A new thiopeptide antibiotic, micrococcin P3, from a marine-derived strain of the bacterium *Bacillus stratosphericus*

Weihong Wang, Kyu-Hyung Park, Jusung Lee, Eunseok Oh, Chanyoon Park, EunMo Kang, Jun Lee and Heonjoong Kang

Table of Contents

Figure S1. HPLC chromatogram of micrococcins P3 (1) and P1 (2)	
Figure S2. High resolution ESIMS spectra of micrococcin P3 (1)	S4
Figure S3. The bacterium 16L088-2 cultured on SYP agar	S5
Figure S4. ¹ H NMR spectrum of micrococcin P3 (1)	S6
Figure S5. ¹³ C NMR spectrum of micrococcin P3 (1)	S 7
Figure S6. COSY spectrum of micrococcin P3 (1)	S8
Figure S7. HSQC spectrum of micrococcin P3 (1)	S9
Figure S8. HMBC spectrum of micrococcin P3 (1)	S10
Figure S9. ROESY spectrum of micrococcin P3 (1)	S11
Figure S10. Expended ROESY spectrum of micrococcin P3 (1)	S12
Figure S11. ¹ H NMR spectrum of micrococcin P1 (2)	S13
Figure S12. ¹³ C NMR spectrum of micrococcin P1 (2)	S14
Figure S13. COSY spectrum of micrococcin P1 (2)	S15
Figure S14. HSQC spectrum of micrococcin P1 (2)	S16
Figure S15. HMBC spectrum of micrococcin P1 (2)	S17
Figure S16. ROESY spectrum of micrococcin P1 (2)	S18
Figure S17. Expended ROESYspectrum of micrococcin P1 (2)	S19
Figure S18. The effects of micrococcins P3 (1) and P1 (2) on the viability of CV-1 cells	S20
Figure S19. Key MS/MS fragments observed in the spectra of micrococcins P3 (1)	S21
Table S1. Antibacterial activities of micrococcins P3 (1) and P1 (2) against marine-derived bacterial strains	S22
Table S2. ¹ H NMR (700 MHz) data of micrococcin P1 (2) in DMSO- d_6 (<i>J</i> in Hz)	S23
Table S3. ¹³ C NMR (175 MHz) data of micrococcin P1 (2) in DMSO- d_6° (<i>J</i> in Hz)	S24

Figure S2. High resolution ESIMS spectra of micrococcin P3 (1)

Figure S3. The bacterium 16L088-2 cultured on SYP agar

Figure S4. ¹H NMR spectrum of micrococcin P3 (1)

Figure S5.¹³C NMR spectrum of micrococcin P3 (1)

Figure S7. HSQC spectrum of micrococcin P3 (1)

Figure S11. ¹H NMR spectrum of micrococcin P1 (2)

Figure S12. ¹³C NMR spectrum of micrococcin P3 (1)

Figure S14. HSQC spectrum of micrococcin P3 (1)

Figure S18. The effects of micrococcins P3 (1) and P1 (2) on the viability of CV-1 cells

Figure S19. Key MS/MS fragments observed in the spectra of micrococcins P3 (1)

Table S1. Antibacterial activities (MIC μ g/mL) of micrococcins P3(1) and P1(2) against marine-derived bacterial strains

marine-derived bacterial strains	Code number of strains	1	2	Vancomycin	Linezolid	DMSO (v/v)
Shewanella algae	19J07-TSA-3-1	8	8	3.2	1.6	6.3%
Photobacterium damselae	19H09-Blood-2	8	8	3.2	0.8	6.3%
Vibrio parahaemolyticus	19H07-MHAB-S-4	8	8	3.2	0.4	6.3%
Enterococcus faecalis	19J04-blood-1-2	0.5	0.05	1.6	0.1	6.3%
Bacillus amyloliquefaciens_ssp_p lantarum	19H07-D-BHIB-1-2	4	0.5	1.6	1.6	6.3%
Pseudomonas stutzeri	19H07-MHAB-1-2	4	4	0.8	0.8	6.3%

Wells with 8 $\mu g/mL$ of test compound contained 1.5% DMSO.

Table S2. ¹H NMR (700 MHz) data of micrococcin P1 (2) in DMSO- d_6 (J in Hz)

No.	2	No.	2
1	1.02, d (6.2)	31	8.29, s
2	3.71, sext (6.2)	33	5.13, t (9.0)
3	3.08, m	34	2.52, m
4	7.92, t (5.5)	35	0.97, d (6.3)
7	6.51, q (7.0)	36	0.86, d (6.3)
8	1.70, d (7.0)	37	8.38, d (9.0)
9	9.53, s	40	8.20, s
12	8.45, s	43	6.46, q (6.9)
15	8.58, s	44	1.75, d (6.9)
18	8.32, d (8.1)	45	9.54, s
19	8.44, d (8.1)	47	4.69, dd (7.6, 2.9)
23	8.10, s	48	4.38, br s
25	5.08, dd (8.4, 6.2)	49	1.38, d (6.0)
26	4.01, t (6.2)	50	7.86, d (7.6)
27	1.03, d (6.2)	53	8.36, s
28	8.23, d (8.4)		

Table S3. ¹³C NMR (175 MHz) data of micrococcin P1 (2) in DMSO- d_6 (*J* in Hz)

No.	2	No.	2
1	21.1	27	20.7
2	65.2	29	160.6
3	46.9	30	149.2
5	164.5	31	124.9
6	130.7	32	170.0
7	128.2	33	55.6
8	13.7	34	32.4
10	159.2	35	18.6
11	150.5	36	19.7
12	125.6	38	159.9
13	161.5	39	148.3
14	149.5	40	124.5
15	121.8	41	166.4
16	168.4	42	130.0
17	149.8	43	128.8
18	118.7	44	13.9
19	140.8	46	168.7
20	128.7	47	57.7
21	151.1	48	67.6
22	152.6	49	20.0
23	121.5	51	159.9
24	170.1	52	149.7
25	56.1	53	126.1
26	67.2	54	164.2