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Abstract: Alginates are widely used as gelling agents in textile print pastes, medical industries,
impression material in dentistry, and anticoagulant material in toothpaste. In the present study,
the content and spectroscopic characterization (1H NMR and FT-IR) of the sodium alginates
were investigated in the eight brown seaweeds Sargassum muticum, Fucus vesiculosus f. volubilis,
Carpodesmia tamariscifolia, Bifurcaria bifurcata, Laminaria ochroleuca, Cystoseira humilis, Saccorhiza
polyschides, and Fucus guiryi harvested from the NW Atlantic coast of Morocco. The results proved
that the most studied algae depicted alginate yields higher than 18% dry weight. The FT-IR analysis
showed that the spectra of the extracted alginates exhibited significant similarities to the commercial
alginate from Sigma-Aldrich. The 1H NMR spectroscopy indicated that the extracted alginates have
a high content of β-d-mannuronic (M) than α-l-guluronic acid (G) with M/G ratio values ranging
from 1.04 to 4.41. The homopolymeric fractions FMM are remarkably high compared to the FGG and
heteropolymeric fractions (FGM = FMG) especially for F. guiryi, C humilis, C. tamariscifolia, L. ochroleuca,
and S. polyschides. Nevertheless, the heteropolymeric fractions (FGM/FMG) are quite abundant in the
alginates of S. muticum, F. vesiculosus f. volubilis, and B. bifurcata accounting for more than 52% of
the polymer diads. Based on these results, the investigated algal species (except Fucus guiryi and
Bifurcaria bifurcata) could be regarded as potential sources of alginates for industrial uses.

Keywords: brown seaweeds; alginates; spectroscopic characterization; Morocco

1. Introduction

Macroalgae are documented mainly as a source of critical chemical components with applications
in human food, phycocolloids, cosmeceuticals, and pharmaceutical industries, as well as the agricultural
sector for incorporation into animal feeds and plant stimulants [1]. Three types of phycocolloids are
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commonly involved in the seaweed chemical industry such as alginates, carrageenans, and agars.
Alginate is the common name given to a family of linear phycocolloid β-d-mannuronic (1,4-linked) and
α-l-guluronic acids arranged in a non-regular, blockwise order along the chain [2]. This polysaccharide
is found in the matrix and the cell wall of the brown algae. It plays a vital role in cell binding
and makes available some mechanical properties to the algae, e.g., flexibility [3]. The viscosity of
alginate hydrocolloids depends on the average molecular weight, whereas the gelling properties are
affected by the amounts and distribution of the three types of blocks (The homopolymeric fractions
of β-d-mannuronic (FM) and α-l-guluronic (FG) acids, and the heteropolymeric fractions (FMG) [1,3]).
In general, alginates with a low M/G ratio and a large proportion of guluronic blocks form a robust
and rigid gel. Those with a low number of guluronic blocks and a high M/G ratio produce soft and
elastic gels [4]. Alginates are widely used as stabilizers in various food industries, textile print pastes,
gelling agents in medical industries, impression material in dentistry, and anticoagulant material in
toothpaste [1,5]. Several brown algal species are cultivated to produce the alginate required for the
industry such as Ascophyllum nodosum, Durvillaea antarctica, Laminaria hyperborea, Saccharina latissima,
Ecklonia maxima, Macrocystis pyrifera, Lessonia nigrescens, and Lessonia trabeculata [6,7].

The Atlantic coast of Moroccan is a favorable habitat for diverse algal species and constitutes
a reserve of species of considerable economic, social, and ecologic potentials. Nevertheless,
the phycocolloid industry is limited to the exploitation of Gelidium corneum (Gelidiales, Rhodophyceae),
which is commercially harvested for agar extraction. Indeed, several other red and brown algae
are abundant on this coast, but the data on the composition and physicochemical properties of
their polysaccharides are rare. In particular, there is no alginate industry in Morocco, and almost
no information is available on potential alginophytes species and the quantity and quality of
alginates. In this context, the present study explores the extraction yield, as well as the spectroscopic
characterization (1H NMR and FT-IR) of the sodium alginates from eight brown algal species
(Sargassum muticum, Fucus vesiculosus f. volubilis, Carpodesmia tamariscifolia, Bifurcaria bifurcata,
Laminaria ochroleuca, Cystoseira humilis, Saccorhiza polyschides, and Fucus guiryi) harvested from the
Atlantic coast of Morocco.

2. Results and Discussion

2.1. Alginates’ Yield

The alginate yields of the eight brown algal species collected from the Northwestern Atlantic
coast of Morocco ranged from 2.7% to 27.5% dw (Table 1). The highest percent of alginates was
obtained from Laminaria ochroleuca, and the minimum alginate content was found in Bifurcaria bifurcata.
The alginates’ yield recorded in S. muticum, C. tamariscifolia, C. humilis and F. vesiculosus exceeded 18% dw.
These contents are within the range of those reported from some well-known worldwide alginophytes
such as Saccharina japonica (20–26% dw [8,9]), Ascophyllum nodosum (24% [10]), and Saccharina longicruris
(20% dw [10]). However, these values are still lower in comparison to the special alginate contents
of Durvillaea antarctica (from 37 to 52% [11]) and Ecklonia cava from (35 to 38% dw [9]). The alginate
content observed in F. guiryi (13.6% dw) is still higher than that previously reported from others Fucales
species (10–12% dw [12,13]). The kelp species L. ochroleuca and S. polyschides contained 27.5% and
25% alginates, respectively (Table 1). Similar values have been reported for Laminaria digitata (22–34%
dw [8,14]), Laminaria hyperborea (21–33% dw [14,15]), and Macrocystis pyrifera (29–38% dw [11]).
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Table 1. Alginate contents of the investigated algal species compared to various brown seaweeds.

Algal Species Alginates’ Yield (% dw) References

Sargassum muticum 25.6

This study

Laminaria ochroleuca 27.5
Saccorhiza polyschides 25.0
Cystoseira humilis 19.1
Carpodesmia tamariscifolia 17.22
Fucus vesiculosus f. volubilis 18.3
Fucus guiryi 13.6

Ascophyllum nodosum 24 [10]
Durvillaea antarctica 37–52 [11]
Ecklonia maxima 35 [8]
Laminaria japonica 20–26 [8]
Laminaria digitata 22–34 [8]
Laminaria hyperborea 21–33 [15]
Lessonia nigrescens 34–41 [16]
Macrocystis pyrifera 29–38 [11]
Saccharina longicruris 20 [10]
Sargassum asperifolium 12 [12]
Sargassum filipendula 17 [17]
Sargassum fluitans 21 [18]
Sargassum vulgare 17 [19]
Sargassum muticum 18 [20]
Sargassum oligocystum 19 [18]
Sargassum thunbergii 13 [20]
Sargassum polycystum 17–28 [20]
Sargassum turbinarioides 10 [13]
Fucus vesiculosus 16.2 [10]
Fucus serratus 20–29 [21]
Fucus ceranoides 21–29 [22]

2.2. FT-IR Spectroscopy Analysis

The infrared spectra in the range 2000 to 600 cm−1 of alginates extracted from the investigated
brown algae with reference to commercial sodium alginate (Sigma-Aldrich, Gillingham, UK) are
given in Figure 1. The spectra of extracted alginates are very similar to those of the commercial
standard showing similar positions of the characteristic bands. Therefore, sodium alginate is the
main polysaccharide found in the tested brown seaweeds, despite the small-signal appearing between
1710 cm−1 and 1730 cm−1, particularly in the spectra of Fucus guiryi, S. muticum, S. polyschides,
L. ochroleuca, and F. vesiculosus, corresponding to the carbonyl group as the carboxylic acid ester form
(C=O). The abroad bands at 1600–1610 cm−1 were suggested as the O-C-O carboxylate asymmetric
stretching [23,24]. The bands located at 1400–1428 cm−1 were assigned to C-OH deformation vibration
with the involvement of the symmetric stretching vibration of O-C-O [13,25]. According to previous
reports, the bands at 1025–1030 cm−1 can be attributed to the C-O group [18]. The anomeric region
(950 to 750 cm−1) is the most discussed in carbohydrates [23,26]. Indeed, the C-O stretching vibration of
uronic acid residues is generally linked to the bands centered around 930–950 cm−1, and those recorded
between 871 and 883 cm−1 were attributed to the C1-H deformation vibration of β-mannuronic acid
residues [27]. The signals around 815–833 cm−1 were attributed to mannuronic acid residues [27].
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Figure 1. FT-IR spectra of sodium alginates extracted from the investigated brown seaweeds and the
sodium alginate standard (Sigma-Aldrich, Gillingham, UK).

2.3. 1H NMR Spectroscopy Analysis

1H NMR spectroscopy is a consistent method for the complete characterization of the composition
and the block structure of alginate [11,12]. The phycocolloids extracted from the studied brown algae
revealed typical 400 MHz-1H NMR spectra (Figure 2) similar to the commercial sodium alginate
with three key signals attributed to the anomeric hydrogen of guluronic acid (G) at 5.1–5.2 ppm
(pic I), the anomeric hydrogens of mannuronic acid (M1), and the H-5 of alternating blocks (GM-5)
overlapping at 4.7–4.9 ppm (pic II), and the H-5 of guluronic acid residues in the homopolymeric G
blocks, at 4.5–4.6 ppm (pic III) (Figure S1 in the Supplementary Material).

The M/G ratio, the molar fractions of the monads (FG, FM), and the diad (FGG, FMM, FMG, FGM)
sequences were calculated from the area of 1H NMR signals (Figure 2) employing the formula given by
Grasdalen et al. [28]:

FG = AI/(AII + AIII)
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FM = 1 − FG

FGG = AIII/(AII + AIII)

FGM = FMG = FG − FGG

FMM = FM − FMG

M/G = (1 − FG)/FG

The M/G ratios of sodium alginates in all tested brown algae were greater than one (Table 2),
revealing a dominance of mannuronic acid over guluronic acid, in particular in L. ochroleuca and
F. guiryi, showing the M/G ratios of 2.3 and 4.4, respectively. Such dominance has been reported
for alginates in Durvillaea antarctica [11] and for the analyzed commercial alginate (Sigma-Aldrich,
Gillingham, UK). According to Murillo-Álvarez and Hernández-Carmona [29], alginates with a
low M/G ratio would provide strong, brittle gels, making them suitable for cell encapsulation for
biomedical or environmental applications, whereas alginates with a high M/G ratio would give
more elastic gels, desirable for food, cosmetic, or pharmaceutical products. The M/G ratio is not the
only factor that controls the alginate gelling properties. It has been reported that the percentages of
homopolymeric block structures (FMM, FGG) and alternating blocks (FMG, FGM) influence the physical
properties of alginates [19]. Based on the 1H NMR results (Table 2), the homopolymeric regions
(FMM) are remarkably high compared to the guluronic blocks (FGG) and heteropolymeric fractions
(FGM = FMG) for F. guiryi, C humilis, C. tamariscifolia, L. ochroleuca, and S. polyschides and the tested
commercial alginate. Similar compositions have previously been found for Durvillaea antarctica,
Saccharina japonica, Laminaria digitata, and Macrocystis pyrifera [8,11]. The heteropolymeric fractions
(FGM/FMG) are quite abundant in S. muticum, F. vesiculosus, and B. bifurcata, accounting for more than
52% of the polymer diads.

The description of the alginate sequence could be completed via the parameter η = FMG/(FM ×

FG), which evaluates and reveals the distribution of sequences. Indeed, η values <1 correspond to the
abundance of homopolymeric blocks MM and GG, η = 1 for completely random cases and 1 < η < 2 for
alternate-like cases MG and GM [28].
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The η values exceeded one for the alginates extracted from S. muticum, B. bifurcata, and F. vesiculosus
(Table 2), proving the dominance of the heteropolymeric fractions MG and GM. The η values were
less than one for C. tamariscifolia, C. humilis, and F. guiryi, reflecting the abundance of homopolymeric
fractions MM and GG. Nonetheless, L. ochroleuca and S. polyschides showed η values equal to one with
a codominance of homopolymeric and heteropolymeric blocks.

Table 2. Composition data of alginates extracted from studied seaweeds compared to other brown
seaweed species.

Species M/G FM FG FMM FGG FGM FMG η References

Sargassum muticum 1.04 0.51 0.49 0.17 0.15 0.34 0.34 1.35
Laminaria ochroleuca 2.52 0.72 0.28 0.50 0.06 0.22 0.22 1.09

Fucus guiryi 4.41 0.82 0.18 0.78 0.15 0.04 0.04 0.27
Cystoseira humilis 1.46 0.59 0.41 0.40 0.21 0.20 0.20 0.83

Carpodesmia tamariscifolia 1.31 0.57 0.43 0.42 0.28 0.15 0.15 0.61 This study
Saccorhiza polyschides 1.73 0.63 0.37 0.38 0.11 0.25 0.25 1.09

Bifurcaria bifurcata 1.88 0.65 0.35 0.33 0.02 0.32 0.32 1.43
Fucus vesiculosus f. volubilis 1.84 0.65 0.35 0.39 0.09 0.26 0.26 1.13
Sigma-Aldrich Na-Alginate 3.42 0.77 0.23 0.68 0.14 0.09 0.09 0.51

Ascophyllum nodosum 0.85 0.46 0.54 0.28 0.36 0.18 0.18 0.72 [10]
Durvillaea antarctica 4.00 0.8 0.2 0.64 0.04 0.16 0.16 1.00 [11]

Ecklonia maxima 1.22 0.55 0.45 0.32 0.22 0.23 0.23 0.93 [8]
Laminaria japonica 1.86 0.65 0.35 0.48 0.18 0.17 0.17 0.75 [8]
Laminaria digitata 1.44 0.59 0.41 0.43 0.25 0.16 0.16 0.66 [8]

Laminaria hyperborea 0.82 0.45 0.55 0.28 0.38 0.17 0.17 0.69 [15]
Lessonia nigrescens 1.44 0.59 0.41 0.4 0.22 0.19 0.19 0.79 [12]
Macrocystis pyrifera 1.7 0.63 0.37 0.42 0.16 0.21 0.21 0.90 [11]

Saccharina longicruris 0.69 0.41 0.59 0.07 0.25 0.34 0.34 1.41 [10]
Sargassum asperifolium 0.69 0.41 0.59 0.3 0.48 0.22 0.22 0.91 [12]
Sargassum filipendula 0.78 0.44 0.56 0.33 0.45 0.11 0.11 0.45 [17]
Sargassum muticum 0.31 0.24 0.76 0.07 0.59 0.17 0.17 0.93 [20]

Sargassum oligocystum 0.62 0.38 0.62 0.31 0.55 0.14 0.14 0.59 [18]
Sargassum thunbergii 0.53 0.34 0.66 0.17 0.48 0.34 0.34 1.52 [20]
Sargassum polycystum 0.21 0.18 0.82 0.12 0.77 0.1 0.1 0.68 [20]

Sargassum vulgare 1.27 0.56 0.44 0.02 0.55 0.43 0.43 1.75 [19]
Fucus vesiculosus 1.44 0.59 0.41 0.39 0.22 0.19 0.19 0.78 [10]

3. Materials and Methods

The studied brown algal species (Figure S2 in the Supplementary Material) were sampled from
the El Jadida coastline (33◦14′43.7′′ N 8◦32′35.2′′ W), except F. vesiculosus f. volubilis, which was
harvested from Oualidia lagoon (32◦44′52.7′′ N 9◦01′26.8′′ W). In the laboratory, the samples were
washed with running tap water and then with deionized water to remove debris sticking to their
surface. Algal biomasses were dried at 60 ◦C until constant weight.

The alginates’ extraction was carried out according to the slightly modified procedure of
Calumpong et al. [30]. Dried biomasses of the investigated algal species was covered with 2%
formaldehyde at room temperature for 24 h, washed with water, and then added to 0.2 M HCl and
left for another 24 h. Subsequently, the algal biomasses were rinsed with distilled water and flooded
in 2% sodium carbonate for 24 h. The soluble part was collected by filtration through three layers
of cheesecloth, and the filtrate was collected by centrifugation. The extract was discarded, and the
procedure was repeated for the solid residue. The whole filtrates were precipitated by three volumes
of ethanol. The sodium alginate recovered was washed with acetone and placed in an oven at 50 ◦C.
The yield of alginate is expressed as a percentage of the initial dry weight of seaweed (% dw).

FTIR spectral measurements of the dried sodium alginate samples (50 ◦C for 3h) were performed
using a Thermo Scientific Nicolet Impact 400D FT-IR Spectrometer (Nicolet Instrument Co., Madison,
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USA). The spectra were scanned between 4000 and 600 cm−1 in attenuated total reflectance (ATR)
mode. A total of 32 scans were averaged for each sample at a 4 cm−1 resolution, and subsequently,
the IR spectra were processed using the OMNIC software (Nicolet, Madison, USA).

The 1H NMR spectra of the sodium alginate solutions in D2O were recorded on the spectrometer
AV II 400 MHz, 9.4T (Proton Larmor frequency of 400.33 MHz, Bruker Corporation, Billerica, MA,
USA), using A 5 mm Triple Resonance Broadband Inverse probe (Bruker Corporation, Billerica, MA,
USA), at 343 K. The spectra of 16 K in size of Free Induction Decay were recorded with a sweep width
of 4800 Hz. Presaturation was applied during the relaxation delay and mixing time. The raw data were
apodized in one dimension with 0.5 for line broadening prior to Fourier transformation. The number
of scans was 32 transients. A commercial sodium alginate (CAS No. 9005-38-3, Lot MKBQ4519V,
Sigma-Aldrich, Gillingham, UK) was used as the standard.

4. Conclusions

The present study investigates the yield and spectroscopic (FT-IR and 1H NMR) characterization
of alginates extracted from eight brown seaweeds from the Moroccan Atlantic coastline. The alginates
contents were higher than 18% dw for most of the algae except F. guiryi and B. bifurcata.
FT-IR spectroscopy analysis showed an interesting similarity between the alginate spectra of the studied
algae and that of the commercial alginate (Sigma-Aldrich, Gillingham, UK). 1H NMR spectroscopy
revealed that the extracted alginates are richer in mannuronic acid than guluronic acid (M/G ratio >1),
thus providing elastic hydrogels. The quasi-dominance of mannuronic (FMM) and guluronic (FGG)
homopolymers over heteropolymeric fractions (FGM and FMG) was detected in F. guiryi, C. humilis,
and C. tamariscifolia. However, the heteropolymeric fractions dominated the diads of the alginates
extracted from S. muticum, B. bifurcata, and F. vesiculosus. The noteworthy yield associated with the
physical and chemical proprieties of the extracted alginates makes these species potential alginophytes
for commercial purposes. Nonetheless, future research must place emphasis on the seasonal variation
of yield and the composition of the extracted phycocolloids.

Supplementary Materials: The following are available online. Figure S1: The anomeric region in the 400 MHz—1H
NMR spectrum of the Sigma-Aldrich sodium alginate using D2O as solvent. Figure S2: Morphological traits of
the studied macroalgae collected on the Northwestern Atlantic coast of Morocco.
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