmetric diarylacetylenes as
well as unsymmetric internal alkynes (Figure 4). A carboxylic acid-assisted IrI/IrIII catalytic cycle
for B-H activation/alkyne insertion was proposed based on the isolation and control experiments of
IrIII intermediate.
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Figure 4. Synthesis of 3D analogues of isocoumarins.

4. Synthesis of [B12]2−-Fused Heterocycles

The dodecahydro-closo-dodecaborate dianion [B12H12]2− is an icosahedral cluster with 12 identical
B-H vertices, which make the selective boron functionalization of dodecaborates remains a major
synthetic challenge in controlling the degree of substitution and regioselectivity. Traditional methods
for B-H functionalization of closo-dodecaborates primarily rely on the iodinated precursors [51,52].
According to the transition metal catalyzed B-H activation of o-carboranes, Duttwyler and coworkers
disclosed a rhodium-catalyzed double B-H activation of dodecaborate anion by employing ureido
as directing group for the first time [53], which offers an efficient protocol for the synthesis of
dodecaborate-fused oxazoles via one pot alkenylation/annulation process (Figure 5). Mechanism
studies indicate the alkenylation occurs prior to annulation in this one pot transformation, and a
plausible mechanism involving RhI/RhIII catalyzed dual B-H activation was proposed based on the
isolation of a rhodium agostic intermediate.
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Figure 5. Synthesis of dodecaborate-fused oxazoles.

Later, the same group further extended the cascade alkenylation/annulation of dodecaborates
with amide as directing group [54]. This transformation displays broad functional group tolerance and
complete cage regioselectivity, and a series of dodecaborate-fused oxazoles were synthesized with
moderate to good yields (Figure 6). Importantly, the above synthesized dodecaborate-fused oxazoles
displayed blue emission in solid state, which would be potential candidates for the application in
photoluminescent materials.

Figure 6. Synthesis of dodecaborate-fused oxazoles with amide as directing group.

Interestingly, by replacing the alkyne with alkene, the cascade alkylation/annulation of
dodecaborates amide was also proceed well in acetone and gives a series of unprecedented
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alkyl-substituted dodecaborate-fused oxazoles (Figure 7). The resulted products show strong
resemblance to antimicriobially active boron clusters, and have potential applications in medicinal
chemistry [55].

Figure 7. Synthesis of alkyl-substituted dodecaborate-fused oxazoles.

5. Synthesis of nido-Carborane-Fused Heterocycles

Recently, by employing amide on cage B(9) of o-carborane, an unexpected one pot
deboronation/cyclization for the synthesis of nido-7,8-carborane-fused oxazole by cooperation of
Pd(OAc)2, AgOAc, and K2CO3 has been developed by Cao’s group [56]. A series of unprecedented
nido-7,8-carborane-fused oxazoles have been synthesized with moderate to good yields (Figure 8),
which opens a window for the synthesis of novel kinds of metallacarboranes and targeted radionuclide
therapy reagents.



Molecules 2020, 25, 391 8 of 11

Figure 8. Synthesis of nido-7,8-carborane-fused oxazoles.

To understand the mechanism, they have successfully isolated the key deboronated intermediate
and unambiguously characterized by X-ray crystallographic analysis. Control experiments indicate
that the deboronation reaction occurs first, and this one pot deboronation/cyclization reaction should
be promoted by the cooperative effect of Pd(OAc)2, AgOAc, and K2CO3. Based on these results, a
plausible mechanism involving a PdII-catalyzed B(8)-H activation, oxidation, and tautomerization of
amide was proposed (Scheme 2).

Scheme 2. Plausible mechanism for synthesis nido-7,8-carborane-fused oxazoles.
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6. Conclusions

The transition metal-catalyzed B-H activation as a novel synthetic strategy has been proved to be
an effective protocol for selective functionalization of B-H bond of polyhedral borane clusters, which
has been further extended to synthesis of polyhedral borane cluster-fused heterocycles via cascade B-H
functionalization/annulation process. Because of the synthetic flexibility, aqueous stability and general
robustness of polyhedral borane clusters, by combining the borane cluster with heterocycles would
provide a library of potential candidates in drug discovery, nanomaterials, metallacarboranes, as well
as photoluminescent materials. Despite the aforementioned strategies remarkable achievements have
been made in recent years, exploring novel cascade reactions for the synthesis of diversified borane
cluster-fused heterocycles are still anticipated in the future.
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